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Abstract 

The sampling weight in the Current Employment Statistics Survey is determined at the time of sample 

selection. It depends on a unit’s State, industry, and size class. However, the population of businesses is 

highly dynamic. Establishments constantly grow or contract; sometimes they also change their industrial 

classification or geographical location. Even the number of population units is not fixed but continuously 

changes over time. A unit may change its size class at the time of estimation or the content of the original 

stratum may change. Under such circumstances, application of the original survey weights may increase 

volatility of survey estimates. In this paper we investigate if the survey estimates can be improved by 

adjusting the original weights. 

Key Words: sampling weights, extreme observation, business survey, stratum jumper 

 

 
1. Introduction 

 

Under the classical design-based approach to inferences from survey sampling, the sampling weights are 

defined at the design stage of a survey and viewed as non-random quantities at the estimation stage. In 

contrast, Pfeffermann and Sverchkov (1999) and Beaumont (2008) view the sampling weights as 

realizations of a random vector. This allows modeling the weights and applying a new “smoothed” set of 

weights estimated from the model. The approach has the potential for the improved efficiency compared 

to the estimator based on the original weights. 

Consider a version of the expansion estimator for the population total, where a set of smoothed weights is 

used in place of the original sampling weights. The method has the potential to give good results when the 

new weights are better related to the response variable. 

The usual layperson’s interpretation of the sampling weights in the expansion estimator goes as follows: 

think of sample unit’s weight as the number of corresponding units in the population having the same 

value of the sample unit’s response variable. If this correspondence would hold exactly for all sample 

units, then the sample weighted estimator provides a perfect estimator of the population total. It 

“estimates” the total without an error. 

Of course, in reality, sampling weights never exactly represent the number of such units in the population. 

Each weight may be considered as an estimate of the number of population units with like values. One 

can try to improve this estimate by exploiting the relationship between weights and sample responses and 

finding an “average” value of the weight for units with similar measurements. Thus, one is smoothing the 

weights. 

The theoretical idea is promising; however, the method depends on finding an appropriate model for the 

weights. In practice, the choice of a good model may be challenging, and the model failure may lead to a 



 

 

 



bias in estimation. With a good model also, the model parameters need to be estimated from the data, and 

this contributes to the variance of the resulting survey estimator. Keeping in mind these practical 

difficulties, application of the method needs to be thoroughly tested. 

In this paper we consider a nonparametric approach to estimation of the smoothed weights based on the 

values of response variables. The nonparametric approach does not require explicitly formulating a 

model; a drawback is that the nonparametric estimation, generally, is less efficient than the parametric 

approach. We apply the method to estimation in the Current Employment Statistics (CES) survey and 

compare results with the currently used estimator. 

CES is a large-scale establishment survey conducted by the U.S. Bureau of Labor Statistics. The survey 

produces monthly estimates of employment and other important indicators of the U.S. economy. The 

estimates are published every month at various levels of industrial and geographical detail. Here, we 

consider estimation for the one month relative employment change for industrial divisions (supersectors) 

in metropolitan statistical areas (MSA). 

 

In Section 2, we give a brief description of relevant details of the CES sample selection and estimation 

methods and provide motivation for considering the weights smoothing method. In Section 3 we adapt the 

theoretical concepts developed by Pfeffermann and Sverchkov (1999, 2003) and Beaumont (2008) to the 

case of the CES estimator of the relative over-the-month change. We describe the proposed estimators for 

the CES survey, the evaluation criteria, and provide the results in Section 4. The last section contains the 

summary. 

 

2. Details of the CES survey 

 

2.1 CES Frame and Sample Selection 
The CES sample is selected once a year from a frame based on the Quarterly Census of Employment and 

Wages (QCEW) data file. This is the administrative dataset that contains records of employment and 

wages for nearly every U.S. establishment covered by the States’ unemployment insurance (UI) laws. The 

QCEW data becomes available to BLS on a lagged basis and serves for the sampling selection and for the 

benchmarking purposes; (see BLS Handbook of Methods, http://www.bls.gov/opub/hom/pdf/homch2.pdf, 

for more information about QCEW). 

 

The QCEW based sampling frame is divided into strata defined by State, industrial supersector based on 

the North American Industrial Classification System (NAICS) and on the total employment size of 

establishments within a UI account. A stratified simple random sample of UI accounts is selected using 

optimal allocation to minimize, for a given cost per State, a State level variance of the monthly 

employment change estimate. 

 

2.2. CES Estimator 
The relative growth of employment from the previous to the current month is estimated using a matched 

sample St 

months: 

of establishments, that is, establishments reporting positive employment in both adjacent 

R̂    jSt 
wj y j;t 

 
, (1) 

t 

jSt 
wj y j;t1 

http://www.bls.gov/opub/hom/pdf/homch2.pdf


 

 

 

R 
 1 

t 
Y t1 

where j denotes establishment, t is the current month, y j;t  and y j;t1 denote, respectively, a unit’s 

current and previous months reported employment; wj is the selection weight. 

 
The numerator of the ratio is the survey weighted sum of the current month reported employment; 

similarly, the denominator is the survey weighted sum of the previous month employment. 

Once a year, an estimate is benchmarked to a census level figure Y0 (the QCEW-based level that 

becomes  available  on  a  lagged  basis):  Ŷ  Y R̂ ; monthly estimates of the employment level at 
t 1 0    t 1 

subsequent months are derived by application of estimate R̂
t
 of employment trend to the previous month 

estimate of the employment level: Ŷ  Ŷ R̂  .  See the BLS Handbook of Methods (Chapter 2) for further 

details. 

t t 1 t 

 

2.3 Motivation for weights adjustment and treatment of influential observations in CES 
In CES, every month, we are essentially measuring employment change in the population. Thus, we 

should be looking at the relationship between the weights and employment changes. More precisely, 

because we are using the ratio estimator and estimating the relative change, we should consider the 

relationship between the weights and residuals rt , j  yt , j  Rt yt 1, j . 

 
Indeed, by the first order Taylor decomposition, (1) can be approximated as, 

 

R̂  w ( y  R y ) , (2) 
t jSt 

j j;t t j;t1 

 

where Yt 1 and Rt 

to month t. 

are total employment in month t-1 and relative growth of employment from month t-1 

 

As described in Section 2.1, CES stratifies based on the employment size (within industry and geography) 

and allocates optimally for a given cost. This strategy is intended to produce an efficient sample weighted 

estimator. Given how we sample, larger weights are usually associated with smaller businesses. The 

smaller businesses also tend to have smaller changes in employment and thus smaller unweighted 

residuals. 

 

However, we often observe a relatively large weight associated with a large change in employment. This 

happens for various reasons. The general explanation is the dynamic nature of the population of 

businesses (businesses may jump from one size class to another; the number of population units may 

change; labels, such as industrial classification, also change during the estimation period). Even with the 

optimal sampling design, one cannot account for the future changes in the population at the time of 

planning and selecting the sample. Therefore, the design weights are hardly optimal for any given month 

of the estimation. 

 

The Robust Estimation procedure is the estimation method currently used in CES. It is designed to reduce 

the effect of the influential observations on the estimate of the relative over-the-month change. The 

Robust estimator identifies a limited number of units having extreme values of weighted residuals. These 

units receive special treatment: their weights are reduced; in the most egregious cases, they are considered 

self-representing atypical units and are removed from the formula (1). 



 

 

 

From (2), the influential reports are those having large positive or negative values of the weighted 

residuals, wj ( y j;t  Rt y j;t1 ) , compared to the other sample units. The extreme residuals are reduced to 

specific cut-off values. The cut-off values depend on the distribution of the weighted residuals in a given 

series and are determined independently for each month and industry series. Pushing the extreme 

residuals to the cut-off values is accomplished by using an appropriate weight adjustment factor. 

 

The procedure used for the CES robust estimation is a particular variation of a general method of weight 

reduction known as Winsorization. See Kokic and Bell (1994), Gershunskaya (2011). The actual cut-off 

values are determined by examining the relative distances of units with extreme weighted residuals to the 

nearest but less extreme values in the same cell and month. See the BLS Handbook of Methods (Chapter 

2) for further details. 

 

This procedure helps to reduce volatility of the estimator. Still, especially at the lower estimation cell 

levels, the estimator remains unstable. At the lower levels, weights may be further modified using the 

proposed method of weights smoothing. 

 

3. Sample weights smoothing 

 
We consider the sampling process as a result of three stage procedure (see Pfeffermann and Sverchkov 

2009). At the first stage, the finite population, U  {yj, :  0,...,t, j  1,..., N, z}, is generated from 

some unknown distribution, f ( y0 ,..., yt , Z) , which is usually called the super-population distribution or 

model, here z denotes the set of design variables (frame). The sampling weights wj , j  1,..., N are 

defined on this realized final population. Then, the sample, S  {yj, , wj :  0,..., t, j  1,..., n} is 

selected from the finite population. Finally, since some units do not respond, S can be decomposed into 

monthly sets St containing units that respond in month t and t 1 . Under this model the outcome 

variables and the sampling weights are random and follow the sample distribution (for exact definitions 

see Pfeffermann and Sverchkov 2009). Therefore, (2) can be approximated as, 

R̂t
 

j;t  Rt y j;t 1 
) | j  St ] 

 

 R 
 1 



E{E[w ( y  R y 

 
) | y  R y , j  S ] | j  S } 

Yt1 
jSt 

j j;t t j;t 1 j;t t     j;t 1 t t 

 

 R 
 1 



E[E(w | y  R y , j  S )( y  R y ) | j  S ] 

Yt1 
jSt 

j j;t t j;t 1 

v 
t j;t t     j;t 1 t 

 
 v ( y 

j 
 

 
 R y ) , 

jSt 
j j;t t j;t1 

 

where vj   E(wj | y j;t  Rt y j;t1, j  St ) are the smoothed weights. Here, in the first line we 

approximate weighted residuals by their expectations and in the last line we do the opposite. 

t 

t 

R 
 1 



t 
Y 

w ( y  R y j j;t t     j;t1 t ) R 
 1 



E[w ( y 
t1 

jSt Y t1 
jSt 

j 

R 
 1 

t 
Y t1 
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j 

This implies that the relative growth of employment from the previous to the current month can be 

estimated also as, 

 
R̂ S   

  jSt 
v̂ j y j;t 

 

, (3) 
t 

jSt 
v̂ j y j;t1 

where v̂ j are estimates of E(wj | y j;t  Rt y j;t1, j  St ) . 
 

 

Remark  1.   (General  justification  for  smoothing  weights).  Let  s  be  a  sample  selected  from a final 

population with inclusion probabilities       w1 . Pfeffermann and Sverchkov (1999) show that for any 

random variables  j and x j , 
 

 
f ( | x )  

E(wj |  j , x j , j  s) 
f (





| x , j  s) , (4) 

j j E(w j | x j , j  s) 
 

where f is the probability density function when  j 

is discrete. 

is continuous and the probability function when  j 

Therefore, for estimating relationships between variables  j and x j 

 

on the super-population from the 

observed sample data, the sampling weights can be replaced by their conditional expectations, 

E(wj |  j , xj , j  s) . For example, if one is interested in regression of  j on x j ,  then, by (4), 

E( | x )  E[ 
E(wj |  j , x j , j  s) 






| x , j  s] , the latter implies that one can use any weights w* 
j j E(w j | x j , j  s) 

w* 

satisfying E[  j  | x , j  s]  E[ E(w j |  j , x j , j  s) 

 | x , j  s] in this case. 

E(w* | x , j  s)   j j E(w | x  , j  s) j j 
j j j j 

 

 

 
Example. (Estimating an expectation over population). 

 
E( )  E[ 

E(wj |  j , j  s) 






| j  s] , which 

j E(w  | j  s) j 

suggests two estimators based on the smoothed weights: a) estimating the external expectation and 

 E(wj |  j , j  s) j 
expectation in the denominator by respective sample means Ê( )   js  (analog of 

j 




js   

E(w j |  j , j  s) 

Hajek estimator); b) on the other hand, since for fixed size sampling schemes E(wj | j  s)  N / n , 

estimating the external expectation by the mean and substituting the later equality one can get 

 E(wj |  j , j  s) j 

Ê( )   js                                                        

j 
N

 (analog of Horvitz-Thompson estimator). 

j j 

j j j 
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w y 

w y 

vˆ y 

vˆ y 

 R y 







The new weights are smoother than the original sampling weights and contain all necessary information 

on the relationship between the outcome variable,  j , and the sampling weight. For example, if wj is a 

deterministic function of the outcome,  j , then the smoothed weight is the same as the original one, 
def 

v j  E(wj |  j , j  s)  wj , on the contrary, if the outcome and the sampling weights are unrelated, then 

the smoothed weight is constant. Therefore, the estimates based on the smoothed weights can be less 

variable (more efficient) than classical probability weighted estimators. The smoothed weights were used 

in Pfeffermann and Sverchkov (1999, 2003) in parametric estimation of linear and Generalized Linear 

Models. 

One can find another theoretical justification for using smoothed weights in Beaumont (2008). Beaumont 

and Rivest (2009) suggested the use of smoothed weights to deal with influential observations. 
 

Remark 2. The previous remark is correct for theoretical smoothed weight, E(wj |  j , xj , j  s) . In 

practice the latter expectation has to be estimated. If the estimate will be inaccurate then the final 

estimator can be biased and/or less efficient. 

4. Proposed estimators and their evaluation 
 
We consider the following set of estimators. 

1) Unweighted Ratio estimator,  R̂ 

 
 

UNW  
 jS 

y j;t  
 
. This estimator can be biased if sampling is 

 

informative. 

t 

jSt 
y j;t1 

 





wj y j;t 

2) Probability Weighted Ratio estimator,  R̂ PWR  
 

 jSt 

w y   ,. This estimator is unbiased over 

jSt 
j j;t1 

randomization distribution, can be not efficient if original sampling weights, wj , and residuals, 

y j;t  Rt y j;t1 , are not strongly related, see Remark 1. 

3) Robust estimator,  R̂ R  
  jSt 

R 

j j;t 
 
, with weights, wR , obtained by Robust Estimation 

t 

jSt 

R j 

j j;t1 

Procedure described in Section 2. This estimator is protected against influential observations. 

 
4) Robust smoothed estimator, R̂ RS   

 jSt 

R 

j j;t 
 
, where 

 
v̂ R 

 
are estimated by regressing wR 

 
against 

t 

jSt 

R j j 

j j;t1 

estimated residuals ˆPWR 
j;t t j;t1 

by SAS Proc LOESS, 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#loess_toc.htm. 
 
 

Remark 3. It is difficult to determine the functional form of the relationship between weights and 

residuals (see Figure 1). Therefore, we consider a nonparametric approach. This approach does not 

require explicitly formulating a model; the drawback is that the nonparametric estimation, generally, is 

less efficient than the parametric approach. We use the standard SAS LOESS procedure with default 

parameters. On the plot, stars represent the values of smoothed weights estimated using this procedure. 

y 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#loess_toc.htm
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Figure 1: Robust sample weights R against estimated residuals ˆPWR 
j;t t j;t1 

(black) and SAS 

LOESS procedure estimates for regression E(wR | y  R y , j  S ) against estimated residuals for 

a particular MSA (red). 

j j;t t    j;t1 t 

 

 

We made estimates of employment at the MSA supersector level. The estimates were constructed using 

data reported monthly over three years. For each year, we started the estimation cycle from the 

corresponding September QCEW employment level as the benchmark. Each year’s estimation went on 

for 12 consecutive months using the estimation sequence described in Section 2.2. 

The primary goal of this research is to find the estimator that improves the monthly volatility as compared 

to the currently used estimator. At the same time, revisions after 12 months of estimation (the annual 

revisions) should be, on average, at least as good as with the current estimator. 

We make conclusions about the relative quality of the competing estimators based on the summary of the 

distances of corresponding estimates from the QCEW figures that serve as the truth. The summaries are 

derived over the set of MSAs in each supersector level and over the set of MSAs at the Total Private 

level. 

w y 



 

 

 

m,t  

M M 

M M 

t 

12M 12M 

12M 12M 

m,t m,t 

m,t m,t 

For cell  m  at month  t , the difference between the estimated, Ŷ , and the true, Ym,t , employment levels 

is 

dm,t  Ŷ 

 

 Y . 
 

The difference, relative to the level (times 100), is 

rel _ dm,t  100Y  ̂  Ym,t 


Ym,t . 
 

The difference in the monthly changes is 

cm,t  Ŷ  Y  ̂
1  Ym,t  Ym,t 1 . 

 

The difference in the monthly changes, relative to the level (times 100), is 
 

rel _ cm,t  100cm,t Ym,t 1 . 
 

In this paper, we publish results at the MSA Total Private level. The following summary statistics are 

presented in Table 1. 
 

1  M    1 M 

Mean revision: dt    dm,t 

m1 

and  rel _ d t    rel _ dm,t  

m1 

 

a 1  M   a 1 M 

Mean absolute revision: dt 
  dm,t 

m1 

and rel _ d t   rel _ dm,t  

m1 

 

75th percentile of the absolute revisions ( d 

rel _ d 75 . 

m,t or rel _ d 
 

m,t  
) over the set of M domains: 75 and 

The following summary statistics for the monthly changes are presented in Tables 2. 
 

1 12    M    1 12 M 
 

Mean revision:  c  cm,t    and 
t 1 m1 

rel _ c  rel _ cm,t . 
t 1 m1 

 

12 M 
a 
 

  a 1 12 M 

Mean absolute revision: c   cm,t  

t 1 m1 

and rel _ c   rel _ cm,t  

t 1 m1 

75th percentile of the absolute revisions ( cm,t  

c75 and rel _ c75 . 

or rel _ cm,t ) over the set of M domains and 12 months: 

We obtained encouraging results: the summary statistics look consistently better for the new estimator 

(Tables 1 and 2). However, there are examples where the new estimator does not work as expected. Of 

course, it is not reasonable to expect that one estimator would work better than another in every case. 

However, we would like to be able to identify and correct certain cases where the new estimator is 

egregiously wrong (as in Figure 3). 

m,t 

d t 
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Table 1: Differences from QCEW after 12 months of estimation. Summary over all MSAs at the Total 

Private Level 
 

Estimator N 
 

 

dt 12 

 
 

rel _ dt 12 

 
 

d a 

t 12 
d 75 

t 12 

a 

rel _ dt 12 
rel _ d 75 

t 12 

Based on September 2009 benchmark 

LOESS 390 -631 -0.09 2,703 2,787 1.67 2.19 

Robust 390 -934 -0.36 3,529 3,602 2.53 3.35 

UnwRatio 390 -2,731 -0.94 4,425 4,703 2.55 3.37 

WRatio 390 -717 -0.45 4,167 4,823 2.81 3.91 

Based on September 2010 benchmark 

LOESS 401 -961 -0.14 2,438 2,762 1.41 1.91 

Robust 401 -946 -0.17 3,104 3,456 2.07 2.94 

UnwRatio 401 -2,493 -0.83 4,028 4,464 2.32 3.04 

WRatio 401 -339 -0.05 3,467 3,451 2.31 2.99 

Based on September 2011 benchmark 

LOESS 401 -439 0.08 2,080 2,106 1.27 1.71 

Robust 401 -893 -0.17 2,805 2,768 1.89 2.70 

UnwRatio 401 -2,237 -0.52 3,644 3,542 2.14 2.51 

WRatio 401 -1,100 -0.19 3,122 3,469 2.07 2.96 

 

Table 2: Monthly differences from QCEW for 12 months of estimation. Summary over all MSAs at the 

Total Private Level and all 12 months 
 

Estimator N c 
 

 

rel _c c a c75 a 

rel _c rel _ c75 

Based on September 2009 benchmark 

LOESS 4680 -53 -0.01 1,104 1,120 0.68 0.89 

Robust 4680 -78 -0.03 1,377 1,516 0.96 1.29 

UnwRatio 4680 -228 -0.08 1,693 1,695 1.11 1.31 

WRatio 4680 -60 -0.04 2,025 1,716 1.83 1.46 

Based on September 2010 benchmark 

LOESS 4812 -80 -0.02 985 996 0.62 0.82 

Robust 4812 -79 -0.02 1,196 1,333 0.82 1.12 

UnwRatio 4812 -208 -0.07 1,534 1,547 0.95 1.21 

WRatio 4812 -28 -0.01 1,348 1,459 0.93 1.23 

Based on September 2011 benchmark 

LOESS 4812 -37 0 1,002 991 0.60 0.77 

Robust 4812 -74 -0.02 1,197 1,302 0.80 1.09 

UnwRatio 4812 -186 -0.05 1,417 1,515 0.88 1.14 

WRatio 4812 -92 -0.02 1,296 1,475 0.89 1.21 



 

 

 

We present two examples of estimation over 12 months at an MSA supersector level (see Figures 2 and 

3.) There are three lines on each plot. The black line corresponds to the true employment level at each of 

the 13 months, including the starting September. The blue line shows the Robust estimator (currently used 

estimator) and the magenta line is for the new LOESS based estimator. The first example (Figure 2) 

shows the situation where the new estimator results are smoother than the Robust estimator. Look 

especially at the change in employment between February and March and notice how the volatility of the 

Robust estimator was corrected in the new estimator. 

 

Figure 2: Example of estimation where new estimator works well. Results from two competing 

estimators (Robust: blue stars; LOESS-based: magenta spides) and the employment levels from QCEW. 



 

 

 

The second example (Figure 3) demonstrates that there exist instances where the new method is not 

working as expected. Notice April to May and May to June changes. 

 

 
Figure 3: Example of estimation where new estimator is not working well. Results from two competing 

estimators (Robust: blue stars; LOESS-based: magenta spides) and the employment levels from QCEW. 

 

 
In Figure 4, we plot weights against the residuals for the problem month (April to May change). Notice 

that the smoothed weights for the 4 points on the right are obtained by nearly linear interpolation. As a 

result, we have hugely exaggerated “smooth” weights for two of these points. This tells us that there is 

room for improvement in the nonparametric method we use. 
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 R y 

 

 
 

Figure 4: Illustration for the April-May change in Figure 3. Robust sample weights wR against estimated 

residuals ˆPWR 

j;t t j;t1 
(black) and SAS LOESS procedure estimates for regression 

E(wR | y  R y , j  S ) against estimated residuals for a particular MSA (red). 
j j;t t    j;t1 t 

 

 

 

Summary: 

The overall results are promising but there are certain cases where the new method is not working 

properly. Some tuning is needed of the nonparametric method we used. 

One minor practical inconvenience is that the smooth weights change every month. 
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