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Abstract
Balanced half-sampleBHS variance estimation is a popular technique among
survey statisticiangyut it has limitations. These lits are studiedheoreticallythrough a
model-based approach and illustrated with simulations using artdiiateal populations.
In the fully balancedcase, under a model often uded stratified, clustered populations,
BHS produces anodel-unbiased variance estimafor only one merber of abroadclass
of estimators of totals. Anothémplementation ofBHS variance estimation in large,
complex surveys is to use partizlancing orgrouping of strata to reduce theamber of
resample estimates that must be calculated. Instead of selectuly &alanced,
orthogonal set ofalf-samplesstrata arecombined intogroups and @et ofhalf-samples
only large enough to be balanced on the groups is seldétedwo-stage clustesamples

either with or without poststratification this leads to an inconsistent variance estimator.

Key words balancedepeated replication, inconsisterdriance estimator, model-based

sampling, partial balancing, poststratification, two-stage cluster sampling.
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1. Introduction

Balanced half-sampleBHS variance estimators, antesampling estimators
generally,are widely used insample surveys because of th&mplicity and flexibility.
Properly applied, they can accommodate complex survey designs and complicated
estimators withoutexplicit derivations of variance formulator different types of
estimators. Thoughtless application can, however, lead to problemspaplisliscusses
some of thedifficulties associated wittBHS generally and withthe shortcut method
known as partiabalancing. We consider stratifietistered populations fromvhich two-
stagesamplesare selectedFollowing the introduction of notation in section 2, section 3
presents a general class of estimatomshiich the BHS variance estimator can be design-
unbiasedbut model-biased. A subclass of estimatorsmaded whereBHS is model-
unbiased. Section 4 discusses a situation, common in practice, thieepartially
balanced ogroupedBHS variance estimator is inconsistent. Tiheonsistency result is
extended to poststratification in section 5. Simulation results using resdrainaial

populations are given in section 6 in support of the theory.

2. Notation and Model
The population of units islivided into H stratawith stratumh containing N,

clusters. Clusterhf) containsM,; units with thetotal number of units irstratumh being
Np, . . . H . .
M, ="M, and thetotal in the populatiobbeingM = " M, . Associated with each

unit in the population is a randomariable Y,; whose finite population total is

T= thi’ihlz,ti Yui - The working model is



EM(yhij):u'h
o’ h=H,i=i",j=j'

COVM(yhij ’yh’i’j’) = O-ﬁiphi h=H,i=i"j#]’ (1)
0 otherwise

A two-stage sample is selected from each stratum consistimg=02 sampleclusters and

a subsample af; sample units is selected within sample clustgr (The total number of
clusters in thesample isn = Zh n,. The set obampleclusters from straturh is denoted

by s, and the subsample of units within samglester fi) by ;. Model(1) isreasonably

general in allowinghe variance andhe covariance among units to d&erentfor every
cluster in the population while specifying a common mean within each stratum.
The general estimator d¢iie totalT that we will consider in this section has the

form:
T= Kpi Vi (2)
22
where K, is a coefficient thatoes notdepend on thg's andy,, = ijsh Yoi /M- In

order forT to be model-unbiased under (1), we must hEviEe}‘Sh K, = M,. EachK,, may

also depend on the particusmmpleselected. A number @xamples okstimators that

fall in the class defined by2) werelisted in Royall(1986) andValliant (1987a, 1993).

For the ratio estimator, 'fR:ZhZiDS Mhiyhi(Mh/zm Mhi), for example,

K, = Mhi(Mh/Z@h Mhi), a samplelependent quantity. Ménclusters are selecteuth



probability poportional to M,, and units withinclusters are selected witequal
probability, the Horvitz-Thompson estimator is unbiased under (1) and,hasM, /n,,.

The theory here il cover the situation whetd is large. Lemmal belowgives

circumstances in which the prediction varianeg, ('f - T) Is asymptotically equivalent to
var, ('f) Although we Wl concentrate on the case mf=2, thelemmaholds forother

boundedsample sizesiso. First,define var, () = o7, [1+(m, —1)p, ] /m,; =v,. The

results in Appendix A.1 of Valliant (1993) can be easily modified to obtain
Lemmal. If, asH - o,
(i) /M -0,
(ii) ﬂﬁx('\/‘m)’ ”}f}x(mm)’ andm?x(Nh) areO(1)
(i) max(K,;) = O(M/n)
(iv) (n/ MZ)ZhK;VK . — G, a positive constant,
then

var, ('f - T) = val, ('f')

=3 KIVK, =3, 5, K, 3)

whereK , = (Km,...,Khm)' andV, =diag(v, ) fori=1...n,.

Whenthe number ofstrataH is large and thetherassumptions ihemmal hold,
the domimant term ofthe predictionvariance is vqx('f) just as in the unstratified case
studied byRoyall (1986) where thesample size otlusters was large and tlsampling
fraction of clusters wasmall. The totalnumber of samplelusters actually is large here

also, even whem, =2 in all strata, becauseH — . Condition (i), /M - 0, is



equivalent ton/( NM) — 0 whereM = M/N is themean number of unitger cluster in
the population. Sincethe maximum cluster sizesare bounded irii), the mean M is
bounded and (i) implies that the overall sampling fraction of clusfesis negligible.

In evaluatingthe performance of th8HS variance estimatorspur estimation

target wll be the model variancevar,, (‘f —T) or its large-sample equivalewtr,, (‘f) In

the presence of probability sampling plananother model-related candidatgght be
A 2

EpEM(T—T) with E, denoting design-expectation, but, afters@mple is selected,

various conditionality argumenisipel the use of a modehot arandom selection plan or

a design/model hybrid, for inference (see, e.g. Royall 1988).

3. A Balanced Half Sample Variance Estimator and Limits of its Applicability

Balanced half-sampleBHS variance estimators, proped byMcCarthy (1969),
are often used in complex surveys because of their generalitheedse withvhich they
can be programmed. Assume tha population is stratified, as in section 1, #mat a
sample of, = 2 primary units is selected from eastnatum. There argeneralizations of
the method to othesample sizes in Gurney ad@éwett (1975), Sitter (1993and Wu
(1991), but then, =2 case is so common in practice that it deserves sgpatakion. A
set ofJ half-samples is defined by the indicators

_[1 if cluster hi is in half -sample
Sia =10 i not

fori=1,2 ando=1,...,J. Based on the,,,, define



Q) =2, —1
_ [ 1 ifclusterhl isin half -sample
“1-1 if clusterh2 is in half -sample

Note also that-¢\* =2¢,,, —1. A set ofhalf-samples is said to be foll orthogonal
balance if
.G =0, forallhand 4)
.G =0 (h#h) (5)
with a minimal set of half-samples satisfying (4) and (5) hatAngl< J < H +4.

Let T® pe the estimator, based balf-samplea, with thesame form ashe full

sample estimatof. One of several choices BHSvariance estimators is
N SN A\2
vo(T) =5 (F©-7) /1.
a=1

There are otheasymptotically equivalerBHS estimators, whose largampleproperties
are the same as thosewf(Krewski and Rao 1981).

The BHS variance estimator is approximately model unbiased urgdlr if

Eu (vB):varM (‘f) defined by (3). As shown in section 3M, meets this standard for

only one estimatof in class (2).

3.1 Model-based Properties
Next, we can evaluate tig#HSvariance estimator and its expectationthe two-

stage case. To implement the method, entire clusters are assihafiestonplesi.e., if a



particular cluster is irhalf-samplea, then all units subsampled from that cluster are

assigned tar also. The half-sample estimator of the total is defined as

A

T = Zh(chlu Kl(‘uc::)yhl_i_Chm K(r?z?yhz)

The form of the half-sample term,ﬂ‘i’) is dictated by the form of andis computed as the

full sample coefficientvould be if thesample sizewvere n, =1. Thea superscript is

attached td(ffi’) sincethe value wil differ from the full sample value. Although wese a
()

superscriptr on K., its value isthe samefor eachhalf-sample containing uniti. The

difference between the half-sample and full-sample estimators is
T9-T=5 5 (G K - Ky) 3.
Using the definitions ofc,,, andc\”, we havec,,, :[1+cﬁf)]/2 and ¢, :[l—cﬁf‘)]/z.
The differencel® - T can then be written as
T 1= 3 (5= 1)+ ) ©)
where " = (K'Y + K Vo). T2 3, KB anda) = Ky, ~ Ko
if T -1 is squaredout and summedover half-samples, we obtain ady
reduction, found in McCarthy (1969) and elsewhdréhe K,.'s andK,ﬂ‘i’)'s have a special
form, butnotin general. In particular, suppose that
(HS1) K% =2K,,

holds. This conditiorcorresponds to the standard prescriptidouble the weights in

each half-sample.Not all estimatorssatisfyHS1; section 3.3jives examples whetbat



condition is violated. ~ WhenHS1 does hold, T\""=T,, A% =24, where
A, =KyYs—KpYi and

TO-T=5 A, (7)
Squaringout (7) and summingover an orthogonal set dfalf-samples giveshe BHS

estimator as

Vg = ZhAzyh.
The expectation under model (1) is then easily calculated as
Ew(va)= 3,3 Kiv + 3 i K = Ky) (8)
which is the asymptotic variance in (3) plus a positive term. The positive term looks like a

biassquared but is preseaten whenT is model unbiased. Expressi¢8) is similar to
the result for the separate ratio estimator in single-stag®lingobtained inValliant
(1987Db). If the class of estimators is further restricted so that, in addititf 10

(HS2) K, =K, foralliOs,
holds, themd ,, = K (¥, — ¥,,) andE,, (A,,) =0. WithbothHS-1 andHS-2 holding, v,

is approximately model unbiased.
ConditionsHS-1 andHS-2 substantially limit the class of estimators for wHsthS

is appropriate as an estimator of tm@del variance (3). BecausEs K, =M, for

model unbiasednesdS-2 implies thatK, = M, /n, =M, /2. In other words, thelass of
model-unbiased estimator®r which BHS is appropriate consists of thgingleton

T= Zh Mhzs Y.i/n, - Section 3.3jives some examples ofher estimators iclass (2)

where BHS does not workbecause conditiondS-1 or HS2 do nothold. In practice,



BHSis often applied in situations where more elaborate mddelg,, (yhij) than(1) are

appropriate. The preceding remarks dot preclude thepossibility that BHS can
successfully be applied tthose situationg] an area of investigation thatilwnot be

pursued further here.

3.2 Design-based Properties

With some sample designg may have desirable design baseapertieswhen
only HS-1 holds, despite the conditional (model) bias in Bgfine 11, to be theselection

probability of unithi in a sample ofn, =2. If K, = M,;/m,;, (HS1) is satisfied when

K& is calculated by substitutingr, =1, /2 for T, In that case,
~ \2 . . . .
e=y . (Mme/"m‘Th) /[nh(nh—l)] and v, is design unbiased under with-

replacement sampling whé?g is design unbiased. Whég), = M,, /1, and the estimator
is a differentiable function dbtalsdefined by (2), Krewski an®ao (1981) showed that
Vv, is design-consistent &3 — o and thesampling ofclusters is done with replacement.
Condition HS2 is not required for these results. h&h averaged over the&esign
distribution, the second, model-related tern@@nturns into alesign variance component,

an example of a more general phenomenon pointed out by Smith (1994).

3.3 Examples

Someexamples vl show thelimitations of BHS as an estimator of the large-

sample model variancear,, (‘f) Examplesl-4 each concern estimators of that satisfy
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the conditionzmsh K,; = M,, for unbiasedness under (1). In each case belmshalf-
sample coefficientsall reduce toK\* =M,. Thus, thehalf-samplemethod tries to
estimate thevariance ofthe BLU predictor, theexpansion estimatothe ratio estimator,

and the Horvitz-Thompson estimatalt with the sameset ofhalf-sample'f(")’s O a
tactic that is obviously incorrect.

Examplel. BLU estimator: FronRoyall (1976) the bestriear unbiasedBLU)
predictor under (1) is -I/-\BLU = Zhs My Vi + Zhs (Mhi My; [Wh|yh| 1 Wh| ]+

> e Miift, where r, is the set ofnonsample clustersw,; = M /(L= Pri + MyiPri )

ﬁh = an Ui Yhi » and Upi = [mhi/oﬁi (1_phi +MyiPy )]/[Zsh mhi/o-ﬁi (1_phi +MyiPy )]

Setting m = Zi& m, , the coefficient in 2 is

Ky =m, +[ M, - m, -~ Zi’Bsh( My = nﬂi’) W‘r] Wt W( /i m) which depends on the
particular units in thesample. Thehalf-sample coefficient is simpl;Kffi’) =M, and,

consequently, the prescription to double folsample weights to creatdalf-sample

weights does not apply. Therefore, bbith1 andHS-2 are violated.

Example2. Expansion estimatofT, = > (M/m)S  my,. For theful
sampleK,, =(M, /m )m.. Whenthe (hi)" samplecluster is assigned toalf-samplea,
the number of sample units ite half-sample,m(f‘), is equal to thewumber inthe (hi)th

cluster,m.. Thus,K,ﬂ‘i’) = M, and neitheHS-1 norHS-2 holds. Ifm, =m, an allocation

that equalizes workload per cluster, then bé8il andHS-2 are satisfied.
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Example 3. Ratio estimator:T, = Zh( Mh/ziESh Mhi)zmsh M.V, K=

(Mh/zi&h Mhi) M, andK® = M,. Again,HS-1 andHS2 are, in general, violated.

Example 4.  Horvitz-Thompson estimator when clustease sampled with

probabilities poportional to M,, and an equal probability subsample is selegtidin
each sample clustef;,, = > Mh/nh)zi&h V- Ky =M,/n, =M, /2 andK® =M, so
that bothHS1 andHS2 hold. In thespecial case ob,; =p,, 05, =07, M,, =M,, and

m, =™, theBLU predictor in example 1 also reduces to.
It should benoted that standarsurvey design practicesay minimizethe effects

of violatingHS-1 andHS-2. If clusters are stratified based siae andhe sizesM,; and

allocations m,, are about thesame within astratum, then each of the estimators in

examples 1-4 will be approximately equarfpg, the case for whicBHSworks.

4. Partial Balancing

Partial balancing ioften used in order to reduce timember of half-sample
estimates that must be computed fQr Though computationally expedient, partial
balancing leads to an inconsistent variaeséimator, as W be demonstrated irthis
section. Supposagain thatn, =2 and thastrata areassigned t@roups or superstrata.
An attempt may be made to assign the same number of strata tgreaphbuthis is not
essential. In a particulagroup all the sampleclusters numbered &re associated and

assigned as a block to a half-sample. Sample clusters numbered 2 are smedltyas a
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block. Figure 1 illustrates the groupingsifataand treatment of clusters as blocks. If

there areg =1,...,G groups of strata, then the estimator of the total can be written as

=3t )

9=1

where'|°gi = thg Kii Vi » I=1,2with G, beingthe set of strata in groupp The estimator

of the total based on half-samples

G

Z ( gla Tg(la) gZa Tg(g))

g=1

where ¢, =1 if the unitsnumbered in groupg are in thehalf-sampleand 0O if not, and

'Icéi") =Y e Ky, with K computed as it would be for the fully balanced case.

The difference betweethe groupedhalf-sampleestimator and thdull sample

estimator is
R n G
T(G)_T:Z(Cngg(f)_T1+ngng(;)_ng)- (9)
0=1
If K = 2K, i.e.HS-1 holds, therf” = 2T, and
T -T= chq)(-rgl _ng)
g

where c(g"):zcgm—lz—( 2 o J) With balancing ongroups, the groupe®HS

estimator is

Vgg = Zg(-':gl —'fgz)z :

The expectation 0¥ is easily calculated as
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E,, (VGB) = Z

0 N
(K§1Vh1 + Kﬁzvhz) + z %Z uh(Khl - Khz)D ' (10)
9 G, D

hT,

which compares to (8) for the ungrouped case. WAA holds, the second term in (10)
is zero and the group&HS estimator isasymptotically model unbiased.ob¢ thatv, is
design unbiased if onlS-1 holds (Wolter 1985, sec. 3.6).

Even ifHS-1 and HS-2 aresatisfied,v;; mayperform erratically whethe number

of groupsG is notlarge. Krewski(1978), in a related case, noted theye variance of a
groupedBHS estimator compared to the standa&etiance estimator in stratifiesimple
randomsampling wherthe stratifiedexpansion estimator is used. Ld®72, 1973) has
studied modifications to partial balancing intended to help stabilize the variangg bbbt
those procedurebave somewhatimited applicability and havenot becomepart of
standard practice. Raand Shao (1993have also mposed a repeatedly grouped
balanced half-sampldRGBHS procedure thamight beadapted to theartially balanced
case. TheRGBHSmethod applies to a case where a large number of aneitselected
within a stratum and then assigned at random to two groups for variance estimation.
If, asH — o, G is fixed, thenv;, can be inconsistent in addition to being unstable.

To demonstrate this, we extend an argunggven byRaoand Shao (1993) and Shao

(1994) for stratified single-stage sampling. hgtdenote the number of strata assigned to

groupg and suppose that n*(ing) - oo, Under standard conditions,
9

Zg= (?91_ -Argz)/\/ig - N0Y

whereD, = var, ('fgl —ng) = ZhDGg K2(v, + V,). Since vay ('f —T) = Zg D,,
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Vee 2

~ DQ
var,, ('f —T) - Z Zg, D, %

If Dg/zg, D, converges to a constamnt,, it follows that

Vos . ngxé, (11)
van, \T-T g

where XZ is a central chi-square random variable witklegree of freedom. In other
words, rather tharconverging to 1 as would be the case for a consistanance
estimator, the ratio in (11) converges to a weiglsiaa of chi-square random variables.
Note that aresultsimilar to(11) can be obtained i, — « in only some of the groups.
The inconsistency of,, can manifest itself by vafv,,) being large and bihe length of
confidence intervals being excessively variable, as verifigtha@rsimulationreported in
section 6. A modification ahe abovdormulation that might lead to consisterfoy v,
would be to somehow léb - o asH - o.

The occurrence in practice of this phenomenmy bemore frequent than one
would at first expect. In household surveys, selection of certainty clusters, i.e., selection
with probability 1, isstandard practice. The first-stage units in the certainties are usually
geographically smalleclusters that arexplicitly stratified orimplicitly placed instrata
throughsystematic sampling from anwderedist. Frequentlythe first-stagesample units

from a certaintyare divided intotwo groups andv/.; used forvariance estimation.This

procedure can lead to the inconsistency described above.

5. Poststratification
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Poststratification is used in household ardertypes of surveys to improve the
efficiency of estimators and to adjust for undercoverage oftangetpopulation due to
deficient frames andther reasons. Suppose that the populatiafivided into design
strata,indexed byh, and clustersvithin strata as in section 2. Each unitliso amember
of a class, opoststratum, denoted loy(c =1K ,C). Each poststratum camut across

designstrata,and theset ofunits inpoststratunct is denoted by§. The totalnumber of

Mh\

units in poststraturmis M, = 5 3 S '8, , whered,, =1 if unit hij is in § and 0 if
not. Assume thahe poststratunsizesM, are known. Consider tHellowing working
model

.G, Ry dilos
%, h=H,i=i"j=j & Tos,

) ) .
cov,, qij ’yh’i’j’|: Shicphic h= h,.l—.l ,{ 75{ ’a%..II:DSC’aH ;DSC
h:h’,|:|’,j¢]’,a; DSC,al'j’ 0s.
otherwise

(12)
T

hicc'
4

Let m . be thenumber of sample units in sampuleisterhi that are part of poststratuen

andy,,. = stm Yuij Onie / My b€ the sample mean of those unithe modefor themeans

Vi Implied by (12) is

EM Bhicg uc

ic h=H,i=1",c=c¢
Covy, bhic +Yhie g w h=h,i=iczc (13)
otherwise

wherev,, = o} [1+ B, —1gic] /m,.. The poststratified estimator is defined as
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B =S RS

where Ig{ = Mc/ mc’ '\ﬁc = thsn Ky, and -ﬁé = thsn KiicYnic With Ky = Ky mye/m, .
A simple calculation shows théﬁs IS unbiased undefl2). Under theconditions in
Valliant (1993, Appendix A.1), var, @;,S—szvarM@pJ, similar to the non-

poststratified case in section 2.

Suppose that strata are grouped as in sectard4hat thdHStechnique is used

on the groups. The estimato'ﬁg can be written as'ﬁé:zg@;gﬁ ngj with

$ = S e, KneYne (=1,2). Similarly, M=y @+ W) with W, = S oo, K-

cgi
Let K& =K@ m,_ /m, and let®%%= M_/ §P¢ be a half-samplpoststratification ratio

with I\ﬁ?g: Zg egm I\ﬁglgm o l\ﬁgg and define‘%ag: Zg’hmg (C gm'l%g"l) +cgm'l$°‘)).

hOG, cg2

M and B have the obvious definitions based Kf{). Thehalf-samplepoststratified

cgi cgi

estimator isﬁ,‘gg: ZC ﬁ?ggag
Whenthe number ofstrataH is Iarge,ﬁ;‘?’“'l%aT can be expanded around th

sample estimate@;: andflf to obtain the approximation
AR % DR[£ ]- R[N -m,| (14)
with @ = /M . With grouping of strat@®9-$ is

PLp-y€, PL$ . PL9 ] (15)
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analogous to(9) and asimilar expression holds forl\ﬁ?g— M.. If HS1 holds, (15)

$ 1. we also have!ésﬁaT M, = Z cang,c '\ﬁcgz

gl cg2

reduces tdﬁ;ar Z c

and (14) becomes

0
AR -RR DR o, (16)
g O

where e, = @gl b2 -8 Gli

cgz After summing (16) overc, squaring, and

using the orthogonality of the?g's, the groupe@HSestimator is approximately

oo U (3. Rew)

The expectation of,. under model (12) is 0. Thus,

Ey QB g] z &' var, Gg R

where R = @,K , I@J ande, = Ggl,K 1€4c I By direct calculation this expectation can

be shown to be

Ey(Ves) Oy RS, R (17)
g
where S is theC x C matrix with B:g elementzhDG Zm KZ.v,,. and B:g element

thg Zm KiicKiioThiee - EXpression(17) is equal tovar,, @;JSJ in expression(8) of
Valliant (1993) and, consequently, tgeoupedBHS estimator is approximately unbiased.

Note thatHS-2 wasnot required because tlmeeanp . in model(12) does notlepend on

the stratunh.
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Unbiasedness notwithstanding,, is inconsistent here also. As in section 4,

suppose thab is fixed asH - «. Again, letn, denote thewumber ofstrataassigned to

groupg and suppose that nﬂg| - 00, Sinceﬁ'eg is a linear combination of random
9

variables and eack,. is a sumover a largenumbern, of strata, wehave, under

appropriate conditions,

& =Re, / /B o Nl
where®: = R var,, Gg IR if E%/Zg & - &, then

L_, (& 2 18
varM@—TJ g o (18)

where x? is a central chi-square random variable withehree of freedom. Thus, the

grouped variance estimator is also inconsistent here.

6. Simulation Results

To illustrate the problems with the groud@dSvariance estimator, weonducted
two simulationstudies. In the first, single-stage clussamplingwas used irartificial
populations. In the second study, two-stage clustenpleswere selectedrom a
population derived fronthe U.S. Current Populatiddurvey (CPS) and a poststratified
estimator used.

For thefirst study,two artificial populationshaving H =40 and H =160 were
generated as follows. Constamimbers of clustenger stratum andnitsper cluster were

assigned a®l, =100 andM,, =M, =10. A'y variablefor each unit in each stratum was

generated ag,; = U, +¢, +2¢,; where bothe,; ande,; were computed aa—6T/JE
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with x a chi-square random variable withdégrees of freedom. The stratumeansy,,
weremultiples of10, assigned in blocks of 20 4, =10 for thefirst 20 strata,p, =20

for the next 2Gstrata, |, = 30 for the next 20 strata (fdd =160), and s@n. Assigning

the means in this wayvas convenienbut has no particular effect on results other
choices would illustrate theame points. The population witd =40 had atotal of

M =40, 000 units while the H =160 population had 160,000 units. In each stratum a
sample ofn, =2 was selected by spte randomsamplingwithout replacement and both
sampleclusters werecompletely enumerated. The estimatortioé total used was

= Zh M, V.. with y, .= an y,./n.. is unbiased witlrespect to both thmodel and

the stratified simple randosampling design. Whetie samplingfraction of clusters is

small in each stratum, a model-unbiased and design-unbiased estimator of variance is
vo =y M0, -y.9a,
which also equalthe BHS estimator when aet ofhalf-samples in fulbrthogonalbalance
is used. Thesamplingfraction of clusters in each stratum for béth= 40 andH =160 is
2/100. Thus, the lack of a finite population correctipt)(in v, has a minor effect.
For bothartificial populationsv,, was computedising G =20 groups and a set

of 24 half-samples in fulbrthogonalbalance. WherH =40, strata wergaired to form

the groups. Strata dnd 2 were pairedstrata 3and 4 were paired and sm. When

H =160, strata 1-8 were grouped, strata 9-46d soon. Note thatthis type of

purposive, as opposed to random, grouping reflects what is typically done in practice.
The second study used a population of 10,841 peisohgled inthe September

1988 CPS. The variablewas weekly wages for each person. The study population
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contained 2,826 geographic clusters, each composadooft 4neighboring households.

Eight poststrata weréormed based on age, race, and s®&alliant (1993) gives more

details about the population and the poststrata definitions. A two-stage sample design was
used with clusters as first-stage units and persons as second-stageTuntsets of

1,000 sampleswere selected with 108ampleclusters in thdirst set and 200sample
clusters in the second. In both sets, clusters were seleittegrobabilitiesproportional

to thenumber of persons in each cluster. Stwe¢ae created in both caseshaveabout

the sametotal number of households, amyj =2 sampleclusters selected in each stratum
using the systematic method described in Hansen, Hurwitzyladdw (1953, p.343). In

each samplecluster, a simple random sample of 4oersons was selected without

replacement in clusters withl,, > 4; otherwise, the cluster was enumerated completely.
From each sample frotihe CPS population, the poststratified estim‘éptse the
BHS variance estimatov, based on aet ofhalf-samples in fulbrthogonalbalance, and
the groupedBHS estimator were calculated. The poststratified estim‘lcq,ge used
K, = M,/n, so thatHS1 andHS-2 weresatisfied. For bothsample sizesnE100 and
n=200), 25 groups of strata wefile@med inorder to compute;. For bothv, andvg,
the half-sampletotals T incorporated the factof1-n,/N,, as described in Valliant

(1993), to approximately reflect the effect of a non-neglidite
Table 1 summarizes results @gquareroot meansquare errors rifises) and

standard erroestimates across 1,088mples from each difie populations. Themsein
. . IS s (2 2 Y2 AL
each simulationvas computed alsnse( T) = [Zg( T- 1) / whereS=1000 andT is

an estimate of the populatidatal T from samples. The average of the squaxts of
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each variance estimate was calculatedvds= zsv;”/ S where v, is the grouped or

ungroupedBHS variance estimate from samme As the ratiosW/ rmse of average
root variance estimate tomse show, neither thgroupedBHS estimator nor thdully
balanced choices have any serious biases in either the artificial or CPS populations.
Table 2 givescoverage percentages over the 1,88fhples 0f95% confidence
intervalscomputedusingthe different variance estimates. Again, no particular defects are
observed for the groupd8HS estimator. All choices cover aabout thenominal level.
Calculations were also performed for 90% and 99% intervals with similar results.
Table 3 liststhe averages of thiealf-widths 0f95% confidence intervals, i.e. the
average over thsamples ofl. 96./v for eachvariance estimator. The table also shows
thevariances othosehalf-widths. Althoughfor a given simulationthe averagéength is
about thesamefor both variance estimatorghe variances othe half-widths are vastly
different. Inthe (artificial/H=40) case, theariance ofthe v, half-widths is1.9times the
variance ofthe v, half-widths (3,040/1,591). In théartificial/H=160) case, the ratio is
6.2. The ratios of variances for the (CRS50) and (CP$%I=100) cases are 2.1 and 4.4.
The relativeinstability of v, is further illustrated by Figure ®hich gives density
estimates for théwo variance estimates frotme CPSsimulations. The densitior the
groupedBHS estimate is muclmore heavy-tailed than that ef at either sample size.
Figure 3 makes related points on confidence inteagakrage and length. The standard

errorestimatey/v (v = v, or vg,) for eachsample isplotted versus thestimationerror

T-T for 500 of thesampledor (Artificial/ H=160) and (CP$=100). Referencdines

are drawn atJv :|'f—T| /1.96. Points thatfall between thewo lines correspond to
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samples wher¢he 95%confidence intervatovered the truealue. Points outside the
referencdines are samples wheréhe confidence intervals didot cover. Circlesdenote

vy, anddots vg;. In bothpanelsv, has a moraarrow range for almosill values of
T-T than doesv,,. The width of confidence intervals based g is erratic in the
region where intervalsover T. Near T-T =0 in (CPSH=100), for example, Vg

ranges from about 60 to 160 (in thousands), but the rand@oﬁs about 75 to 120.

These results raigbe interesting point that despite tsemeness afoverage and
mean interval lengththe fully balancedand partially balance®HS estimators are not
equallygood. The price paid for partiddalancing is wildlyfluctuating confidence interval

lengths.

7. Conclusion

Though lalanced half-samplingan be aflexible and powerful tool in complex
sample surveyshe shortcut method gdartial balancing should be avoided unless a large
number ofgroupscan be formed. ThgroupedBHSvariance estimator is at best unstable
compared to &ully balanced estimator and &brstinconsistent. Continuing survettsat
use partial balancing are likely to observe erratic point estimates of vaoiaedene that

do not accurately reflect the precision of estimated means and totals.
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Table 1 Empirical root mean square erromssg of estimators of totals and ratios of

average standard error estimates tarthgein 1,000 samples.

Population rmse(000s)  v2/imse  vZ2/rmse

Artificial populationsT,

H =40 5.2 1.002 997
H =160 9.9 1.051 1.040

CPS populatiorf

H =50 133.0 1.055 1.049
H =100 97.4 977 1.022

Table 2 Empirical coverage percentages in 1,000 samples of 95% confidence intervals.

L, M, and U are percentages of samples \M’LHT)/\/V <-196,

‘(f —T)/\/V‘ <196, and('f —T)/\/V >1.96, respectively.

Population Vg Ve

Avrtificial populations L M U L M U

H =40 32 942 26| 39 935 26
H =160 27 957 16| 3.0 950 20
CPS population

H =50 25 955 20| 32 944 24

H =100 42 932 26| 36 941 23
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Table 3. Empirical results for average half-width length and variance of half-width length

for 95% confidence intervals over 1,000 samples.

Population Average half-width Variance of half-width Ratio of half-width

(000s) (000s) variances
(Ver/ Ve)

Avrtificial Vg Ves Vg Ve

H =40 10.2 10.2 1,591 3,040 1.9

H =160 20.3 20.1 1,618 10,076 6.2

CPS

H =50 275.1 273.6 963,597 2,015,957 2.1

H =100 186.5 195.1 234,752 1,035,377 4.4

Figure 1. An example of grouping strata and treating sample clusters as blocks when

partial balancing is used. Circled units are assigned as a block to a half-sample.

h Sample clusters
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Figure Titles
Figure 1. An example ofgrouping strataand treatingsampleclusters as blocka/hen
partial balancing is used. Circled units are assigned as a block to a half-sample.
Figure 2. Nonparametric density estimatés v, and v, in the CPS population
simulations.

Figure 3. Standard erroestimates (/E and ,/vg; ) plotted versusestimationerrors

(‘f—T) for 500 samples fromthe artificial population H=160) and the CPS

population H=100). 0 =\/Vg ;* = Vg -



