Exploring the Application of Machine Learning Techniques to Construct R-indicators

Arcenis Rojas & Lucilla Tan

Division of Consumer Expenditure Surveys
2019 AAPOR Conference
May 17, 2019

Consumer Expenditure Survey (CE)

Motivation

- **Problem:** Non-response bias violates many assumptions that are made during the sampling procedure and can lead to biased survey estimates.
- Potential Solution: Develop an indicator of representativeness of the respondent pool while data collection is still on-going.
 - This can inform the allocation of recruitment resources of under-represented groups.

Motivation

- Develop a representativeness indicator for a specific expenditure category (food) to monitor the representativeness of the respondent pool with respect to select characteristics over the course of data collection during the survey year.
 - ► We're looking for variables that are associated with both food expenditures and survey participation.

Background

Representativeness Indicator (R-Indicator):

Measures the risk of potential non-response bias based on weighted, estimated propensities of response.

$$R(\rho_x) = 1-2* S(\widehat{\rho_i})$$

$$S(\widehat{\rho_i}) = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} d_i (\widehat{\rho_i} - \widehat{\bar{\rho}})^2}$$

 d_i : design weight for sample unit i

 $\hat{\bar{\rho}}$: weighted sample average of response propensities

 $\widehat{
ho_i}$: the estimated response propensity for unit i

Background

Data Description

- 2015 Consumer Expenditure Interview Survey (CEQ)
- CE Interview Survey Contact History Instrument (CHI)
- The 2015 Census Planning Database (PDB)
 - ► Geographic aggregation: tract-level (2010 Census boundaries)
 - ► Incorporates the 2009-2013 American Community Survey (ACS) fiveyear estimates
 - Latest data available at the time study started

Data Description

- Initial sample size: 36,226
 - ► After data cleaning: 32,255
 - ▶21,546 (66.8%) were survey participants
- Initial number of PDB variables: 114
 - ► After eliminating highly correlated and near-zero variance PDB variables: 54
- CHI variables: 2
- CEQ variables: 6

Data Description

- Data covered 5 periods over 2015
 - **▶** Feb
 - ► Feb-Mar
 - ▶ Feb-Jun
 - ► Feb-Sept
 - ▶ Feb-Dec
- We could compute an R-Indicator over time
 - Continuous monitoring is the motivation to build a repeatable process

Selecting Algorithms

- Desired model characteristics:
 - ► High prediction accuracy
 - Dimension reduction
 - ► Interpretability
 - ► Smooth propensity distribution

Selecting Algorithms

	Classification Tree	Random Forest	Logistic Regression	LASSO
Prediction Accuracy				
Dimension Reduction				
Interpretability				
Smooth Propensity Distribution				

Classification Tree

Classification Tree

Pros:

- Easy to interpret
- Good dimension reduction

Cons:

- Propensities are "chunky"
- Cannot always handle missing values
- Sensitive to tuning parameter specification

Selecting Algorithms

	Classification Tree	Random Forest	Logistic Regression	LASSO
Prediction Accuracy				
Dimension Reduction				
Interpretability				
Smooth Propensity Distribution				

Random Forest

Random Forest Error Rates

Random Forest

Pros:

- High accuracy
- Great for dimension reduction

Cons:

- Interpretation not as clear as other models
- Easily biased if not properly tuned
- Cannot handle missing values

Selecting Algorithms

	Classification Tree	Random Forest	Logistic Regression	LASSO
Prediction Accuracy				
Dimension Reduction				
Interpretability		X		
Smooth Propensity Distribution				

Logistic Regression

Pros:

- Easy to interpret
- Propensities are smooth
- Good for explaining variance

Cons:

- No dimension reduction
- Does not necessarily predict well

Selecting Algorithms

	Classification Tree	Random Forest	Logistic Regression	LASSO
Prediction Accuracy				
Dimension Reduction				
Interpretability		×		
Smooth Propensity Distribution				

LASSO

1.26 Lambda 1SE Min Lambda 1.24 1.22 Binomial Deviance 1.20 1.18 1.16 1.14 -5 -2 -3 log(Lambda)

Least Absolute Shrinkage and Selection Operator (LASSO)

Pros:

- High prediction accuracy
- Easy interpretation
- Great for dimension reduction

Cons:

- Coefficients do not necessarily indicate the magnitude of an effect.
- Narrative may not be intuitive

Selecting Algorithms

	Classification Tree	Random Forest	Logistic Regression	LASSO
Prediction Accuracy				
Dimension Reduction				
Interpretability		X		
Smooth Propensity Distribution				

LASSO Explained

The lasso regression coefficient estimates are obtained by solving the optimization problem that can be generally characterized as:

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} + \lambda \left(\sum_{j=1}^{p} |\beta_j| \right)$$

where $\lambda \ge 0$ is the shrinkage parameter that controls the relative impact of the two terms. The effect of the penalty is to get a more generalized (than a strict) fit to the data to minimize overfitting.

Training the LASSO

- Split the data 50-50 into a training set and a testing set
- Used 10-fold cross validation to find the best shrinkage parameter (λ) and used a mixing parameter of α = 1
 - Selected the largest lambda within one standard error of the minimum cross-validation mean-standard error, which we call "Lambda 1SE"
- Ran LASSO

Predictors of Food Expenditure

- Covariates for Food Expenditure:
 - Started with 54 variables from the PDB
 - ► After running LASSO with "Lambda 1SE" we were left with 2 variables with non-zero coefficients:
 - Average Household Income (PDB)
 - Average House Value (PDB)

Predicting Survey Participation

■ Inputs:

- Average Household Income (PDB)
- Average House value (PDB)
- Census Region (CEQ)
- Dwelling Unit Structure Type (CEQ)
- Household Size (CEQ)
- Homeowner / Renter (CEQ)
- Urbanicity (CEQ)
- Survey Wave (CEQ)
- Number of Contact Attempts (CHI)
- Ever Changed Interviewer (CHI)

Predicting Survey Participation

- After running LASSO with "Lambda 1SE" we were left with 6 variables with non-zero coefficients:
 - Average Household Income (PDB)
 - Household Size (CEQ)
 - Homeowner / Renter (CEQ)
 - Urbanicity (CEQ)
 - Number of Contact Attempts (CHI)
 - Ever Changed Interviewer (CHI)

Model Accuracy

Baseline was the unregularized GLM Logistic model

Unit response model: model performance comparison using Test subsample with model parameters estimated on Train subsample

Model predictors	Regression	Proportion prediction accuracy (cut-off value prob >0.5)*	Area under the ROC
λ1SE- regularized (6 predictors)	GLM logistic	0.7261	0.699
Unregularized (10 predictors)	GLM logistic	0.7263	0.703

^{*} Units with predicted probabilities >0.5 were classified as respondents.

Period 5 Final Model

* Prediction Accuracy = 72.8%

Predictors	Coeff	SE	p-value
(Intercept)	1.414	0.041	0.000
Household income	-2.79E-06	3.49E-07	0.000
No. contact attempts	-0.089	0.004	0.000
HH size - one	-0.088	0.031	0.005
HH size - three	0.369	0.037	0.000
HH size – 4+	0.214	0.040	0.000
Changed interviewer	-1.508	0.034	0.000
Renter	0.179	0.028	0.000
Rural area	0.504	0.051	0.000

Period 5 Model Propensity Distribution

R-Indicators by Period and Model

Period	Months of Data	Classification Tree	Logistic Regression	LASSO Regression
1	1	0.730	0.668	0.734
2	2	0.702	0.658	0.729
3	5	0.690	0.632	0.682
4	8	0.671	0.617	0.653
5	11	0.678	0.622	0.657

R-Indicators

Response propensity model: ___ lasso_logistic ___ tree

Lessons Learned

Distribution of estimated unit response propensities with variable Language included as a predictor (Accuracy > 98%)

Lessons Learned

- No. sample units with missing value for LANGUAGE: 10,536
 - ► No. of survey non-respondents = 10,393
 - > => 98.7% of sample units with missing value for LANGUAGE were non-respondents

KNOW YOUR DATA!!!

Contact Information

Arcenis Rojas

Economist

202-691-6884

rojas.arcenis@bls.gov

Lucilla Tan

Senior Economist

202-691-5128

tan.lucilla@bls.gov

Division of Consumer Expenditure

Surveys

www.bls.gov/cex

