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Abstract

Survey data are often randomly drawn from an underlying population of inferential interest
under a multistage, complex sampling design. A sampling weight proportional to the number of
individuals in the population that each sampled individual represents is released. The sampling
design is informative with respect to a response variable of interest if the variable correlates with
the sampling weights. The distribution for the variables of interest differs in the sample and in the
population, requiring correction to the sample distribution to approximate the population. We
focus on model-based Bayesian inference for repeated (continuous) measures associated with
each sampled individual. We devise a model for the joint estimation of response variable(s) of
interest and sampling weights to account for the informative sampling design in a formulation that
captures the association of the measures taken on the same individual incorporating individual-
specific random-effects. We show that our approach yields correct population inference on the
observed sample of units and compare its performance with competing method via simulation.
Methods are compared using bias, mean square error, coverage, and length of credible intervals.
We demonstrate our approach using a National Health and Nutrition Examination Survey dietary
dataset modeling daily protein consumption.
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I. Introduction

Survey designs for sampling an underlying population of inference often consist of one
or more stages to sample clusters of units, followed by the sampling of units. Unequal
probabilities of selection are constructed to over-sample some individuals, often to
reduce the variance for a domain estimator of interest. A sampled individual who
responds to the survey is referred to as a survey participant, or, for simplicity in the
sequel, a participant. Inference about the study population needs to consider the sam-
pling design, in particular by incorporating sampling weights into the statistical analysis.
Each individual, i, in the population corresponds to a sampling weight, w;, that is
designed to be inversely proportional to the joint inclusion and response probability, 7,
of the individual 7 as a participant; that is, the individual is selected and responded to the
survey. We express this probability mathematically with,

Pr[individual i in the population becomes a participant] cc 7z; oc 1/ w; (1)

The weights are, therefore, adjusted for unequal selection probabilities of selection
into the survey and for nonresponse, for example, when a selected individual declines to
participate. The weights may also be adjusted for other situations; for example, in The
National Health and Nutrition Examination Survey (NHANES) dietary datasets released
for cycle 2003 to 2004 and later cycles, the dietary sampling weights are adjusted for the
day the survey was taken (weekday vs. weekend). We take the perspective of secondary
analysts, who are given the weights which are likely to include a nonresponse adjustment
by the data producer. In secondary analysis no distinction between sampling and survey
response weights is possible and one has to work with the associated unit-level weights.
We note that we construct 7, for our modeling in the sequel to be proportional and not
necessarily equal to the marginal probability of becoming a participant and, thus, 7, can
take any positive value.

Let y, be the response variable of interest of the individual i in the population. A
sampling design is informative with respect to the response variable when the event of
becoming a participant and the outcome is related even after conditioning on relevant
characteristics of the individual, v;, which is expressed mathematically by, y, £ ;| v,.
Leon-Novelo and Savitsky (2019), hereafter referred to LS2019, propose a model-
based Bayesian approach that specifies a joint likelihood for the sampling weights
and the response variable of interest to correct for informative sampling. Their
approach models the participant probabilities, x; and the response, y;, jointly via
p(y,7; 10,x)=p(y;10)p(r; | y;,x), where p(y;|0) is the distribution of the
response in the study population and 6 is the vector of population parameters of
interest, while k the vector of nuisance parameters used to model the relationship
between y; and 7, and serves as an indicator of informativeness for the sampling design
(to the extend that the credible interval [CI] for k,, an entry of k defined below, is
bounded away from 0). The target user for their model formulation to estimate 6 in an
unbiased fashion with respect to the population distribution is the data analyst who
seeks to estimate the underlying generating parameters 6 from data acquired from a
survey sample. It is typical to provide the analyst values of the response variable and
predictors for the survey participants along with the associated sampling weights. The
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approach assumes that the analyst knows the sampling weights and the predictor val-
ues for the participants only. The analysts knows neither the sampling weights nor
predictor values for non-participants.

In LS2019 the main focus is linear regression with fixed effects. In this article, we
extend their approach incorporating random effects in the linear regression model to
accommodate repeated measures. Repeated measures arise when a response is measured
multiple times for the same participant; for example, the NHANES dietary dataset con-
sists of answers for the same dietary questionnaire at two different days for each partici-
pant. Our extension performed in this article incorporates the modeling for the association
among the the measures within each participant. This is achieved by constructing partic-
ipant-specific random effects (P-REs), J, specified in the marginal linear regression
model for the response variable (vs. the conditional model for the sampling weights
given the response variable). We consider the case of continuous repeated responses.

The use of random effects to model the correlation among observations is common
practice; for example, the NCI method (Tooze et al. 2002, 2006, 2010), which is the
approach recommended to estimate typical (daily) nutrient intake when analyzing
NHANES dietary data incorporates random effects. In particular, the NCI method is a
generalized linear mixed effect model set-up where the correlation of the two repeated
measures (i.e., participant nutrient intake in two different days) is modeled by a P-RE.
They do not, however, include the sampling weights in their the statistical model. Instead,
sampling weights are used to correct for the sampling design when fitting the model via
a pseudolikelihood. The contribution of each observation to the log of this pseudolikeli-
hood is proportional to the sampling weight, log pseudolikelihood= X, w; log p( Vi |9).
Estimation consists of two steps: In the first step, the point estimates maximize the pseu-
dolikelihood. These estimates are asymptotically unbiased. In the second step, confi-
dence intervals for (and/or standard error of) the parameters are calculated via Taylor
linearization or re-sampling methods (Centers for Disease Control [CDC] 2016b).

By contrast, our approach incorporates the sampling weights into the likelihood and
no second step is required to compute credible intervals for the model parameters in
order to achieve correct uncertainty quantification. Ours is the first formulation that
incorporates P-REs into the model framework of LS2019.

The NCI method, by contrast, treats the weights as fixed in a “plug-in” formulation,
which allows for noise unrelated to the response variable of interest for estimation. The
plug-in approach is not fully Bayesian as is our joint modeling formulation such that the
uncertainty relative to the distribution over all possible samples is not accounted for.
LS2019 show that the pseudo or plug-in likelihood formulation produces overly optimis-
tic or short credible intervals.

A class of pseudolikelihood approaches estimate the parameters of generalized lin-
ear mixed models under informative sampling by maximizing the log pseudolikeli-
hood after integrating out the random effects. This approach parameterizes the so-called
profile pseudolikelihood. Rabe-Hesketh and Skrondal (2006) propose adaptive quad-
rature to integrate out the random effects and focus on multistage sampling where
random effects are used to model the dependence of units within the same cluster. They
mainly focus on logistic regression. Later, Kim et al. (2017) propose an estimation
method under informative two-stage cluster sampling. The approach in Kim et al.
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(2017) is based on approximating the profile pseudolikelihood using a normal approxi-
mation of the sampling distribution of the random effect estimates, avoiding integra-
tion of the random effects. Their focus is on linear and logistic regression, while here,
ours is on linear regression only.

Their approaches further incorporate repeated measures for the same individual as we
propose to do. Their methods use plug-in pseudolikelihood while ours, by contrast, is
fully Bayesian using a likelihood defined for the observed sample, rather than approxi-
mate pseudolikelihood. Our approach focuses on the estimation of model parameters, 6,
of the data generating model and not population totals (e.g., the population average of the
response variable). A series of papers Zheng and Little (2003), Little and Zheng (2007),
and Zangeneh and Little (2015) propose Bayesian methods to estimate population totals
when the inclusion probabilities are proportional to a size variable. All of these approaches
estimate the response value of non-sampled units to estimate the population total. By
contrast, our approach utilizes only quantities available for sampled units.

In Section 2, we review the basic approach of LS2019. In Section 3 we introduce our
extension that incorporates participant-specific random effects. In Section 4, we sum-
marize the pseudolikelihood method and compare its performance with our fully
Bayesian formulation in Section 5, in terms of bias, mean square error (MSE), and, cov-
erage, as well as the length of credible intervals. In Section 6, we demonstrate our method
with an NHANES dataset, estimating the daily protein consumption in the American
population. We conclude with a discussion in Section 7. An Appendix presents details
referred to, but not addressed in the main manuscript. We rely on Stan (Carpenter et al.
2016), which performs their No U-turns implementation of the Hamiltonian Monte Carlo
posterior sampling algorithm, for estimation of Bayesian hierarchical model posterior
distributions estimated in this article.

Going forward, the notation normal(u,o?) is used to denote the normal distribution
with mean p1 and variance o> while normal(x | 1,6>) denotes its probability density func-
tion (PDF) evaluated at x; lognormal(u,o %) denotes the lognormal distribution, so that
X ~lognormal(u,5?) is equivalent to log X Nnormal( u,c72) and lognormal(x | p,c%)
the respective PDF evaluated at x; MVN (m,S) denotes the p-variate normal distribution
with mean vector m and variance-covariance matrix §; and gamma(a,b) denotes the
gamma distribution with shape a and rate b. Matrix, I,, denotes the ¢gxgq identity
matrix and 1, the ¢ dimensional column vector with all its entries equal to 1. All the
non-transposed vectors are column vectors.

2. Review of LS2019 for Single Stage Designs

We next summarize the general formulation of LS2019 that focuses on a single stage of
sampling with the model (0,x) parameterized only using fixed effects. We extend and
generalize this formation in the next section. Let y; be the response of the individual i

in the population and 7, the corresponding inclusion probability, that is, the probability
of s/he becoming a survey participant under the study sampling design (7, is inversely
proportional to the sampling weight w; ). A sampling design is informative for inference
on a participant response variable of interest when their inclusion probabilities are cor-
related with the response variable, y, £ &, for some i .



Savitsky et al. 165

LS2019 introduce a Bayesian hierarchical construction that jointly models
both the response, y;, and the marginal inclusion probability, m, that is,
p(y;,m; 10,x)=p(y;|0)x p(x; | y;,k), where p(y,|60) is the response or generating
distribution for the population, 6 is the population parameter of interest, and k is the
nuisance parameter used to model the relationship between y,; and r, that provides infor-
mation on the degree of informativeness of the sample (based on how far the posterior
credible intervals are bounded away from 0). LS2019 apply Bayes theorem (see deriva-

tion in Appendix A.1 or also Equation (7.1) in Pfeffermann et al. (1998)) to compute

ps(yi,m; 10,k) = P[

Vi | 0,k individual i \ 7, p(x; | y,,K)
is a participant E,

————xr(;10). (2
|:E(7Ti | yi ,K):| )

yila

The superindex * denotes the quantity being integrated out. Note that the denominator

in Equation (2) is the marginal probability of individual i becoming a participant. The

likelihood for the observed sample,

like(8,5) =11 p,(y,,7, | 0.K). 3)
i=1

We note that for Equation (3) to be a valid likelihood we require

p[( Y1,7,),-..(¥,,7,)|individuals 1 to n become participants, 9,K:|
= ﬁ p|:( ¥;,7;) |individual i becomes a participant,@,x] )
i=1

Appendix A.2 contains the proof that the following population and design conditions are
sufficient for Equation (4):

ind
(C1) (y;,m;)~ p(-]0.x), withindex i running over population individuals, are inde-
pendent. We construct the 7,s as unnormalized since a normalization would induce
dependence (e.g., if we normalize such that the s sum to 1, Pr(m, > 0.5 | 7, > 0.6)
=0and thus 7, £ 7, ).

(C2) For any individual, conditioned on his/her response and inclusion probability, 6
and «, the event of becoming a participant (being sampled and responding) is
independent of any other individuals becoming participants, their responses and
inclusion probabilities.

(C3) Conditioned on 6 and « , the response and inclusion probability of a population
individual is independent of the responses and inclusion probabilities of the
participants.

(C3) is natural in our framework, the responses and inclusion probabilities in the popu-
lation are not affected by the ones in the sample (i.e., the participants). A referee noticed
that in practice condition (C1) can be violated if the sampling weights, w; oc 1/ 7,
include nonresponse or post-stratification to known population totals adjustment
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(since the adjustment depends on the common data). For example, if Hispanics tend to
have lower response rates, nonresponse adjustment will make their weights higher (and
thus dependent), or if the proportion of Whites in the sample is higher than in the popula-
tion post-stratification adjustment will make their weights lower. If this is the case the
analyst is not receiving the 7;s as defined in Equation (1) but instead estimates of the 7;s
that may be dependent. Yet, as secondary analysts we treat these estimates as if they were
indeed the independent 7 s (despite adjustments for nonresponse and calibration). To cope
with this case of dependent (estimated) inclusion probabilities, one can control for the
variables used for adjustment (in our example race/ethnicity) when defining the distribu-
tion of 7; | y;,k such that responses are independent conditioned on x (as we will dis-
cuss below after Theorem 1). (C2) is satisfied when sampling is with replacement and non
adaptive (i.e., the probability of inclusion does not change by the observed values) but not
satisfied when sampling is without replacement from a finite population. Nevertheless, if
the population size is much larger than the sample size we can, as it is common practice,
approximate the likelihood under sampling without replacement by the likelihood with
replacement. When (C1), (C2), and (C3) hold in Equation (3) is a likelihood and the pos-
terior distribution of the model parameters is

D, (9,K| data) oc like(@,lc) X Prior(@) X Prior(x)

where data = {( Vi) ii=1,. ..,n} denotes the sample of size n . Note that without loss
of generality, the population individual index i runs from 1 to » in the sample. The for-
mula above allows fully Bayesian inference of the model parameters. The price the mod-
eler pays for this fully Bayesian approach is the requirement to specify a conditional
distribution of the inclusion probabilities for all units in the population, p(rx; | y;,k), and
p, involves complex calculations, namely, the expected value in the denominator of
Equation (2). To overcome this, we use STAN and R to estimate the joint posterior dis-
tribution for the model parameters. STAN uses Hamiltonian Monte Carlo approach to
draw samples from the posterior.

LS2019 jointly model the response and the inclusion probabilities, (y;, 7,), using only
quantities observed in the sample; in particular, the joint distribution of (y,, r,) are differ-
ent in the observed sample and in the population, and we have corrected for this differ-
ence in a way that allows us to make unbiased estimation of the parameters of the
population model.

Next we review the conditions in LS2019 that produce a mathematically tractable p,
that defines a class of distributions for p(y,|0) and p(x;|y,;,0) returning a closed
form expression for the expectation in the denominator of (2), which simplifies posterior
computation. We allow for p(y; |0) and p(x;|y;,kx) to depend, respectively, in the set
of covariates u; and v,. Since we treat the covariates as fixed (as opposed to random)
and to ease notation, we do not explicitly write p(y,|60,u;) or p(r,|y;,k,v;) but
instead p(y; |0) or p(x;|y;,x). We also allow that some entries of u, overlap v,, for
example both y; and 7, may depend on gender, or even u, = v,. We now present Theorem
1 in LS2019, that we will adapt to our repeated measurements setting in Theorem 2

Theorem 1. If the population distribution of x; | y,,x is
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7T | yi.K ~lognormal(7ri | h (J’w Vi,K),G,f ),

with the function A(y;,v,,x) of the form h(y,,v;,x)=g(y,,v,,kK)+t(v;,k) where
o’ = o2 (k,v,). possibly a function of (k,v,) then

i

normal(log 7, | (. v,.K) +£(¥;.), 2 )

ps(yi»”i|9,’<): Xp(yl|6)

exp{t(vi,tc)+c7§ /2}><My(1<;ui,vi,9)

with M, (3u,,v,,0) = £, | exp{g(v/,v,.)} |
i
Theorem 1 guarantees a closed form expression for p; in Equation (2) when p(y; | 0)

and M (x;---) have closed forms. For the particular case of g(y;,V;,k)=x,y; with
k, € R anentry in x, M is the moment generating function (MGF) of the population
distribution of y, | @, evaluated at k. Similarly, if we wanted to include an interaction of
the response and other covariate, say V> in the model for 7, | y;,kx, we may define
(¥, VoK) =K,y +K,v,y, Withk ik, € R entries of k , then M is the MGF at evalu-
ated at k, + K. As discussed in LS2019, the assumption of a lognormal distribution for
7, is mathematically attractive since r,, for individual i, is usually calculated as the product
of inclusion probabilities across the stages of the multistage survey design. If each of these
stage-wise probabilities are lognormal then their product, o 7, is lognormal as well.

As long as #(v,,k) = K, +... contains an intercept term, &,, we may assume that 7, is
proportional, as opposed to exactly equal, to the inclusion probability for unit i. In other
words, no restriction is imposed on X,7; where the index i could run over the popula-
tion or sample indices. This is true since =; ~lognormal(x,+---,---) implies that
cxm; ~ lognormal(x, +logc+---,--) where ¢ >0 is any constant and we do not make
any inference on the intercept, k,. We recommend to include the variables used for non-
response or post-stratification to population totals adjustments in the vector of covariates
v; so condition (C1), introduced after Equation (4), holds for the available (estimated)
ms in the sample, that is, (y,7,),...,(y,.7,)| 0,k are independent. (y,, m)s are inde-
pendent if y,,...,y, |6 are independent and if «,,...,7, | »,,...,»,,0,k are independ-
ent. The latter independence assumption follows if the relationship between the
expected value of log 7, and the adjustment variables is well captured by A(y;,v;.,x).
If adjustments are done, as wusually, by multiplying the selection weights,
Wiy, < 1/Pr [population individual i being invited to participate in the survey], by non-
response and/or post-stratification weights, the linear relationship between log () and
the adjustment variables is appropriate. For example, if nonresponse weights
for Hispanics is estimated as the inverse of the response rate for Hispanics RRj
among the individuals invited to participate in the survey, w, =w,  x1/RR,,
logm; = —logw, = —log(w,, ;) +10g(RRy;) and «; L7, |y, y,0,x for i'#i condition-
ing on race/ethnicity (included in v,).

In the sequel, we adapt and extend LS2019 to our particular repeated measurements
setup set of conditions in LS2019 on p(=; | y,,k) under a likelihood that guarantees the
availability of a closed form expression for p,. This approach assumes that the inclusion
probabilities are random, as opposed to the frequentist pseudolikelihood approach dis-
cussed later in Section 4 that assumes them fixed.
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3. Approach

3.1. Repeated Measures Under Informative Sampling

We consider the mixed effects linear regression population model (for repeated measures),

iid 5 fid 5
Yy =W, B+8,+¢,  with ¢, ~normal (0, cy) and &, ~ normal (0,05 ), &)

for each individual i in the population, and m =1,...,M,, the total number of repeated

measures for individual, i. Here, the double index im indexes the population individual

i at measurement occasion m ; y,, is associated value for the response variable; u,, is

a ¢, dimension vector of covariates whose first entry is set equal to 1 so the model

includes an intercept coefficient; and, J, is a participant-specific random effect (P-RE).

Denote with ¥; = (V15 Via»++ > Viar, )" the vector of all measurements for individual

1

q,x1, . . .
and U, = (u, > ,---,MiMi) the g, x M; matrix whose column m corresponds to covari-

ates at occasion m for individual i. In applications, usually multiple entries of u;, and

u,, naturally match or are exactly equal; for example, when the entry ¢ of w,,, u,,,
encodes the participant’s gender or baseline weight, w,, , = u,,, ,. The population model
in Equation (5) is equivalent to
y; ~MVN (Uf B.Z, ), for individual i in the population (6)
1

i

with Z,, = G; I,, +0;1,, 1, . We parameterize an equal correlation structure but other

structurels, for exalmple, first order autoregressive, may also be used.

Following LS2019, our Bayesian approach accounts for the informative sampling
design by modeling the joint distribution of (y,, m,), p(y;,7; |0,x) = p(y; |0) p(x; | y;,K),
where p(y; |0) is the PDF of the distribution in Equation (6) with 6 :=(B,0,,0,); and
p(m; |y,.x) is discussed below.

Similar to the set of covariates for y;, we denote with ¢ the number of covariates
used to model 7, | y,,k; and, v,, the ¢ dimensional vector of these covariate values for
individual 7 at occasion m . The first entry of v,,, is set equal to 1 to include an intercept
and it is common that v, , =v,,. ,, where v, , is the entry ¢ of v,,. We denote with

im' 0>

V. = vy In v i Mi) the g, x M, matrix of covariates. Note that we allow for v,, and

u,, to have common covariates or even being equal. For example gender can be used to
model both with y,|@ and =, |y;,x. Also note that the distributions of y, |6 and
7, | y;,k depend, implicitly, on the quantities w; and v, , respectively, but, since they are
fixed quantities and to ease notation, we will omit them from the notation of the condi-
tional distributions.

Theorem 2 below presents an extension of Theorem 1 adapted to the repeated meas-
ures formulation of Equation (6). The vectors y, and @ in Theorem 2 play the role,
respectively, of the univariate response ¥; and 6 in Theorem 1. Note that in Theorem 2,
we work with the model in Equation (6), where the participant-specific random effects,
0,, is marginalized to later bring it back in Equation (11).
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Theorem 2. If the population distribution of 7z, | y,,k is

T

Ty K~ lOgnormal(h(yi,Vi’K)’Gz) ™

with the function A(y,,V,,x) of the form h(y,,V, k)= g(y;,V,,kx)+t(V, k) where
o2 =02(V, k), possibly a function of (V,,x) then the exact likelihood for the observed
sample takes the form,

(y;»7;)|9,x, individual i is a participant ~ p_(y,,7; | 0,x)
normal(log | g(y,, V. K) +1(V,.),07 ) ®)

= > xp(y; 16),
exp {(V;,K) +07 /2| x M (U, V., 0)

with M (x;U,,V,,0):=E | [exp{g(y;,Vi,K)}J .
;10
Recall that use the superindex x to denote the quantity being integrated out. We next
discuss a common model setting that yields a closed form for Equation (8). If we choose
g(y;,Vi,k)=xk,y, with y, =(1 /Mi)Z]:Llyim the average of the repeated measures of
individual i ; and, x, depending on x and, perhaps, on V;, then,

UNCHUR RO [exp (e, 77 )|

is the MGF of ¥ evaluated at k,. Under the population model in Equation (6),
M, . .

v ~normal(ﬁf, ﬂ,o-ﬁ /M, + (7;) with u, =%, u, /M, acolumn vector of dimension

g,. Since the normal(m,s*) distribution has MGF(¢) = exp[tm +t*s” / 2],
. _ — 2( 2 2 . = .

My(K’Allj“V"’e) = exp[lcyul.ﬂ+ K, (O'y /M, +0oj )/2], defining #(V, ,k)=v, k, with

v, =2,Lv, /M, aq -dimensional vector, Equation (7) becomes

7, |y ~ lognormal(x 3, +Vik ,07) )

and Equation (8) becomes

= st 2
normal(log T K,y VLK V,O'”)

ps(yirﬂ’-i |99K) =
exp[Vf,K Aol /2Jxexp[1<yﬁf,ﬂ+ K, (oi /M, +o§)/2} (10)

XMV]vMi(Yi |U§ﬁﬂ2Mi)

with k= (Ky,K v,0'”) and 0 = (ﬁ,Gy,O'(; . Recall that both B and x , include and
intercept coefficient. Notice that we could have also used g(y,,Vi,K ):= 2, Ky Vim OF
t(V,k)=2, v, K to give different weights to each repeated measure (response and
covariates, respectively) in the distribution of logr; | y,,x . Similar arguments as the
one to derive Equation (10) would give us a close form for p; in Equation (8).

For ease-of-conducting our simulation study we opt to retain and not marginalize over
the participant-specific random effect, treating it as latent variable as an entirely equiva-

lent specification as Equation (10) to obtain,
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Ml iid
(Y7, 10,8,,k)={-} F{lnonnal(yim |u}, B+6;,0;) with &, |6 ~normal(0,c;) (11)

with {---} the quantity within curly brackets in Equation (10). The likelihood under
¥,;10,8, given in Equation (5) is

Like(0,(8,,....8,).6: (Y17, (¥, 7)) I pi(y;,7;16,6,.x) (12)

The sample size is n and without loss of generality i =1,...,n now indexes the partici-
pants (in the observed sample), as opposed to the individual in the population. The
expression in Equation (11) represents an augmented likelihood for (y,,,5,) and con-
structs an augmented posterior distribution when combined with prior distributions for
the model global parameters (e.g., (B.,k,0,,0,) ). The parameter inducing the depend-
ence betweeny, and m;is k,; and, y; L 7; |k, = 0. A 95% credible interval of x, non
containing zero indicates that the sampling design is informative for the response y . For
details on how to define Equation (11) and (12) in Stan code see appendix subsection
A.4. In our set-up, since O; is latent, we estimate it using the prior distribution

iid
8y5...,0, |0 ~ normal(O,c&Z) starting with Equation (12). We then proceed to select pri-
ors for 8 and k to complete the specification of the Bayesian model. We choose the

following priors:
iid

3,,...,0, | @ ~normal (0,57 )
B~MVN, (0,1001q )
y y

(,.x ) ~MVN, +,(0,1001q +l) (13)

yov
o, ~normal "(0,1)
o, ~ normal *(0,c?)
o5 ~normal *(0,c3),

where the priors on the global parameters are chosen to be vague or weakly informative.
Here normal*(u,62) denotes the normal(u, o) distribution restricted to the positive
real line. When implementing, we standardize the inclusion probabilities so that
X1/ 7, =2,M, , the total number of measurements, matching the standardization of the
pseudolikelihood approach below (Section 4). This way the 7 s are neither too small nor
too large so that the prior distribution for o, in Equation (13) is vague. The hyperparam-
eters ci and c§ are chosen large enough so the priors are vague. For example, ci is
chosen to be larger than the average over m of the sample variances of {y,, |i=1,...,n}
and c§ is chosen to be larger than the sample covariance of {(¥,;,¥;,),i =1,...,n} . Inthe
next subsection we extend the proposed method to incorporate primary sampling unit
information into the statistical analysis based on Leon-Novelo and Savitsky (2023). If
not of interest this subsection may be skipped.
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3.2. Including PSU Information into the Analysis

NHANES data are collected through a complex sampling design. First the U.S. is divided
into fifteen strata and two primary sampling units (PSUs) are sampled within each stra-
tum. Strata are defined by the intersection of geography with concentrations of minority
populations and a PSU is constructed as a county or a group of geographically contigu-
ous counties. The NHANES data are packaged with variables of interest for each survey
participant along with the stratum and PSU identifiers to which s/he belongs to as well
as sampling weights. NHANES releases masked stratum and PSU information to protect
participant’s privacy. Every two-year NHANES-data cycle (CDC 2011) releases infor-
mation obtained from H =15 strata with n, =2 PSU per stratum.

Leon-Novelo and Savitsky (2023) incorporate PSU information into the analysis to
account for both possible correlations among the responses of individuals in the same
PSU and for informative sampling with respect to PSU (i.e., when the probability of
sampling the PSU is not independent of the values of the response variable for nested
units). Their approach consists of including a PSU-specific RE (PSU-RE) in both the
model for the response and the inclusion probability. They show that the inclusion of
these random effects produce correct uncertainty quantification, that is, 1 —a credible
intervals with 1—o coverage. Leon-Novelo and Savitsky (2023) do not consider
repeated measures. We now further extend the PSU-REs formulation in Leén-Novelo
and Savitsky (2023) to the repeated measures model in Subsection 3.1. This extension
includes a participant-specific RE in the model for the response, and PSU-REs in the
models for the response and the inclusion probability.

Let J denote the number of PSUs in the sample where / =1,---»/ denotes the PSU
index and n; denotes the number of observations nested in PSU J - We retain the nota-
tion from previous sections replacing the subindex, i with ij , where now the index i
runs from 1,. ; M;; now denotes the number of occasions the response was meas-
ured for 1nd1V1dual i 1n PSU j; i T and U = (uy;... le ) denote, respectively,
the M, dimensional vector of repeated response measures, the ‘inclusion probability of
indiVidual ij as aparticipant, and the g, x M, matrix with m " column, u u,;, the vector
of covarlates at occasion m , for the part101pant i in the PSU j . The first entry of wu, ,

=1,...,M; issetto 1 so the model includes an intercept. Adding the PSU-RE, n,, to

the model in Equation (6) yields,

y; 10.m ~MVNMij(Uf.jﬁ+nj1Mij,2Mij) fori=1,....,n; and j=1,....J (14)

iid
with ZMij :GjIMij +o-§1Mij1§wij ; 0 =(ﬁ,6y,c75);and Mseeenlly ~norma1(0,c73).

Adding the PSU-RE, n;.r , in the model for 7, defined in Equation (9) yields,

T | YK T ~lognormal( x Wi +v Kk +ni,o0), fori=1,...,n; and j=1,...,J (15
ij J ij- J J ( )

_ . L id B
with K:(Ky,lcv,c,f); nys....ny ~normal(0,cr;”) Doy = (1M, )2 and

v, =(1/M;)Zv,, and v, the vector of covariate at measurement occasion m used to

m= lyym
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model 7; |y U-,K,T]; . So, reintroducing the P-RE, §;;, the analogous to Equation (11) is

[j 5
(this is, just replacing v} k ,— Vj k ,+n7 ; and, w;, B— wj,, f+n, in Equation (11)).

= <t b 2
nonnal(lognij | K,y + Vi K +1; ,crﬂ)

P (y;,7; 10,6,,m,.%6,n7) =
e Y exp[Vf.j,xv+n;? +o§/2}<

exp[icy (ﬁfj B+n,; ) +K, (o-j /M, +0; ) / 2]
M.
J . 5
T ol [0, B+, 1,07)

) fid . .
with now 51,1,...,5,,],1,51’2,...,5,,2’2,...,51J,...,5nJ’J ~N(0,0;) . Since the qualities of

this approach have been reported in Leon-Novelo and Savitsky (2023), we will not con-
sider it in our simulation section. This model will be fit in the application section with the

iid
priors defined in Equation (13) and O x:0y ~normal *(0,1) .

4. Pseudolikelihood

Savitsky and Williams (2019) (see their Theorem 2) propose an approach to incorporate
sampling weights and random effects using a plug-in augmented pseudolikelihood that
for the repeated measures set-up of Subsection 3.1 is:

n

i ([ 1 p 100" Jep(s102)7) (16

i=1

with the sampling weights standardized so X, M,w, =X} M, . In Subsection A.3 we

present the original formula in Theorem 2 of Savitsky and Williams (2019) and derive (16)
as a specific case of this formula. The contribution of the observation for a unit, y,, ,
to the pseudolikelihood is its PDF (or what it would contribute to the likelihood) expo-
nentiated to its sampling weight, w,. The prior distribution for the random effects is also
exponentiated by sampling weights, w,. The sampling weights, w, are standardized
so they sum the number of participant/occasion observations. For example if we have
100 participants with two observations the standardized sampling weights must sum
100x2 =200, that is, Z}_;w; = 200.

The observed data pseudolikelihood for y,, together with the pseudo prior for the
random effects, J,, formulate an augmented data likelihood. The participant-specific
random effects are used to account for dependence among the repeated measures. Since
[normal (x | ,0%)]" o< normal (x | u,02 / w) the pseudolikelihood approach in linear
regression is equivalent to the regression model:

Viy =W, B+S, +€,, with €, ~ normal(O,cri /wi)
with & ~normal(0,3 /w;) , for m=1,...,M; and i=1,....n.

The advantages of the pseudolikelihood approach over the proposed fully Bayesian
approach are: (A) It incorporates weights into the power term of the likelihood function
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so that relatively little modifications are performed to the population model sampler to
incorporate the pseudo likelihood; (B) Specification of ; | y;,--- for the population is not
necessary; (C) There is no expected value

Pr(individual i becomes a participant| 6,k ) = E ” [E (]| y; ,K)]
i

(the denominator in Equation 2 to compute as in the fully Bayes method. Note than in
(C), the inner and outer expectations may depend in a set of covariates v, and u,,
respectively.

The disadvantages of the pseudo posterior approach are: (A) It is not fully Bayesian;
(B) The sampling weights are only needed for unbiased estimation to the extent that they
are dependent on the response variable of interest. Any variation in the weights not
related to the response variable represents noise. The pseudo posterior distribution does
not discard variation in weights that is independent of the response variable, so informa-
tion unrelated to the response introduces noise into the estimation of the pseudo posterior
distribution; (C) The weights must be normalized to regulate the amount of estimated
posterior uncertainty, which is not required for the fully Bayes approach (except to spec-
ify a vague prior for m;as discussed after equation 13); and, (D) The sampling weights are
inversely proportional to the inclusion probabilities. The inclusion probabilities repre-
sent a distribution that governs the taking of samples from the population that we call the
“sampling design” distribution. The resulting credible intervals of the pseudolikelihood
do not account for uncertainty with respect to the sampling design distribution because
they treat the inclusion probabilities as fixed.

The pseudolikelihood is used here because it is convenient in that the Bayesian data
analyst may use the same model and posterior sampling algorithm as defined for the
population and only exponentiates the likelihood contributions by the associated sam-
pling weights. While the pseudoposterior is not our recommended (fully Bayesian)
method because it is known that it produces incorrect credible intervals, we include it as
a comparison to our fully Bayes procedure because it is the commonly used method in
practice due to its ease of implementation.

We implement the pseudolikelihood approach in the sequel as a Bayesian version of
the NCI method. The pseudolikelihood approach uses one-step estimation, instead of the
two-step estimation algorithm of the NCI approach, which propagates uncertainty in
estimation of parameters, but is otherwise equivalent. We show that the fully Bayes
approach outperforms the pseudolikelihood approach in terms of bias, MSE, and 95% of
CI coverage.

5. Simulation Study

We perform a Monte Carlo simulation study to compare the performance of our fully
Bayes method in Subsection 3.1 with the pseudolikelihood approach in Section 4. In
each Monte Carlo iteration, we generate a population of size N, = 10°. The informa-
tion constructed for each individual in the population is its inclusion probability, two
repeated measures, and the value of a predictor at each measurement occasion. Next, we
generate an informative sample and a simple random sample. The former is analyzed
with our fully Bayes method, the pseudolikelihood approach and the model in Equation
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(5) that ignores the informativeness of the sample (labeled POP). The simple random
sample is analyzed with the model (5) (label this analysis SRS). The SRS is included to
serve as a benchmark for point estimation and uncertainty quantification and is com-
pared to methods estimated on the informative sample taken from the same population.
For each population and sample we apply the estimation approaches of our fully Bayes
method and associated comparator methods, assessing the bias, MSE, and coverage
properties. We focus on inference about S, as a global parameter of inferential interest.
We will repeat steps 1 to 3 below M =1000 (say) times:

1. Generate a population of N,,, = 10° individuals. For i =1,...,N op » BCNCTALE:

(a) inclusion probabilities ...,y u~d gamma(a, = 4,rate=b, =2);
. iid pop
(b) predictors u,,u;, ~ normal(0,1)5"
(¢) individual-specific random effects ¥: ~ normal(0,0' f =03 );
(d) response y,, ~ normal( /,tim,0.52) with mean p, =1-0.5u, +y, + 7, and
Wy #1-0.5u;, +y; +m,. Notice that the covariate values are different,
u; # u;, , but the effect on the response is the same. We are adding m, to the
mean so y, & 7, | (U, u;,) -

2. Generate a simple random sample (SRS) and an informative sample (IS) (without
replacement), each of size n =100 . The IS contains (¥;;»Yiz>U;1»%2, ;) with prob-
ability 7, /Ef,vfl" 7y, while the SRS uses equal probabilities of value, 1/N,,, .
Note that the sum of the n;s in the sample (i.e., Zlenl.(x)) or in the population
(i.e., 2,.]1”1”" ;) is not standardized. Large values of y,, and y,, are more likely to
be sampled (large value of 7, is associated with large value of y,,). The simulation
true parameter value of f,, the intercept, under our regression model in Equation
(5)is B ™ = E(y,, luy =u, =0)=1+E(r,)=1+4/2=3.

3. Analyze IS with three methods, and also the SRS. All of them assume the analy-
sis model in Equation (5) with 8= (B,,8,)", u},, = (1,u,,) , and priors specified
in Equation (13) with ci = c§ =1.

(a) FULL: The proposed Bayesian model in Subsection 3.1; with v,, =u,, so
vi = (1,(u, +u;,)/2) in Equation (15).

(b) PSEUDO: Psecudolikelihood approach as described in Section 4, with
w,ocl/m;.

(c) POP: Bayesian model in Equation (5), ignoring the s.

4. Analyze the SRS with model (5), label this SRS analysis.

5. Compute and store for each one of the three models plus the analysis of the SRS:
e Point estimate of S, equal to the posterior expected value of f,,.

e Central 95% Cl for §,.

im

The above simulation study design will tend to allow non-informative inference (that allows
unbiased estimation using the uncorrected population model (i.e., POP) for the slope param-
eter of interest, 3, for a sufficiently large sample size due to the conditioning on =, (in 1)
used to generate y,. We could have added an interaction term 7; xu,; in y,, and 7; Xu,, in
U, to bias the estimation of B, under the uncorrected model (POP) and require our fully
Bayes likelihood for the observed sample of Equation (12) (i.e., FULL) for correct
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Table I. Simulation Scenarios. Values of ar and bt and g™ ™" := E(y, | u, =u, =0) in the

iid
Simulation True Distribution of 7; ~gamma(a7r,bﬂ) in Simulation Step |(a). In $4 the Design

is Non-Informative, that is, y, L 7, .

. . o Ana, TRUE
Simulation scenario an br

SI': low variance
S2 : high variance
$3 : exponential

B,
3
6
2
S4 : non informative |

A — U
N - =N

inference. For ease-of-understanding, however, we achieve the same benefit by focusing on
the global intercept, f3,, which is informatively estimated under the sample design.

For each method, we end up with M point estimates of f; and central 95% credible
intervals. Call B;', m=1,...,M this point estimate. Similarly call the credible interval

(Ly,Uy") . Estimate,

o Qm Ana,TRUE | |
o Bias=average, | ., {ﬁo - Bs },

~ 2
e MSE = average, {[ﬂ(;" - OA"”’TRUE] } :

>

e Coverage=Proportion of times that the central 95% credible intervals contained

Ana,TRUE
0 B
e Expected length of central 95% credible intervals= average, {U;' — L } .

We extend the simulation to more scenarios by varying the values of of a_ and b_in
step 1(a). The values are given in Table 1. Simulation scenario S1 explores the perfor-
mance of the methods when variance of the inclusion probabilities (aﬂ / b,f = 1) is low;
S2 when itis high; §3 when the distribution of ©,has mode 0, and thus is very different
from the lognormal distribution assumed by Full in Equation (9). S4 is different from
the three other scenarios; here we set p,, =1-0.5x,, +7, (excluding 7,) in simulation
step 1(d) so the IS generated in step 2 is, actually, non-informative such that sampling
weights are not needed to correct the sample model. S4 explores the performance of the
methods design to analyze informative samples when the design is actually non-inform-
ative, and thus the weights, oc 1/ 7; are noise.

Table 2 shows the results. FULL and PSEUDO yield similar point inference quality
(i.e., similar bias and MSE) but only FULL yields appropriate uncertainty quantification
(i.e., CI reaching nominal coverage). In S1-S3 , FULL and PSEUDO perform similar in
terms of bias and MSE, but the PSEUDO central 95% CIs undercover because this
approach does not account for the uncertainty induced by the sampling design distribu-
tion. The FULL ClIs coverage is similar to that for the benchmark SRS at the cost of
being wider than SRS CIs. The sampling design can produce estimators that are more or
less efficient, depending on the construction for inclusion probabilities. In general, the
use of strata makes the sampling design more efficient than SRS, but clustering into
PSUs (which is done for convenience of survey administration) is less efficient; mean-
ing, that it produces longer credible intervals. In S1-§3, POP yields, as expected, biased
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Table 2. Bias, MSE, Coverage, and Expected Length of Central 95% Credible Intervals Times
1,000 Under Competing Models.

Method Bias x10° MSEx10’ Coverage x10° Lengthx 0’
SI: low variance, ant = 4 and bt = 2

FULL -9 17 967 470
PSEUDO 19 17 908 446
POP 501 267 15 478
SRS 0 12 950 434
$2: high variance, an = 5 and bt = |

FULL 28 67 948 1,080
PSEUDO 33 69 917 882
POP 986 1,039 29 947
SRS 13 54 936 88l
$3: Exponential an = | and bt = |

FULL -6 32 971 853
PSEUDO 69 53 864 690
POP 1,002 1,028 0 583
SRS -4 13 931 429
S$4: non-informative an = 4 and b = 2

FULL | 3 951 205
PSEUDO 0 3 927 201
POP 0 2 942 184
SRS -2 2 945 184

inference, showing the consequences of not adjusting inference for informative design.
These scenarios, but particularly S§3 where the simulation true exponential distribution
of 7, has mode at zero (while the density of any lognomal distribution evaluated at zero
equals zero), show that FULL is robust against the violation of the lognormal distribution
of the m;s that is assumed in Equation (9). $4 shows that FULL and PSEUDO coverage
is appropriate even when the sample is non informative.

As a side note, the data generating model in step 1, generates first the inclusion prob-
ability  (in 1.a) and then y; |, in (1.d) while our proposed method (FULL) models y,
and ;| y, . This may look counter-intuitive but in both, the data generating model and
FULL, we are jointly modeling (y;, ;). So, it is not important whether y is generated
conditioned on 7 or the reverse.

6. Application to NHANES

To demonstrate our method, we model daily protein consumption while controlling for
race/ethnicity, age, and gender, using the 2017 to 2018 NHANES nutrition dataset (CDC
2016a). NHANES is a program of studies designed to assess the health and nutritional
status of adults and children in the United States. NHANES oversamples subgroups of
particular public health interest. During 2015 to 2018 NHANES oversampled certain race/
ethnic and age groups (Chen et al. 2020). The NHANES interview includes demographic,
socioeconomic, dietary, and health-related questions. The objective of the dietary interview
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is to obtain detailed dietary intake, for example, daily protein consumption, from NHANES
participants. All selected NHANES participants are required for two 24-hour dietary recall
interviews. The first dietary recall interview is collected in person and the second by tele-
phone three to ten days later. The amount of meat, fish, milk, and other dairy foods data
consumed (in the past twenty-four hours) for Day 1 and Day 2 are provided and NHANES
releases the estimate protein intake of each participant at each day.

NHANES recommends using their sampling weights on the Day 2 when analyzing
data of participants completing Day 1 and Day 2 dietary recalls. Day 2 weights are avail-
able for the 7,641 participants with Day 1 and Day 2 data. Among other adjustments, Day
2 weights adjust for dietary recall data collection, and for weekdays (Monday through
Thursday), and weekend (Fridays though Sundays).

The response variable is y,, =log(prot,, +1) where prot,, is the NHANES esti-
mated grams (gr) of protein consumed by the participant ; during the past twenty-four
hours before his/her Day m dietary interview, i =1,...,n and m =1,2 . Our covariates are
race/ethnicity, age, and gender. Male is the gender reference category. Age is categorized in
four brackets as [0—19], [20-39], [40-59], and [60—80] years old with [0—19] as reference
group. Race/Ethnicity has five categories Mexican American, other Hispanic, non-His-
panic Black, other races, and non-Hispanic White with the latter as reference group.

We fit the models used in the simulation study (that does not include PSUs): FULL,
PSEUDO, POP, and also an extension of our method to adjust for PSU (labeled FULL.
PSU) as described in Subsection 3.2. We recall that two-year NHANES cycle data con-
tains thirty PSUs. The vector of covariates in Equation (5) in this application is,

u' = (l,l(gender =Female ),l(Age € [20,39]),1(Age € [40,59]),1(Age € [60,80]),
1(Race/ Eth =Mexican American ),1(Race/ Eth =Other Hispanic),
1(Race / Eth =Non-Hispanic Black ),1( Race / Eth =Other Race))

Here 1(A4) denotes the indicator function of the individual in the set 4 . For FULL and
FULL.PSU, the covariate vector to model ;| y; , in Equation (9) and (15) respectively,
v,,issetequalto v, =u,.

FULL and FULL.PSU results indicate that the design is informative for protein con-
sumption. As Table 2 shows, for FULL, the posterior mean (central 95% credible intervals)
of K, , in Equation (9), is —0.17 (—0.22, —0.13); while for FULL.PSU the mean of X, , in
Equation (15), is —0.31 (=0.36, —0.26). In both cases, the CI for K, does not contain zero.

Figure 1 shows that the methods yield different inference. The figure presents violin
plots representing the posterior distribution of the grams of protein consumed by partici-
pants in the reference group, that is, of exp(ﬁo ) =1, under all competing models. POP,
the model ignoring the sampling weights, underestimates. The estimate under PSEUDO
is the highest and its CI does not overlap FULL CI. The difference in point estimates
between FULL and PSEUDO probably derives from the use of raw, noisy weights in
PSEUDO. These noisy weights contain a sufficiently high variance unrelated to the
response variable that at the released sample size there is estimation bias. The Cls under
FULL and FULL.PSU overlap but FULL.PSU tends to yield higher standard deviations
because FULL.PSU accounts for the possible non-independence of the outcomes of indi-
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PSEUDO-

POP-

FULL-

575 60.0 625 650 67
exp(Bo) — 1

Figure |. Violin plots along with, mean (dot) and central 95% credible interval (horizontal line)
for the expected grams of protein consumed, exp(f3;) -1, under all considered methods in the
reference group (White male under 20).

viduals within the same PSU. Since NHANES uses a multi-stage sampling design infer-
ence under FULL.PSU is more appropriate.

Table 3 displays mean, standard deviation, and central 95% CI for the model parame-
ters for y[B,0,,05, x, under FULL, FULL.PSU and PSEUDO. FULL and FULL.PSU
produce similar point estimates except for the intercept for which FULL. PSU yields
higher standard error, or equivalently, wider credible interval. This is expected because
FULL. PSU takes into account the correlation of the responses within the same PSU (95%
Cl for o, in Equation (14) is (0.02,0.05)). Inference under PSEUDO is different.

7. Final Discussion

LS2019 proposed a method to include the sampling weights into the likelihood to perform
Bayesian inference. They mainly focus on the linear regression with fixed effects. We
extended their work to account for repeated measures by including a participant-specific
random effect and modeling the inclusion probability for individual i, thatis, w,|y;,as a
function the average of all repeated responses for individual i, that is, y;, but we could
have used any other linear combination of the entries of y; . Our simulation showed that
(A) our proposed method, FULL, yields credible intervals with correct coverage at the
cost of wider CI than if we were analyzing a SRS; (B) that this is not always the case for
PSEUDO; and (C) that our method is robust against the violation of the lognormal distri-
bution of m; | y, that it assumes. To check (C) the simulation true inclusion probabilities,
in Section 5, were generated from gamma and exponential distributions. In LS2019 the
robustness against this violation was explored more deeply. For example, in Subsubsection
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4.1.2 they generated the inclusion probabilities, 7 s, from a Beta (symmetric) distribution
and, in Subsection 4.2, they used the 2013 to 2014 NHANES sampling weights as the
simulation truth. Also Ledén-Novelo and Savitsky (2023), in their Subsection 4.2, gener-
ated (correlated within cluster) sampling weights from a Dirichlet distribution. In all these
simulation scenarios the Fully Bayesian method was robust against the violation of the
assumed lognormal distribution of , | y, . We also incorporated the PSU information fol-
lowing Le6n-Novelo and Savitsky (2023) in Subsection 3.2.

Our method is computationally more expensive than other approaches. We rely on
Stan to cope with this limitation. The coding of our method on Stan is simple as shown
in the Appendix A.4. The lognormal distribution of =, | y, with mean a linear combina-
tion of the entries of y, and other covariates, as shown in Equation (9), remains a com-
putational restriction of our proposed approach. We aim to address this in future work.
Another line for future work is to extend the method to binary and count responses.

In this Article, we treat the observed inclusion probabilities as known for the survey
participants only. Here the inclusion probability, m,, is the joint probability of the indi-
vidual being selected and responding to the survey usually computed assuming inde-
pendence, as the product of each marginal probability (of inclusion and of responding).
The inclusion probabilities, or equivalently the sampling weights, provided to the analyst
(e.g., the NHANES dietary publicly available data) are usually adjusted for nonresponse.
If the probabilities of being selected were known by the analyst while the one of being a
respondent were estimated by the analyst, the estimation error of the latter could be
accounted for by modeling the nonresponse probabilities.

A limitation of our simulation study in Section 5 is that it does not incorporate non-
response explicitly on the data generating process. 7, is defined as the probability of both
being selected and responding. We could have generated both the probability of selected to
be invited to participate for individual i 7 ;; and their probability of responding (once
invited) as 7, ;. Assuming independence conditioned on the response and relevant covari-
ates, the probability of being selected or invited to participate in the survey and respond is
T, = W X g, » and we would propose to pass only T, to the data analyst. In our simulation
study, we directly generate 7, and pass it to the analyst. Yet, if 7, ; is estimated from the
observed data (e.g., the probability of response for an invited person of Hispanic ethnicity is
estimated as the response rate of Hispanics invited to participate), the nonresponse adjust-
ment induces a dependence between the Hispanic participants; nonresponse estimation from
common data was not explored in the simulation section. The effect of adjustment for non-
response when non-response is estimated from common data is a future line of research.

A referee made the observation that if the weights are adjusting for three factors: (1)
unequal probability of being invited to participate in the survey, (2) nonresponse, and (3)
post-stratification, a more appropriate terminology for these weighs is “survey weights,”
while “sampling weights” should be used to refer to weights adjusting for (1) only. We
agree, this terminology is more descriptive of what these weights adjust for. We decided
to keep the term “sampling weights” to match NHANES terminology where the sam-
pling weights are adjusted for (1), (2), and (3).

In summary, we propose a Bayesian method to the analysis of repeated measures
under informative sampling that yields appropriate point estimates (low bias and MSE)
and uncertainty quantification (CI reaching nominal coverage).
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A. Appendix

A.1. Derivation of p, in Equation (2) Under Informative Sampling

We construct the distribution of the observed sample taken under an informative design.
This approach considers the population joint distribution of the response and inclusion
probabilities,

(vi>7) 0,k ~ p(y;,m; 10,x) = p(r; | y;,6) p(y;16), i=1,...,N, (A1)

where N is the population size. Note that we are assuming 7; 1. 8 | y,,x and y, Lk|0 .
Let /; =1 if the individual i in the population becomes a participant and 0 if not. Bayes
theorem implies,

Pr(l; =1|y;,7;,0,6)x p(y,,K; | 0,K)

p(y,m; |0.x,1, =1)= Pl —110.0) (A2)
By definition of inclusion probability,
Pr(l, =1|y,, 7, . k)=, (A3)
and
Pr(l, =1|0,x) = ”Pr(l,. =1 y,.7,,0.6) p(y;, 7, | 0,5 )dr,dy,
= IIﬂ;p(ﬂi | visx)dm, p(y; |0)dy, (Ad)

= jE(n',- | vix)p(y; |0)dy,
= Eyi‘e [E(n',‘ | yi’K):I'
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Plugging (A3) and (A4) into (A2) yields (2)

7, p(m; | y,,K)
B, B i

ps(yisﬂ[ ‘0,7():: p(yiaﬂ’-i |99K31[ :1): ):| ><p(yi |9)
K

Here the superindex * denotes the quantg integrated out.

A.2. Likelihood in Equation (3) Justification

When we define the likelihood in Equation (3) we are asserting Equation (4) that, intro-
ducing the indicator variable I, =1 when population individual i becomes a participant
and I, = 0 otherwise, can be written as

plysm)s ) L =1, =...=1, = 1»9”(]:111] pl(y;, 7)1 =1,0,k] (AS5)

We show below that this independence assertion follows if we assume the following
three conditions for the model and the sampling design, respectively, that are the same
ones given in Section 2 but in more detail:

Cn (y;,m) |0,k , i=1,...,N areindependent in the superpopulation model in (Al).

(C2) For any individual n+1, conditioned on his/her response and inclusion proba-
bility, @ and k , the event of becoming the (n+1)th participant is independent of
any set of individuals S, becoming survey participants, their response and inclu-
sion probabilities (if the individual is already in S, , we mean his/her probability
of becoming a participant for a second time under sampling with replacement).
Mathematically expressed,

Pr[lnﬂ =1 | (yn+1,7fn+1),{(y,«,7ri):ie Sn}’{li =1l:ie S,,},G,K]
:Pr[lnﬂ =1 ‘ (yn+17ﬂn+1),9,l(j|0€ T,

where S, ={1,...,n} is the set of indices of first »n participants.

(C3) Conditioned on 6 and k, the response and inclusion probability of a population
individual is independent of the response and inclusion probabilities of the  par-
ticipants already in the survey. In math,

PlOs ) H ) i €S, 3,41, = 1:i € S,},0.k |
= p[(yn+177rn+l) ‘ B’K:I

Proof.
All the probabilities below in this subsection are conditioned on @ and k. To ease nota-
tion we omit them, that is, we write p[---|---] instead of p[---|---,0,k]. First we show

the following statement that will be helpful in the proof.

Pi1,, =1{,=1:ieS}|=P1,, =1] (A6)
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Proof of (A6):
P17, =1]{l, =1:ieS,}]
:IPr[InH =1 Dy Tps ) () i €S, 3,41 =110 €8, }]
X Pl D> M) s m) i €S, 3,41 = 10 €S, } ]
Xp[{(yia”i) eS8 L =1ie Sn}]d(ynﬂ9ﬂn+1)d({(yiaﬂ:i) Hies,})
= [Pl =11 G )] (Because of (C2)
x p[(yn+1,7rn+1)] (Because of (C3))
Xp[{(yian-i) S Sn} | {[z = 1 e Sn}]d(ym-l’ﬂn+1)d({(yi37[i) e Sn})
= J‘Pl{lnﬂ =1 | (yn+l Tl ):'X p[(ynﬂ s )]d(ynﬂ ’ﬂn+l)
xjp[{(yi,n,.) eSS, =1ie Sn}]d({(yl,ﬂ[) :ieS,}) (This factor equalsl)
P17, =1]
We prove our assertion by mathematical induction, when the sample size n =1 the asser-

tion, that is, (A5), is trivial. We assume the assertion true for sample size n and prove for
sample size equal to n+1. We need to show

LHS1:= p[(yn+197rn+1)9{(yia7ri):ie Sn}|1n+l :1’{11' :1:i€Sn}:|
= PLOuas ) [ Ly =1x p[{(m) i €8, 3 [{; = 1:i €S, } ]=: RHS]

Once proven the above statement the assertion is proven since the induction step
implies the right factor of RHS1 is II _, P[(y,-,ﬂi) |1, = 1]. Applying Bayes Theorem to
LHS1 we obtain,

LHS1=P I, =1|(Dps 7, {(v 7)) i €S, 1,4, =10 €S, }]

X Pl Wpars T A i€ S} (L =110 €S, }]
(*)
/P 1, =1{],=1:ie8,}]

:Pr[l pet =1 (yn+1a7fn+1)}< (*) (Because of (C2))
/ Pr[]n+1 = 1] (Because of (A6))
Pl o) [ Ly =1 ¢ P =1
= [ T s ] M X *) (Bayes Theorem)
pl:(yn+1’ﬂn+l)] Pnl-1=1

_ p[(yn+1,7f,,+1) | [n+1 B 1:'
PLGps )]

x (%)
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Applying Bayes Theorem to (*) we obtain
(+%)
Pl{L, =1:0 €8} | (V157 ) (o) i €S, 1]
_ X{p[(ynﬂ’ﬂ:nﬂ)’{(yi’ni) e Sn}j|}
P{l,=1:ieS,}]
{PLGom) 3 U7 i€ 5,1
Pi{{l,=1:ieS,}]

(*)

= (**)x

(Because of (C1))

Applying Bayes Theorem to (**) we obtain

p|:(yn+l’ﬂn+l)|{(yi’ﬂ[):ieSn}>{]i zliiESn}:l
pl:(ynJrl’ﬂnJr]) [{(y;,m;):i€S, }:|
<P {I,=1:ieS,}[{(y;,7,):i€S,}]
Mxﬂ{{]i =1:ie8,} [{(y,m,):i€S,}]
= (Because of (C3) and (C1))
V4 +1> n+1):|

_ Pl m)ieS, U, =1:ieS,} xP{l,=1:ieS,}]
pl:{(J’w”i):ieSn}]

(**) =

(Bayes Theorem)

Replacing the value of (**) above in (*) we obtain

" _(p[{(y,.,m:iesn} 4, =1:iesn}]xMJ

PLYisT '.GS}]

y p[(yn+1 > ):|>< M

P {l, =+7€S,}]

= pl{nm)ie S, L =1 € S,3 X pl(0:7,0) ]

Replacing the value of (*) above in LHS1 we obtain

LHSlZ p|:(yn+l’ﬂn+l)|ln+l _l:lx{pli{(yi’ﬂi):iesn} ‘ {]l :1:iES”}:|]

Pl % pl(rers ) ]

:p[(yn+l’ﬂn+l)|ln+l = ljxp[{(yiaﬂi):ie Sn} | {[1 =l:ie Sn}:|
= RHS1
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A.3. Pseudolikelihood Approach in Savitsky and Williams

Here we derive the pseudolikelihood approach in Section 4. Savitsky and Williams
(2019) considered cluster sampling and in their Theorem 2 they defined the augmented
pseudolikelihood as:

::LE w
g IS | mesg gm

n (s PO 105" Jpi) "

ges

with w,,, =1/z,, the specific weight for for unit m nested within cluster g . Here the
sample S contalns | S| clusters S),..., S, each cluster with | S, | observations and 3,
is the cluster specific random effect that models the correlation of the responses ygm
within a cluster. The weights are standardized so that X, sw,, =X s [S, | the total
number of responses. The contribution of the observation for a unit, Yem » to the pseudo-
likelihood is its PDF (or what it would contribute to the likelihood) exponentiated to its
sampling weight, w,,, . The prior distribution for the random effects is exponentiated by
cluster-indexed sampling weights, w, . Each w, is set equal to the average of the sam-
pling weights of the units nested within the cluster g .

In our context their cluster is a participant. So the index g is i, [ S, [= M, (the num-
ber of observations for the p’?rticipant) =w;Vm and, thus, w, = w and the weights
are standardized so that X_ Mw; = Z M the total number of partlclpant/occasmn
measurements. For example if we have 100 participants w1th 2 observations the stand-
ardized sampling weights must sum 100x2 =200, that is, > W =200 . Replacing g,
Sg, Wgn and w, for i, participant ¢, W; and w, in the equation above yields (16).

A.4. Implementation of (12) Using STAN

We can define the likelihood (12) in Stan in two ways:

1. Directly pass the loglikelihood to the log of the full joint distribution, in stan,
target, in pseudocode,

target+ = log(Like) = Zlog p(y;m; | -+)
i=1

with pg defined in Equation (11); or,

2. Specify in Stan the distributions of y,, and «r, in Equation (5) and (9), respectively,
and add to the log of the full joint distribution, referred as target in Stan, the
—logZ, log ( denominator in Equation 10) , in pseudocode, this is,

target+ = —H:ZV?}K A no? /2+Ky2ﬁf,3+ K [(Zl/MiJof +no-§jl/2}

i=1 i=1 i=1

Stan code, note that the function fortarget lpd in the code yields the equation above:
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functions/{
real to real(int x) { return x;}

real gxdelta(row vector x,vector ddelta) {
/*Dot product of x and y*/
return dot product(x,ddelta);

real mupi (real A,real y,row vector x,vector ddelta) {
/*mean of pi, conditioned on A,x and delta*/
return A*y+gxdelta(x,ddelta);

real muy (row vector x,vector bbeta,real eta) {
/*mean of y, conditionrd on x,beta and the RE eta*/
return dot product (x,bbeta)teta;

real fortarget lpdf (// log of denominator in (9) in paper
vector pis, //Vector of inclusion probabilities in the second column
matrix X ybar, //vector of averaged predictors (grouping by participant)
matrix X pibar, //Vector of predictors, the first column 1 so the model
//for pi includes an intercept
real suminvj i, //sum i 1/number of repeated measures of individual i

vector bbeta, //beta: regression coefficients in model for y
vector ddelta, //kappa x: regression coefficient in model for log pi
real A, //kappa y: Coefficient for y in the model for log pi
vector eta, //delta: Random effects for model for y

real sigmaly, //variance (of the residuals) in the model for y
real sigma2eta, //variance of random effects

real sigmalpi //variance of (of the residuals) in model for log pi

) A
int n_individuals=num elements (pis);
real sum3=0;
real sum4=0;
for (i in 1:n_individuals) {
sum3 += gxdelta (X_pibar[i],ddelta);
sum4 += dot product (X ybar[i],bbeta);
}
return (-
sum3-
n individuals*sigma2pi/2-
A*sumé-
A”2* (suminvj i*sigmal2y+n individuals*sigma2eta)/2
)i
}
}//end of the block functions

data({

int n participants; //Total number of participants

int nobs; //length of the response vector

int p y; //number of predictors including the intercept
//in the model for y int p pi;
//number of predictors including the
//intercept in the model for pi
// (inclusion probabilities), besides y

vector [nobs] ys; //vector of participant/ocassion measurments

vector [n participants] pis;//Vector inclusion probabilities

int xi [nobs]; //index for REs. xi[i] is the individual to

//which the measurement y[i] belongs.
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//This is measurement y[j] corresponds
//to participant i=xi[j]
matrix[nobs,p y] X y; //U in paper: matrix of covariates for model for y,
//first column must be 1 to include intercept
matrix[nobs,p pi] X pi; //V in paper: Matrix of covariates for model for pi,
//first column must be 1 to include intercept

transformed data{

}

vector [n participants] ys bar;

int Ms [n_participants]; //Vector of number of observations e.g. Ms[1]=2
//indicates individual 1 has 2 repeated measures

real suminvj_ 1i=0;

matrix [n participants,p y] X ybar;

matrix [n participants,p pilX pibar;

for(i in 1:n participants) {Ms[i]=0;};

ys bar=rep vector (0.0,n participants);

X _ybar = rep matrix(0.0,n participants,p_y);
X pibar =rep matrix(0.0,n participants,p pi);

for(j in l:nobs) {
ys _bar[xi[j]]+=ys[j];
Ms[xi[j]]+=+1;
X ybar[xi[j]]1+=X_y[j];
X pibar[xi[j]]+=X pil[j];
}

for(i in 1:n participants)
{suminvj i+=1/to real (Ms[i]);
ys _bar[i]=ys bar[i]/to_real (Ms[i]);
X_ybar[i]=X_ybar[i]/to_real (Ms[i]);
X pibar[i]=X pibar[i]/to_real (Ms[i]);
}

parameters {

real <lower=0> sigmapi; //Standard deviation of residuals in model for log
real <lower=0> sigmay; //Standard deviation in residuals in model for y
real <lower=0> sigma_eta;//Standard deviation of Random effects in model for y

real A; //kappa y in the paper: regression coef associated
//with y in model for log pi Ay+. . .

vector([p_ y] bbeta; //beta: regression coefficients in model for y

vector[p pi] ddelta; //kappa_x: regression coefficients in model for log pi

vector[n participants] eta; //in paper delta i:
//participant-specific RE for model for y

Model {

bbeta~ normal (0,100);
ddelta~ normal (0,100);
A~ normal (0,100) ;

eta~ normal (0, sigma_eta);
sigma_eta normal (0,1);

sigmapi~ normal(0,1);
sigmay normal (0,1);
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for(j in l:nobs)// Response distributed according to (3) in paper
ys[j] normal (muy (X y[j],bbeta,etalxi[j]]),sigmay);
}
for(i in 1:n7participants)//inclusion probabilities distributed as in (8)
pis[i] lognormal (mupi (A,ys bar[i],X pibar[i],ddelta), sigmapi);
}
//adding the denominator in (9) to the log of the full joint distribution
target +=fortarget lpdf (pis|//Vector of inclusion probabilities
X_ybar, //Vector of (averaged) predictors for model for y
X pibar, //Vector of (averaged) predictors for model
//for pi ys bar+X pibar,
//the first column is 1 so the model includes an intercept
suminvj_i, //sum i (1/number of repeated measures of individual i)
bbeta,
ddelta, A,
eta,
sigmay”2,
sigma_eta”2,
sigmapi”2);





