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ABSTRACT 
Well known CPI of urban consumers is never revised. Recently initiated  
chained CPI is initially released every month (ICPI), for that month without 
delay within BLS and for the previous month with one month delay to the 
public. Final estimates of chained CPI (FCPI) are released every February for 
January to December of the calendar year two years before. Every month, 
simultaneously with the release of ICPI, we would like to have a best 
estimate, given current information, of FCPI for that month, which will not 
be released until two calendar years later. ICPI and FCPI data may be indexed 
in historical time by months of occurrence or in current or real time by 
months of observation or release. The essence of the solution method is to 
use data indexed in historical time to estimate models and, then, for an 
estimated model, to use data indexed in real time to estimate FCPI. We 
illustrate the method with regression and VARMA models. Using a regression 
model, estimated FCPI is given directly by an estimated regression line; and, 
using a VARMA model, estimated FCPI is computed using a Kalman smoother.* 
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1. Introduction. 
 

An initial estimate (ICPI) of chained CPI of urban consumers (CCPIU) is 

produced and released to the public every month with a month's delay, and 

final revised estimates of CCPIU (FCPI) are released every February for all 

months two calendar years earlier. Depending on the month, a final release 

comes 14-25 months after an initial release. ICPI differs from FCPI on 

average by about 22% (see the column average of the BENCH model in table 5). 

The difference occurs because final estimates of expenditure weights are 

available for a given year only two calendar years later. ICPI is an initial 

estimate of FCPI that uses two-year-old expenditure data. The present paper 

describes and illustrates a method for estimating FCPI concurrently, i.e., in 

the month of an ICPI release, and evaluates the accuracy of the obtained 

estimates in terms of root mean-squared errors (RMSE). In the method, FCPI 

estimates are based on estimated regression models and estimated vector 

autoregressive moving-average (VARMA) models. 

In the regression branch of the method, FCPI is given directly by an 

estimated regression line. In the VARMA branch of the method, FCPI is 

estimated by applying the Kalman smoother to an estimated VARMA model. 

Because FCPI is released every February for two calendar years earlier (not 

in every month with a constant delay) and is observed in relatively few 

periods, in practice, a regression can include only current and past ICPI as 

explanatory variables for estimating current FCPI. By contrast, because a 

VARMA model and the Kalman smoother can easily handle data delays, in 

particular, annual February releases of FCPI, they can easily use all current 

and past ICPI and FCPI data when estimating current FCPI, which explains why 

the VARMA-Kalman-smoothing estimates of FCPI here are more accurate than the 

regression-line estimates. 

The application here uses monthly data from January 1998 to December 

2005, where the 1998-1999 data are unofficial and the 2000-2005 data are 

official. The results (figure 2, tables 5-6) show that the best VARMA model 

RVAR12 and its associated Kalman smoother estimate of FCPI imply RMSEs of 17% 

or 23% lower than the RMSE of 22% of ICPI as an estimate of FCPI. However, 

even VARMA model RVAR0, which can be produced automatically (i.e., without 

any judgement or intervention) produces a RMSE of 19% or 14% lower than the 

RMSE of 22% of ICPI. These results suggest that using the Kalman smoother is 

more important for accurately estimating FCPI than which particular model is 

used. For example, even though VARMA model RVAR0 and regression model UREG0 
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are theoretically equivalent, the VARMA-Kalman-smoothing estimates of FCPI 

yield a RMSE of 19%, whereas the regression-line estimates of FCPI yield a 

RMSE of 23% (see column averages of UREG0 and RVAR0 models in table 5). 

We consider unrestricted and restricted regression models of FCPI 

regressed on current and lagged ICPI and unrestricted and restricted VARMA 

models of ICPI and FCPI. In unrestricted models, all coefficients of 

variables and disturbances lagged 1-12 months are estimated; in restricted 

models, insignificant coefficients are set to zero in rounds of estimation. 

To limit the number of estimated models, only pure VAR and pure VMA models 

are considered. 

Regression and VAR models are estimated using linear methods such as 

ordinary least squares (OLS) and seemingly unrelated regression (SUR). The 

VMA model is estimated using the nonlinear maximum likelihood estimation 

(MLE) method. Whereas regression estimates of FCPI are based only on current 

and past ICPI and a constant regression-line "formula," VARMA-Kalman-

smoothing estimates of FCPI are based on current and past ICPI and FCPI and 

on a monthly-varying estimation "formula," because FCPI is released only in 

February. In principle, regression estimates could be based on separate 

regression lines for each month, but there is not enough data to estimate a 

separate regression for each month. By contrast, a Kalman smoother 

automatically produces a different estimation "formula" every month, even for 

a time-invariant model. 

Interim estimates of CCPIU (NCPI) are also released every February for 

the months of the previous calendar year. However, NCPI were not used here, 

because they are not clearly "interim" between ICPI and FCPI: in even-

numbered years ICPI and NCPI are identical to within eight decimal digits and 

differ only in odd-numbered years. The resulting high degree of 

multicollinearity between ICPI and NCPI suggests that NCPI would contribute 

little additional information for estimating FCPI beyond that in ICPI. 

The paper continues as follows. Section 2 discusses data in historical 

versus real-time forms, both of which the application uses. Section 3 

discusses transforming the ICPI and FCPI data by logging, differencing, 

standardizing, and normalizing them, in order to account for trends, reduce 

seasonality, and simplify and improve model estimation. Section 4 describes 

the particular regression and VARMA models to be estimated and used for 

computing estimates of transformed FCPI. Section 5 reviews some related 

economics and statistics literature. Section 6 discusses the state-space 

formulation of estimated VARMA models used for computing FCPI estimates using 



 3

the Kalman smoother. Section 7 reports estimated regression and VARMA models 

of transformed ICPI and FCPI data and RMSEs of the FCPI estimates based on 

the estimated models. Section 8 concludes the paper with a summary. Section 9 

contains supplemental figure 2 and table 6. 

 

2. Data in Historical and Real-Time Forms. 
 

This section discusses data in historical and real-time forms. The idea 

is that estimating a model is more easily done using the data and model in 

more compact historical form, but estimating FCPI with partly delayed data is 

more easily done using the data and model in expanded real-time form, which 

accounts explicitly for data delays. The historical form is usually used for 

storing data and estimating models. In the application, we first estimated 

models in historical form and, then, converted both data and models to 

expanded real-time form in order to compute VARMA-Kalman-smoothing estimates 

of FCPI. 

 

 

Table 1: Data in Compact Historical Form. 
Month t of 
occurrence 

 
dit 

 
dft 

1 di1 df1 
2 di2 df2 
3 di3 df3 
... ... ... 
10 di10 df10 
11 di11 df11 
12 di12 df12 
End of year t = 1,...,12 
13 di13 df13 
14 di14 df14 
15 di15 df15 
... ... ... 
22 di22 df22 
23 di23 df23 
24 di24 df24 
End of year t = 13,...,24 

 

 

 Table 1 depicts dit = ln(ICPIt)-ln(ICPIt-1) and dft = ln(FCPIt)-ln(FCPIt-1) 

in compact historical form. In table 1, all instances of t in all columns 

denote the historical month of occurrence of a datum, regardless when it was 

released. Table 2 depicts dit and dft in expanded real-time form. As in table 
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1, t subscripts of dit and dft in table 2 denote the historical month of 

occurrence of a datum, but, in contrast to table 1, t in column 1 of table 2 

denotes the real-time month of observation of a datum. 

 

 

Table 2: Data in Expanded Real-Time Form. 
Month t of 
observation 

 
dit 

 
dft 

1 di1 na ... Na 
2 di2 df-12 ... df-23 
3 di3 na ... Na 
... ... na ... Na 
10 di10 na ... Na 
11 di11 na ... Na 
12 di12 na ... Na 

End of year t = 1, ..., 12 
13 di13 na ... na 
14 di14 df0 ... df-11 
15 di15  na ... na 
 ...  ... na ... na 
22 di22 na ... na 
23 di23 na ... na 
24 di24 na ... na 

End of year t = 13, ..., 24 
 

 

From BLS's viewpoint, dit is released in the same month in which it 

occurs, with no monthly delay. Consequently, for dit, there is no distinction 

between historical and real time, so that the simultaneously historical and 

real-time values of dit are in the same rows in tables 1 and 2. By contrast, 

all 12 monthly values of dft for a given calendar year are released in 

February two calendar years later. For example, December values of dft for a 

given year are released 14 months later and January values of dft for the same 

year are released 25 months later. Because all values of dft for a given year 

are released in February two years later and because rows in table 2 are 

indexed by real-time months of release or observation, we need 12 columns in 

table 2 in order to depict the 12 monthly values of dft released each 

February. Thus, actual values of dft are placed in months or rows marked 2 and 

14, which are the Februaries in table 2. For all other non-February months or 

rows, values of dft are denoted "na," which means not available or missing. 

Consider, for example, the second February or row t = 14 in table 2. In 

principle, table 2 has 14 columns, so that the dots represent columns 4-13 

which are not shown. Row t = 14 in table 2 contains df0, ..., df-11, which 
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denote observations on dft which occured, respectively, in months t = 0, ..., 

-11 or December to January two calendar years earlier. 

 
3. Data Transformation, Trend, and Seasonality. 
 

We now explain how and why we transformed data by logging, 

differencing, standardizing, and normalizing them in order to account for 

trends, reduce seasonality, and simplify and improve model estimation. 

The ICPIt and FCPIt data were obtained from January 1998 to December 

2005 (1998:1 - 2005:12) or 96 months. An initial "in-sample estimation" 

period of 1998:1 - 2002:12 or 60 months was used to estimate models; a 

subsequent "out-of-sample forecasting" period of 2003:1 – 2005:12 or 36 

months was used to estimate dft and evaluate its accuracy. Before being used 

for estimating models and dft, the ICPIt and FCPIt data were transformed to 

normalized, standardized, month-to-month first differences of natural 

logarithms. The transformed data are graphed in figure 1 to get an idea of 

the nature and extent of autocorrelations and seasonality and, thereby, to 

get an idea of needed lags in the regression and VARMA models. 

The given ICPIt and FCPIt data were first transformed to dit = ln(ICPIt)-

ln(ICPIt-1) and dft = ln(FCPIt)-ln(FCPIt-1). Before being graphed or used in 

estimation, the differenced-logged data were standardized by subtracting in-

sample means and dividing by in-sample standard deviations and were 

normalized by replacing outliers more than 3 standard deviations from zero 

with a missing-data indicator. To make the standardization and normalization 

realistic, the out-of-sample data were also standardized using the in-sample 

means and standard deviations, but were not normalized, because, when 

standing at the end of an in-sample period, ready to estimate dft out of 

sample, we should proceed as if we did not know out-of-sample means, standard 

deviations, and outliers. Accordingly, the realistic practice is to estimate 

dft on the assumption that in-sample and out-of-sample data are generated by 

the same process and to standardize in- and out-of-sample data using the same 

in-sample means and standard deviations. Estimating models and dft using 

standardized data also results in simpler estimation because constant terms 

are zero. 

Removing outliers moves standardized data closer to the standard-normal 

or N(0,1) distribution. The idea is that, because estimation aims primarily 

to account for the systematic or nonrandom parts of a data generating 

process, the estimation improves if outliers are first removed. Leaving 
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outliers in out-of-sample data also makes evaluating estimates of dft more 

realistic. For example, figure 2 and table 6 in the appendix report two large 

unremoved outliers in September and November 2005, due to Hurricane Katrina. 

 
 

Figure 1: Transformed Data in Historical Form, Autocorrelations, and Spectra. 
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Figure 1 contains 6 graphs: the top 3 graphs depict standardized and 

normalized dit, its autocorrelations, and its spectrum; the bottom 3 graphs 

depict standardized and normalized dft, its autocorrelations, and its 

spectrum. Vertical lines in the leftmost graphs divide the sample into in- 

and out-of-sample periods. Unshown graphs of original data (ICPIt and FCPIt) 

display common upward trends. Leftmost graphs of data show that dit and dft 

are approximately stationary over the sample, with no discernable trends and 

slightly increasing variance. Middle graphs of autocorrelations of data show 

significant seasonality, because autocorrelations at seasonal lags of 6, 12, 

24, and 36 months are significant (outside of two-standard error confidence 

bounds about zero). Rightmost graphs of spectra of data, interpreted in terms 

of table 3, more precisely indicate the nature of the data's seasonality. 
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Table 3 indicates frequencies and periodicities of harmonic monthly seasonal 

cycles, with angular frequencies of π/6 = .5236, ..., π = 3.142 radians and 

periodicities of 12, ..., 2 months. The rightmost graphs in figure 1 show 

that nearly identical seasonality of dit and dft is dominated by seasonal 

cycles with periodicities of 4, 6, and 12 months. 

 

 

Table 3: Frequencies and Periodicities of Harmonic Monthly Seasonal Cycles. 
Cases Frequency  

radians 
Frequency π 
radians 

Frequency 
Cycles/mon 

Period 
mon/cycle 

1 .0000 0 .0000 ∞ 

2 .5236 1/6 .0833 12 

3 1.047 1/3 .1667 6 

4 1.571 1/2 .2500 4 

5 2.094 2/3 .3333 3 

6 2.618 5/6 .4167 12/5 

7 3.142 1 .5000 2 

 

 

In sum, significant seasonality of dit and dft in figure 1 suggests that 

estimated regression and VARMA models should include lagged values up to 

about 12 months back in order to fit the stationary and seasonal dit and dft 

data adequately. 

 

4. Estimated Regression and VARMA Models. 
 

We now define the eight regression and VARMA models. The four 

regression models are denoted BENCH, UREG0, UREG12, and RREG12 and the four 

VARMA models are denoted RVAR0, UVAR12, RVAR12, and UVMA12. In section 7, we 

do not report any restricted-to-zero or estimated parameters of any models, 

because the parameters have no particular meanings in the context of the 

application. 

Regression model BENCH, whose name means benchmark regression is 

defined by 

 

(4.1)    dft = dit + εft, 
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with disturbance εft and disturbance variance ffσ . Although BENCH has no 

estimated coefficients, we think of it as regression model UREG0 with 

coefficient β0 restricted to one. BENCH has only parameter ffσ  to be 

estimated. 

All the regression models have the same assumptions on the 

disturbances, εft, that we now make for BENCH: (i) εft is distributed normally, 

identically, independently, with mean zero, and constant positive variance, 

ffσ  > 0, or εft ~ NIID(0, ffσ ); and, (ii) εft is distributed independently of 

current and lagged regressors, dit, ..., dit-12. 

Regression model UREG0, whose name means unrestricted regression with 0 

lags, is defined by 

 

(4.2)     dft = β0dit + εft, 

 

with 2 parameters, β0 and ffσ , estimated using ordinary least squares (OLS). 

Regression model UREG12, whose name means unrestricted regression with 

12 lags, is defined by 

 

(4.3)     dft = β0dit + β1dit-1 + ... + β12dit-12 + εft, 

 

with 14 parameters, β0, ..., β12, and ffσ , estimated using OLS. 

Regression model RREG12, whose name means restricted regression with up 

to 12 lags, is defined by 

 

(4.4)     dft = β0dit + β1dit-1 + β4dit-4 + β9dit-9 + εft, 

 

with 5 parameters, β0, β1, β4, β9, and ffσ , estimated using OLS, as follows. In 

estimated UREG12, we set to zero the least significant estimated coefficient, 

with the highest marginal significance level or p value; we reestimated the 

resulting reduced regression using OLS; we set to zero the least significant 

resulting estimated coefficient; we continued like this until all estimated 

coefficients were significant at about the 10% level or |
β̂

t | ≥ 1.645; and, we 

estimated ffσ  residually at the last step. 

VARMA model RVAR0, whose name means restricted VAR model with no lags, 

is defined by 
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(4.5)     yt = εt, 

 

for bivariate data vector yt = (dit, dft)T and bivariate disturbance vector εt = 

(εit, εft)T, where superscript T denotes vector or matrix transposition. 

All the VARMA models have the same assumptions on disturbances that we 

now make for model RVAR0: (i) disturbance vector εt is distributed normally, 

identically, independently, with mean zero, and constant, 2×2, symmetric, 

positive definite, covariance matrix, Σε = 







σσ
σσ

ffif

ifii , or εt ~ NIID(0,Σε); and, 

(ii) εt is distributed independently of any past variables or disturbances, 

yt-1, εt-1, .... In RVAR0, because standardized dit = εit implies iiσ  = 1, only 

two parameters, ifσ  and ffσ , need to be estimated using MLE. 

We consider theoretically equivalent UREG0 and RVAR0 as separate models 

in order to estimate dft separately using regression lines and Kalman 

smoothing. We now illustrate this equivalence by transforming UREG0 to RVAR0. 

Because both β0 of UREG0 and ifσ  of RVAR0 account for correlation between dit 

and dft, when converting UREG0 to RVAR0, one of these parameters becomes 

redundant. Thus, we have iiσ  = 1, can set ifσ  = 0, and obtain yt = t
~ε , where 

t
~ε  ~ NIID(0, εΣˆ ) and εΣˆ  = 








σβ
β

ff0

01
. 

VARMA model UVAR12, whose name means unrestricted VAR with 12 lags, is 

defined by 

 

(4.6)     yt = Φ1yt-1 + ... + Φ12yt-12 + εt, 

 

where the Φi are unrestricted 2×2 VAR coefficient matrices. The 51 parameters 

of UVAR12, 48 elements of the Φi, and 3 nonredundant elements of Σε, were 

estimated by applying OLS to each scalar equation in (4.6). 

VARMA model RVAR12, whose name means restricted VAR with up to 12 lags, 

is defined by 

 

(4.7)     yt = Φ1yt-1 + Φ2yt-2 + Φ4yt-4 + Φ8yt-8 + Φ11yt-11 + εt, 
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where the restrictions are limited to setting to zero certain elements of 

coefficient matrices Φi. 

The 14 nonzero parameters of RVAR12 were estimated using SUR, analogous 

to reducing UREG12 to RREG12, as follows. In each equation of estimated 

UVAR12, we set to zero the least significant estimated coefficient; we 

estimated the resulting reduced equations using SUR; we dropped from each 

estimated equation the least significant estimated coefficient; we 

reestimated the reduced equations using SUR; we continued like this until all 

estimated coefficients were significant at about the 10% level; and, we 

estimated Σε residually at the final step. 

VARMA model UVMA12, whose name means unrestricted VMA with 12 lags, is 

defined by 

 

(4.8)     yt = Θ1εt-1 + ... + Θ12εt-12 + εt, 

 

where the Θi are unrestricted 2×2 VMA coefficient matrices. The 51 parameters 

of UVMA12, 48 elements of the Θi and 3 nonredundant elements of Σε, were 

estimated simultaneously by applying MLE to (4.8). As usual, the estimated 

UVMA12 model was restricted to be invertible. We tried to estimate a 

subsequently reduced VMA model with insignificant coefficients set to zero, 

analogous to reducing UVAR12 to RVAR12, but this failed because the 

estimation algorithm stepped into parameter regions of inadequately fitting 

models and failed to converge. 

 
5. Structural News-Noise and Unobserved-Components Models. 
 

So far, we have considered nonstructural models, i.e., not motivated by 

economic or statistical theories, and now consider news-noise and unobserved-

components models as examples of economic and statistical structural models. 

News-noise models have received much attention in economic discussions of 

data revisions and unobserved-components models are used often in statistics 

for modelling time series. 

First, if 

 

(5.1)     dft = dit + ξt, 
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and dit and ξt are generated by separate, orthogonal, scalar, ARMA processes, 

then, ξt is considered the "news" in dit as an estimate of dft and yt = (dit, 

dft)T is generated by a restricted, structural, bivariate, ARMA process. 

Alternatively, if dit and dft switch roles, 

 

(5.2)     dit = dft + ξt 

 

replaces (5.1), and dft and ξt are generated by separate, orthogonal, scalar, 

ARMA processes, then, ξt is considered the "noise" in dit as an estimate of dft 

and yt is generated by a different, restricted, structural, bivariate, ARMA 

process. Examples of news-noise models are in Mankiw and Shapiro (1986), 

Sargent (1989), Kishor and Koenig (2009), and Jacobs and van Norden (2011). 

Second, if, 

 

(5.3)     yt = e∙dpt + ξt, 

 

where yt = (dit, dft)T, e = (1, 1)T, and dpt and ξt denote unobserved "true" d-

form CCPIU and unobserved noise, generated by orthogonal, univariate and 

bivariate, ARMA processes, then, (5.3) is an unobserved-components model for 

yt. Examples of unobserved-component models are in Howrey (1978, 1984), 

Hillmer and Trabelsi (1987), Trabelsi and Hillmer (1989), Shumway and Katzoff 

(1991), Patterson (1994), and Chen and Zadrozny (2002). 

After assuming that right-side terms in equations (5.1)-(5.3) are 

generated by VARMA processes, we can restate the equations as VARMA models of 

yt, subject to nonlinear structural restrictions on their parameters in terms 

of the parameters of the VARMA processes of the right-side terms. For 

example, if dit and ξt in equation (5.1) are generated by the orthogonal, 

univariate, ARMA processes α(L)dit = β(L)ε1t and δ(L)ξt = γ(L)ε2t, where L is 

the lag operator, the εt's are orthogonal white noises, and α(L), β(L), δ(L), 

and γ(L) are polynomials of finite degree in nonnegative powers of L, then, yt 

is generated by A(L)yt = B(L)εt, where A(L) = 







)L(α0

0)L(δ)L(α
, B(L) = 









0)L(β

)L(γ)L(α)L(β)L(δ
, εt = (

T
t1ε , T

t2ε )T, and similarly for (5.2) and (5.3). 

Although, in principle, a structural model could produce more accurate 

estimates of dft, the narrow range of RMSEf in table 5 suggests that this is 
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unlikely here. The estimates of dft based on estimated VARMA models and Kalman 

smoothing are, among the references cited here, most closely related to the 

smoothed estimates in Shumway and Katzoff (1991). 

 

6. Real-Time Expanded State-Space Formulation for Kalman Smoothing. 
 

We estimated models using the data and models in compact historical 

forms (table 1; equations (4.1)-(4.8)) and estimated dft using the data and 

models in expanded real-time forms. For the second step, we needed the 

unrestricted VARMA(26,12) model 

 

(6.1)     yt = Φ1yt-1 + ... + Φ26yt-26 + εt + Θ1εt-1 + ... + Θ12εt-12, 

 

with 26 AR lags and 12 MA lags, in order to express VARMA models (4.5)-(4.8) 

as special cases of (6.1) and to account for up to 25-month delays in 

observing dft. 

To compute Kalman-smoothed estimates of dft in terms of (6.1), we needed 

to express it in state-space form, which comprises a state equation, which 

specifies the dynamics of state variables, and an observation equation, which 

specifies how state variables are observed. Accordingly, we wrote (6.1) as 

state equation 

 

(6.2)      xt = Fxt-1 + Gεt, 

 

           F = 


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



,  G = 













































0

0

I



















, 
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where xt = (ytT, ..., yt-25T, εtT, ..., εt-11T)T is a 76×1 state vector, F is a 

76×76 transition matrix, G is a 76×2 input matrix, and I and 0 are 2×2 

identity and zero matrices. 

The data vector is ty  = (ytT, ..., yt-25T)T and has observation equation 

 

(6.3)     ty  = Hxt, 

 

where H = [I52x52, 052x24] is the 52×76 observation matrix and I52x52 and 052x24 

denote 52×52 identity and 52×24 zero matrices. An observation equation can 

also have an additive observation error, although this isn't needed here. 

Zero restrictions on Φi and Θi reduce (6.2)-(6.3) to an expanded real-time 

state-space representation of one of models (4.5)-(4.8) and account for up to 

25-month delays in observing dft. 

Because models (4.5)-(4.8) have at most 12 AR lags, in the application 

we set Φ13, ..., Φ26 to zero in the state equation, but keep lags 13-26 of yt 

in the state vector and the state equation in order to account for 14-25 

month delays in observing dft. Complete state equation (6.2) needs to be used 

only for Kalman smoothing with VMA model UVMA12. Otherwise, for pure VAR 

models RVAR0, RVAR12, and UVAR12, we restricted xt to ty  and used only the 

upper-left 52×52 quadrant of F and the 52×2 upper part of G. 

Let dft|t = E[dft|It] denote the Kalman-smoothed estimate of dft, where 

E[dft|It] denotes the expectation of dft conditional on current information It, 

which comprises current and past observations on dit and dft and the estimated 

model. For any k = 1, ..., 25, x2k+2,t is element 2k+2 of xt and equals dft-k, so 

that 

 

(6.4)     dft|t = E[x2k+2,t+k|It]. 

 

Thus, smoothed estimates dft|t can be computed, for any k = 1, ..., 25, as k-

month-ahead forecasts of element 2k+2 of xt. Genuine forecasts, dfs|t, for s > 

t, and smoothed estimates, dfs|t, for t - 25 ≤ s < t, can also be computed as 

forecasts of elements of xt. RMSEf in table 5 reflect Kalman-smoothed 

estimates of dft made in out-of-sample months, but could alternatively reflect 

Kalman smoothed estimates of dft made in the last out-of-sample month. 

 Anderson and Moore (1979) thoroughly discuss Kalman smoothing and 

smoothing in cases of no missing data. In the present real-time analysis, dft 
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is missing in all non-February months, which requires using a missing-data 

extension of the Kalman smoother, which was first described for scalar time 

series by Jones (1980), was extended to vector time series by Ansley and Kohn 

(1983), and was described for and applied to mixed-frequency data by Zadrozny 

(1988, 1990). 

In the application, we computed dft|t = E[x4,t+1|It], using k = 1, and 

evaluated its accuracy in terms of standardized root mean-squared errors, 

 

(6.5)     RMSEf = ησ ,f / f,fσ , 

 

where f,fσ  and ησ ,f , respectively, denote out-of-sample standard deviations of 

dft and of its estimation error, ηt = dft - dft|t. 

We define 2
f,eR  and 2

f,fR  of dft to reflect the percentage of dft accounted 

for by current and lagged dit and lagged dft and relate them to RMSEf in order 

to establish bounds for evaluating RMSEf in table 5. Thus, we define in-

sample-estimation-period 2
f,eR  = 1 - 2

f,e εσ / 2
f,eσ , where first subscript "e" refers 

to "estimation," 2

f,e εσ  denotes in-sample variance of residuals of dft and 
2
f,eσ  

denotes in-sample variance of dft; and, we define out-of-sample-forecasting-

period 2
f,fR  = 1 - 2

fRMSE , where first subscript "f" refers to "forecasting." 

What values of RMSEf and 
2
f,fR  are good or bad? We answer this question by 

stating formal (based on mathematics) and expected (based on heuristics) 

bounds on RMSEf and 
2
f,fR . First, by construction, RMSEf ≥ 0 and 

2
f,fR  ≤ 1, which 

is neither good nor bad. We would like RMSEf ≅  0 and 2
f,fR  ≅  1, which is very 

good, but, frequently, RMSEf > 1 and 
2
f,fR  < 0, which is bad. Second, dft is 

estimated efficiently, which is good, only if all conditioning information is 

utilized fully. If dft is estimated efficiently, then, dft|t and ηt = dft - dft|t 

are uncorrelated, RMSEf < 1, and 
2
f,fR  > 0. Finally, if the data-generating 

process is constant over the whole sample period, then, we expect 

(heuristically) that RMSEf ≅  2
f,eR1 −  and that 2

f,fR  ≅  2
f,eR ; otherwise, if the 

data-generating process changes from the in-sample to the out-of-sample 

periods, then, we expect that RMSEf > 
2
f,eR1 −  and 2

f,fR  < 2
f,eR . Thus, we expect 

(heuristically) that 
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(6.6)     RMSEf ≥ 
2
f,eR1 −  

 

or, equivalently, that 2
f,fR  ≤ 2

f,eR . If RMSEf ≅  or < 2
f,eR1 − , then, dft is 

estimated (in the out-of-sample period, using an in-sample estimated model), 

respectively, about as well as or better than we can expect. 

 

7. Computing and Evaluating Real-Time Smoothed Estimates of dft. 
 

Table 4 reports statistics from estimating the models using 60 months 

of data for 1998:1 - 2002:12: in-sample or estimation-period R2 of dft (
2
f,eR ), 

Akaike's (1973) information criterion (AIC), Schwarz's (1978) Bayesian 

information criterion (BIC), Ljung-Box Q statistics for testing serial 

correlations of residuals of dit and dft at lags 1-36, and their marginal 

significance levels or p values underneath. To be compatible with the 2
f,eR  of 

the regression models, the 2
f,eR  of a VARMA model was increased to include the 

explanatory effect of dit on dft, already in the 
2
f,eR  of the regression models. 

This was done by taking the basic VARMA 2
f,eR , which accounts for variations in 

current dft in terms of variations in lagged dit and dft and adding the effects 

of variations in current dit, according to the estimated correlation between 

the dit and dft residuals and the transformation between the UREG0 and RVAR0 

models discussed in section 4. Because of their equivalence, the UREG0 and 

RVAR0 models have identical IC and Q statistics. 

The estimated model that minimizes AIC and BIC is considered the best 

one. Table 4 reports that RVAR12 has the lowest AIC and that RVAR0 has the 

lowest BIC. BIC has the more stringent penalty function and usually prefers 

the model with fewer parameters. Except for dft in UREG12, dit in UVAR12, and 

dft in UVMA12, all residuals in table 4 have highly significant Q statistics. 

However, because the significant residual serial correlations do not match 

those of VARMA models, adding lags of variables or disturbances seems 

unlikely to produce lower Q statistics. Thus, we considered no other 

estimated models and picked RVAR0 and RVAR12 as the best models. However, any 

choice of best models based on in-sample AIC or BIC is tentative, because the 

final objective is to minimize out-of-sample RMSEf. 
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Table 4: Regression and VARMA model summary estimation statistics. 
Model 
Number 

Model 
Name 

Estm 
Mthd 

2
f,eR    

AIC 
 

BIC 
#Est 
Pars 

 
Qi 

 
Qf 

 
1 

 
BENCH 

 
--- 

 
.9472 

  
--- 

 
--- 

 
0 

 
178.3 
.0000 

 
138.9 
.0000 

 
2 

 
UREG0 

 
OLS 

 
.9479 

  
-143.4 

 
-139.2 

 
2 

 
178.3 
.0000 

 
138.9 
.0000 

 
3 

 
RREG12 

 
OLS 

 
.9693 

  
-160.5 

 
-151.0 

 
5 

 
178.3 
.0000 

 
62.83 
.0002 

 
4 

 
UREG12 

 
OLS 

 
.9742 

  
-151.2 

 
-121.8 

 
14 

 
178.3 
.0000 

 
77.54 
.8027 

          
 
5 

 
RVAR0 

 
MLE 

 
.9576 

  
-143.4 

 
-139.2 

 
2 

 
178.3 
.0000 

 
138.9 
.0000 

 
6 

 
RVAR12 

 
SUR 

 
.9795 

  
-164.1 

 
-134.8 

 
14 

 
65.79 
.0001 

 
72.80 
.0000 

 
7 

 
UVAR12 

 
OLS 

 
.9845 

  
-150.6 

 
-43.84 

 
51 

 
36.05 
.1414 

 
64.10 
.0001 

 
8 

 
UVMA12 

 
MLE 

 
.9327 

  
-99.62 

 
7.192 

 
51 

 
61.63 
.0003 

 
20.15 
.8591 

 

 

The RMSEf results in table 5 lead to the following seven conclusions. 

1. BENCH is the best regression model, with the lowest RMSEf average and 

spread (over the twelve months) of .2167 and .3791; and, RVAR12 is the best 

VARMA model and best overall model, with the lowest RMSEf average and spread 

of .1746 and .3674. RVAR12 has a 19.4% lower RMSEf average and a 3.1% lower 

RMSEf spread than BENCH. 

2. The close RMSEf of RVAR0 and RVAR12 suggest that accuracy of dft|t 

depends mostly on correlations between contemporaneous dit and dft and on 

delays in observations and less on correlations across current and lagged dit 

and dft as accounted for by RVAR12 but not by RVAR0. 

3. Except for UVAR12, the VARMA models produce lower RMSEf average and 

spread than the regression models, either because the VARMA models are better 

models or because the Kalman smoother is applied to them. For the same model, 

the Kalman smoother should estimate dft more accurately than a regression 

line, because it uses all current and past initial and final data, whereas a  

regression line uses only current and past initial data. Comparing RMSEf of 



 17

equivalent UREG0 and RVAR0 models illustrates this point: it seems to matter 

less which particular model is used than that the Kalman smoother is used. 

 

 

Table 5: RMSEf of smoothed estimates of dft occuring in 2003:1-2005:12. 
 

Month 
 

BENCH 
 

UREG0 
 

RREG12 
 

UREG12 
  

RVAR0 
 

RVAR12 
 

UVAR12 
 

UVMA12 
Row 
Avrg 

 
Jan 

 
.1918 

 
.2076 

 
.1489 

 
.1423 

  
.1856 

 
.0965 

 
.1958 

 
.1689 

 
.1672 

 
Feb 

 
.0832 

 
.0745 

 
.1363 

 
.1797 

  
.0609 

 
.0887 

 
.2215 

 
.0800 

 
.1156 

 
Mar 

 
.1916 

 
.1801 

 
.2223 

 
.2515 

  
.1478 

 
.1677 

 
.2457 

 
.1567 

 
.1954 

 
Apr 

 
.1660 

 
.1892 

 
.3356 

 
.2835 

  
.1637 

 
.2471 

 
.3409 

 
.1872 

 
.2392 

 
May 

 
.0984 

 
.1083 

 
.0553 

 
.0559 

  
.0914 

 
.1203 

 
.1735 

 
.0976 

 
.1001 

 
Jun 

 
.1210 

 
.1157 

 
.1914 

 
.1557 

  
.0984 

 
.0692 

 
.1362 

 
.1096 

 
.1247 

 
Jul 

 
.2158 

 
.2186 

 
.1338 

 
.1681 

  
.2039 

 
.1513 

 
.1824 

 
.1761 

 
.1813 

 
Aug 

 
.3027 

 
.3130 

 
.2766 

 
.2355 

  
.2994 

 
.2382 

 
.2777 

 
.2901 

 
.2792 

 
Sep 

 
.4623 

 
.4921 

 
.4848 

 
.4962 

  
.4430 

 
.4561 

 
.5204 

 
.4697 

 
.4781 

 
Oct 

 
.2276 

 
.2311 

 
.1125 

 
.1258 

  
.2008 

 
.1086 

 
.1683 

 
.1815 

 
.1695 

 
Nov 

 
.3788 

 
.4030 

 
.4046 

 
.3995 

  
.3479 

 
.2562 

 
.3133 

 
.3336 

 
.3546 

 
Dec 

 
.0975 

 
.1023 

 
.1479 

 
.1334 

  
.0837 

 
.0952 

 
.0952 

 
.0969 

 
.1065 

Col 
Avrg 

 
.2167 

 
.2268 

 
.2259 

 
.2238 

  
.1939 

 
.1746 

 
.2392 

 
.1957 

 
.2121 

 
Sprd 

 
.3791 

 
.4176 

 
.4295 

 
.4403 

  
.3821 

 
.3674 

 
.4252 

 
.3897 

 
 

 
Spread = maximum RMSEf - minimum RMSEf. 
 
 

4. Average 2
f,eR  in table 4 of the best dft-estimating VARMA models, 

RVAR0, RVAR12, and UVMA12, is .9739, which implies 2
f,eR1 −  = .1616. RVAR12, 

RVAR0, and UVMA12 imply, respectively, column-average RMSEf of .1746, .1939, 

and .1957, which are not much above .1616 and, hence, suggest that dit and dft 

are generated by a relatively constant process over the whole sample period 

and that dft|t based on these models, especially on RVAR12, is approximately 

efficient. 

5. The monthly pattern of RMSEf in table 5 could be seasonal, because 

the data are seasonal and releases of dft are seasonal (only in February), or, 
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it could be random, because the short smoothing period covers only three 

years. RMSEf is lowest in May and highest in September and November, the 

latter because Hurricane Katrina struck in August 2005. 

6. The narrow range of RMSEf in table 5 suggests that other models, such 

as structural models, are unlikely to produce lower RMSEf for this data. 

7. The dft|t could be computed by Kalman smoothing as in Shumway and 

Katzoff (1991). Kalman smoothers are extensions of Kalman smoothers with 

numerous implementations (Anderson and Moore, 1979). Smoothed estimates can 

be computed using the more compact historical forms of the data and models. 

 

8. Conclusion. 
 
 The paper has described and applied regression and VARMA modeling 

methods for estimating the current value of a variable which is observed 

intermittently with delay and is contemporaneously and serially correlated 

with another variable which is observed every period without delay. In the 

regression branch of the method, the delayed variable is regressed on current 

and lagged values of the undelayed variable and the estimated regression line 

estimates the current value of the delayed variable. In the VARMA modeling 

branch of the method, a bivariate VARMA model is estimated for the variables, 

the Kalman smoother is applied to the estimated model, and an element of the 

one-step-ahead forecast of the state vector estimates the current value of 

the delayed variable. The methods were applied to U.S. monthly chained CPI of 

urban consumers (CCPIU) from January 1998 to December 2009, with initial and 

final CCPIU, respectively, being the undelayed and delayed variables. The 

results in table 5 show that estimated VARMA models and Kalman smoothing 

produced lower average root-mean-squared errors of estimates of final CCPIU 

than estimated regression models, namely, .2009 compared with .2233 or about 

10% lower. 
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9. Supplemental Figure 2 and Table 6. 
 

Figure 2 and table 6 supplement table 5 by graphing and tabulating dft, 

dit, dft|t based on RVAR12, errors ei,t = dft - dit and ef,t = dft - dft|t, and 2-

standard-error confidence bounds of ef,t. To be consistent with table 5, before 

being graphed in figure 2, the errors in table 6 and standard-error bounds 

produced by the Kalman smoother were standardized by division by .2259. 

 
Figure 2: dft, dit, dft|t, ei,t, ef,t, and 2-standard-error confidence bounds. 
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 In the left graph, dft, dit, dft|t are depicted, respectively, by solid, 

evenly-dashed, and unevenly-dashed lines; in the right graph, dft-estimation 

errors, ei,t = dft – dit and ef,t = dft – dft|t, and 2-standard-error confidence 

bounds of ef,t are, respectively, depicted by evenly-dashed and solid lines. 
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Table 6: Numbers Underlying Table 5 and Figure 2. 
 
         Month       dft        dit        dft|t     dft - dit   dft - dft|t 

------------------------------------------------------------- 
2003:1   1.059426   0.852800   1.029448   0.206626   0.029978 
2003:2   2.195151   2.302536   2.317998  -0.107385  -0.122847 
2003:3   1.893475   1.668810   1.480396   0.224665   0.413079 
2003:4  -1.539022  -1.488333  -1.806657  -0.050689   0.267635 
2003:5  -1.190376  -1.310190  -1.162496   0.119814  -0.027880 
2003:6  -0.250663  -0.347280  -0.056592   0.096617  -0.194071 
2003:7  -0.190663  -0.491805  -0.281821   0.301142   0.091158 
2003:8   0.964597   0.571549   0.548911   0.393048   0.415686 
2003:9   0.551247   0.456338   0.289162   0.094909   0.262085 
2003:10 -1.052098  -0.876101  -1.030397  -0.175997  -0.021701 
2003:11 -1.961222  -2.079998  -2.154754   0.118776   0.193532 
2003:12 -1.182770  -1.371769  -1.085642   0.188999  -0.097128 
2004:1   1.687414   1.286495   1.527973   0.400919   0.159441 
2004:2   1.604391   1.510979   1.408610   0.093412   0.195781 
2004:3   1.678370   1.864005   1.558038  -0.185635   0.120332 
2004:4   0.527502   0.427789   0.110470   0.099713   0.417032 
2004:5   1.355959   1.182507   1.188051   0.173452   0.167908 
2004:6   0.201992   0.451038   0.502721  -0.249046  -0.300729 
2004:7  -1.081764  -1.153462  -0.931304   0.071698  -0.150460 
2004:8  -0.408177  -0.601900  -0.427486   0.193723   0.019309 
2004:9   0.490708   0.264952   0.366244   0.225756   0.124464 
2004:10  1.399156   1.304695   1.227766   0.094461   0.171390 
2004:11 -0.613947  -0.586540  -0.895612  -0.027407   0.281665 
2004:12 -2.090220  -2.104176  -2.130870   0.013956   0.040650 
2005:1   0.085752   0.148536   0.298636  -0.062784  -0.212884 
2005:2   1.427234   1.547942   1.707116  -0.120708  -0.279882 
2005:3   1.885741   2.197780   2.088557  -0.312049  -0.202816 
2005:4   1.937359   1.566135   1.235226   0.371224   0.702133 
2005:5  -0.882269  -0.801716  -0.916265  -0.080553   0.033996 
2005:6  -0.760514  -0.708369  -0.629521  -0.052145  -0.130993 
2005:7   0.920044   0.473169   0.721203   0.446875   0.198841 
2005:8   1.506380   0.866402   1.053808   0.639977   0.452571 
2005:9   3.755989   2.673409   2.520455   1.082580   1.235534 
2005:10 -0.037918   0.454298   0.148269  -0.492216  -0.186187 
2005:11 -3.507909  -2.653479  -2.782071  -0.854430  -0.725838 
2005:12 -2.213681  -2.112154  -1.927204  -0.101527  -0.286477 
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