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Abstract:

In the U.S. Consumer Expenditure (CE) Inter-
view Survey, consumer units (roughly equivalent to
households) are asked to provide month-by-month
reports of the amounts of money spent on each of
a large number of items. Reported expenditures
are recorded at a relatively fine level of detail de-
fined by the six-digit Universal Classification Code
(UCC). For a given month, most consumer units
report nonzero expenditures for a relatively small
proportion of the possible UCC items. When no
expenditure is reported, available data does not al-
low one to distinguish between cases of no expen-
diture for this item in the specified month (“true
non-expenditure”) and cases of failure to report a
true non zero expenditure (“nonidentified item non-
response”). However, under specific models for rela-
tionships among true non-expenditure, nonidentified
item nonresponse and observable auxiliary variables,
some important model parameters are estimable.
This paper reviews the relevant models and avail-
able auxiliary information, discusses identifying re-
strictions for specific parameters, and presents re-
lated point estimators and variance estimators. The
proposed methods are applied to selected subsets
of items from the Consumer Expenditure Interview
Survey.

1. Introduction

“Consumer expenditure (CE) surveys are specialized
studies in which the primary emphasis is collecting
data relating to family expenditures for goods and
services used in day-to-day living.” (BLS Handbook,
1997, p.160) One major use of the data is to provide
the basis for revising weights and associated pricing
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samples for the Consumer Price Index (CPI). In ad-
dition, the BLS uses the data to produce estimates of
mean expenditures and to produce public data sets
of expenditures and income. The purpose of the
CE Interview Survey is to obtain detailed data on
relatively large expenditure items such as property,
automobiles, or major appliances, or on expenses
which occur on a fairly regular basis, such as rent,
utility bills, and insurance premiums. The CE In-
terview Survey includes rotating panels: each con-
sumer unit (CU) in the sample is interviewed every
3 months over five calendar quarters and then is
dropped from the survey. Approximately 20 percent
of the addresses are new to the Survey each quar-
ter. The interviewer uses a structured questionnaire
to collect both demographic and expenditure data
in the Interview survey. See Cho et al.(2004) for
more detailed information on the CE Interview Sur-
vey and related literature review.

2. Reporting Rates for CE Interview
Survey Items

2.1 Aggregate and Interviewer-Level Esti-
mators

Define Jic as the number of non-zero reports ob-
tained from a consumer unit c, by an interviewer i,
and wic is the associated probability weight. Then
a probability-weighted estimator of the overall pro-
portion of nonzero reports is:

π̂ =

I∑
i=1

ni∑
c=1

wicJic

I∑
i=1

ni∑
c=1

wicJ

where I is the number of interviewers, ni is the num-
ber of interviews conducted by an interviewer i, and
J is the total number of item categories in our data.
We also define π̂uw as an unweighted estimator of



the overall proportion of nonzero reports:

π̂uw =

∑
i

∑
c

Jic

∑
i

∑
c

J
.

Define π̂i,uw as an unweighted estimator of the pro-
portion of nonzero reports for an interviewer i:

π̂i,uw =

ni∑
c=1

Jic

niJ
.

Analysis on the coefficient of variation estimates
of associated final weights for interviewers demon-
strated that weights are generally homogeneous
within interviewers. This implies that design effects
are relatively small, and analysis on the unweighted
reporting rate at the interviewer level is approxi-
mately equivalent to the weighted reporting rate.

2.2 Preliminary Study

For the preliminary study, we explored relationships
between observed reporting rates and interviewer
characteristics, interview number, reference month
within reference period, and calendar month respec-
tively (Cho et al., 2004). We noted that reporting
rates for the fifth interview were slightly higher than
the ones for three of the previous interviews. We ob-
served that the average reporting rate for a super-
visory field representative (SFR) tends to be sub-
stantially lower than those for a standard field rep-
resentative. A possible explanation is that although
SFR were considered to be the best interviewers, the
cases they dealt with were harder ones. For standard
field representatives, we explored the relationships
between interviewer-level reporting rates and inter-
viewer workload. We also observed that there were
higher reporting rates in the more recent months.
Consequently, the reporting rate was the highest for
the month most recent to the time of the interview.
We observed a significantly elevated reporting rate
for December and a slightly elevated rate for August.

3. Estimation of Models for Report-
ing Rates

3.1 Logistic Regression Models

We consider the following logistic regression model
based on initial exploratory analyses:

log(
π̂ir

1 − π̂ir
) = β0 + β1Ii,r1 + β2Ii,r2 (1)

where Ii,r1 = 1 if the weighted reporting rate π̂ir is
from recall month 1 for an interviewer i; otherwise

Ii,r1 = 0 . Similarly, Ii,r2 is an indicator for recall
month 2, and ni is the number of interviews con-
ducted by interviewer i as previously defined. We fit
the model for the combinations of interviewer i and
recall month r in such a way that the number of ob-
servations to compute π̂ir is greater than or equals
to 5. We used weighted least squares to compute
estimates β̂ of the coefficients in the model, and es-
timated a covariance matrix for β̂ = (β̂0, β̂1, β̂2) us-
ing the balanced repeated replication method. The
following table presents coefficient estimates, stan-
dard error estimates, and associated test statistics
for Model (1):

Coeff Est S.E. Test Statistic
B0 -1.839 0.006 -323.621
B1 0.088 0.004 22.531
B2 0.007 0.003 2.413

The cutoff point using the Bonferroni simultane-
ous inference method at α = 0.05 is 2.499. Note that
all coefficient estimators except the one for an indi-
cator for recall month 2 are statistically significant
according to this criterion.

We have fitted models with various predictor vari-
ables such as workload, calendar months, recall
months, supervisory status. The findings are that: a
coefficient estimator of the workload was not statisti-
cally significant in most models; a coefficient estima-
tor of an indicator for August purchase was not sta-
tistically significant; a coefficient estimator of an in-
dicator for recall month 2 was statistically significant
in the models where an indicator for December was
present; a coefficient estimator of interviewer status
was statistically significant in the models where an
indicator for workload was not present.

Figure 1 shows the plot of residual from Model
(1) against a logarithm of interviewer’s workload,
Log(ni). It displays a dotted line which represents
weighted least square predictors, and a solid line for
the locally weighted regression smoothing predictors
(loess). In locally weighted regression smoothing,
the nearest neighbors of each point are used for re-
gression; the number of neighbors is specified as a
percentage of the total number of points. This per-
centage is called the span; the span size used in Fig-
ure 1 is 2/3. Previously, a loess predictor showed
that an interviewer’s workload was somewhat non-
linear to residual. We transformed interviewer’s
workload by taking a logarithm to achieve a rea-
sonable linearity. For some general background on
these smoothing methods, see the section of Math-
Soft (1995, section 7.11). We also tried several power
transformations of ni; however, there were not much
significant improvements compared to log transfor-



mation.
We chose Model (2) as our working model:

log(
π̂ir

1 − π̂ir
)

= β0 + β1ln(ni) + β2Ii,r1 + β3Ii,r2

+β4Iir,Aug + β5Iir,Dec + β6Iir,FR (2)

The following table presents coefficient estimates,
standard error estimates, and associated test sta-
tistics for Model (2):

Coeff Est S.E. Test Statistic
B0 -1.981 0.057 -35.076
B1 0.010 0.013 0.780
B2 0.101 0.007 14.056
B3 0.024 0.007 3.289
B4 0.029 0.010 2.901
B5 0.156 0.017 9.296
B6 0.104 0.020 5.120

The cutoff point using the Bonferroni simultane-
ous inference method at α = 0.05 is 2.836. Note
that all coefficient estimators except the one for in-
terviewer workload term are statistically significant
according to this criterion.

4. Interviewer-Level Diagnostics

4.1 Preliminary Analysis of Design Effects

Evaluation of design effects can offer some additional
insight into patterns of variability of estimated re-
porting rates. In general, if a point estimator θ̂ of
θ is based on data from a complex sample, then its
design effect is defined to be

deff(θ̂) = Vc(θ̂c)/VSRS(θ̂SRS)

where Vc(θ̂c) is the variance of θ̂SRS , evaluated with
respect to the complex sample design; θ̂SRS is a
standard estimator of θ that one would use if one
had collected data through a simple random sam-
ple; VSRS(θ̂SRS) is the design variance of θSRS , eval-
uated with respect to the hypothetical simple ran-
dom sampling design. Thus, the overall reporting
rate estimator π̂ has a design effect equal to

deff(π̂) = Vc(π̂c)/VSRS(π̂SRS)

where VSRS(π̂SRS) = π̂uw(1−π̂uw)/
(

I∑
i=1

ni∑
c=1

3∑
r=1

J

)
,

J = 190 (the maximum number of possible items re-
ported in our data) and I = 590 (the number of in-
terviewers whose workload are greater than or equal

to 5). For the CE Interview Survey example, an
estimator of deff(π̂) equals

VBRR(π̂)/

{
π̂uw(1 − π̂uw)/

(
I∑

i=1

ni∑

c=1

3∑

r=1

J

)}

where VBRR(π̂) is a weighted estimator of the de-
sign variance of π̂ computed through balanced re-
peated replication with 44 half-sample replicates,

and π̂uw =
I∑

i=1

ni∑
c=1

3∑
r=1

Jicr/
I∑

i=1

ni∑
c=1

3∑
r=1

J . For our

data, d̂eff(π̂) = 170.89. This large design effects re-
flects very strong clustering effects within consumer
units, as well as clustering effects within interview-
ers, relative to the variability one would expect to
have from the mean of a simple random sample

of
(

I∑
i=1

ni∑
c=1

3∑
r=1

J

)
Bernoulli(π) random variables.

Also, the consumer units covered by a given inter-
viewer i generally all come from the same stratum
and primary sample unit, and have approximately
equal weights. Under those conditions, the design
effect for π̂i,uw arises from consumer unit-level clus-
tering effects. An approximately unbiased estimator
of this design effect is:

d̂eff(π̂i,uw) = Vc(π̂i,uw)

/

{
π̂i,uw(1 − π̂i,uw)/

(
ni∑

c=1

3∑

r=1

J

)}

where

Vc(π̂i,uw)

= (
3∑

r=1

ni)−1(
3∑

r=1

ni − 1)−1

×
ni∑

c=1

3∑

r=1

(J−1Jicr − π̂i,uw)2

is a standard cluster-based estimator of the vari-
ance of a sample mean (Cochran, 1977, p. 65), and

π̂i,uw =
ni∑

c=1

3∑
r=1

Jicr/
ni∑

c=1

3∑
r=1

J . Figure 2 presents

scatterplot of d̂eff(π̂i,uw) against interviewer-level
reporting rate, π̂i,uw. Note that Figure 2 suggests a
moderate positive association between d̂eff(π̂i,uw)
and π̂i,uw . To study this further, we used ordi-
nary least squares to estimate the coefficients of the
model,

d̂eff(π̂i,uw) = γ0 + γ0π̂i,uw + ei .

The resulting coefficient estimates were γ̂0 = 0.33,
and γ̂1 = 39.96 . Due to the limitations on within in-



terviewer sample sizes the direct cluster-based vari-
ance estimators Vc(π̂i,uw) were unstable for some in-
terviewers i. Consequently, interviewer specific di-
agnostics will use the following design-effect-based
estimators:

V ∗(π̂i,uw)

= (γ0 + γ1π̂i,uw)

{
π̂i,uw(1 − π̂i,uw)/

ni∑

c=1

3∑

r=1

J

}
.

4.2 Interviewer-Level Standardized Residu-
als

Define r̂i to be a standardized simple residual for an
interviewer i :

r̂i =
π̂i,uw − ¯̂π

{V ∗(π̂i,uw)}1/2

where ¯̂π is the average of π̂i,uw, and V ∗(π̂i,uw)
is given in the previous section. Figure 3 dis-
plays a quantile-quantile plot of the ordered stan-
dardized remainder terms against the correspond-
ing (i − 0.5)/I(5) quantiles of the standard normal
distribution, where I(5) equals the number of inter-
viewers with ni ≥ 5. Under regularity conditions,
if all of the interviewer-level sample reporting rates
had the same expectation, and if the variance func-
tion model provided an adequate approximation to
the true variance of the deviations π̂i,uw − ¯̂π , then
the standardized remainder terms would follow ap-
proximately a standard normal distribution. Then
following standard practice in the literature on lin-
ear models, the normal quantile-quantile plot in Fig-
ure 3 should have its points arranged along a solid
line with a slope of 1, and an intercept of 0. Con-
sequently, substantial deviation from this solid line
may indicate that the assumption of equal expecta-
tions of the π̂i,uw may be problematic. In addition,
because each point corresponds to an individual in-
terviewer, substantial deviation of a given point from
the dotted-line pattern may indicate that the corre-
sponding interviewer i has a sample reporting rate
π̂i,uw that is unusually high or low, even after ac-
counting for sampling variability and implicit mul-
tiple testing. Quantile plots can offer insight into
aggregate patterns of model fit and can also help
one identify specific interviewers who may be appro-
priate candidates for follow-up study. First, note
that a dotted-line fit to the plotted points in Figure
3 had an intercept approximately equal to zero, but
had a slope substantially greater than one. Since
the denominator term V ∗(π̂i,uw) was intended only
to estimate the sampling error variance of π̂i,uw ,
the large slope indicates that additional error terms

(e.g., lack of fit in the constant-expectation model
E(π̂i,uw) = π , say) may make substantial contri-
butions to the differences π̂i,uw − ¯̂π. Second, note
that there is substantial downward curvature in the
left-hand side of the plot, indicating substantial left-
skewness in distribution of the differences π̂i,uw − ¯̂π.
In other words, relative to the pattern one would
expect with a Gaussian distribution, we have an un-
usually large number of interviewers with sample re-
porting rates π̂i,uw substantially below the overall
mean ¯̂π . It may be of special interest to consider
in greater depth the interviewers with π̂i,uw values
in the extreme parts of this distribution. It would
also be of interest when we study digit preference
(Swanson et al., 2003).

Define:

d̃eff(π̂i,uw) = Vc(π̂i,uw)/

{
π̃i(1 − π̃i)/

ni∑

c=1

3∑

r=1

J

}

where π̃i is weighted average of π̃ir , and π̃ir is the
fitted value for π̂ir under Model (2),

π̃i = (ni1π̃i1 + ni2π̃i2 + ni3π̃i3) / (ni1 + ni2 + ni3)

where π̃ir = eỹir/(1 + eỹir), ỹir = β̂xir ,
β̂ = (β̂0, β̂1, β̂2, β̂3, β̂4, β̂5, β̂6) and
xir = {1, ln(ni), Ii,r1, Ii,r2, Iir,Aug , Iir,Dec, Ii,FR}.
Then, using ordinary least squares to estimate the
coefficients of the model,

d̃eff(π̂i,uw) = γ̃0 + γ̃1π̃i + ei .

The resulting coefficient estimates were, γ̃0 = −5.60
and γ̃1 = 87.68. Finally, define

Ṽ (π̂i,uw)

= (γ̃0 + γ̃1π̃i,uw)

{
π̃i,uw(1 − π̃i,uw)/

ni∑

c=1

3∑

r=1

J

}
.

In addition, define the standardized logistic re-
gression remainder term

r̃i =
π̂i,uw − π̃i

{Ṽ (π̂i,uw)}
1/2

.

Figure 4 displays the associated standard normal
quantile-quantile plots, where we have excluded in-
terviewers i who had ni ≤ 5. The general interpre-
tation of Figure 4 is similar to that for Figure 3:
points that deviate substantially from the solid line
with slope=1 and intercept=0 correspond to inter-
viewers with values of π̂i,uw that are unusually high
or low, relative to Model (2).



5. Discussion

This paper has explored some relationships among
nonresponse and predictors like interview number
and interviewer workload in the CE Interview Sur-
vey. The preliminary results presented here suggest
some association of interviewer-level item reporting
rates, with these predictors, and with data-quality
measures defined by leading-digit prevalence rates.
It would be of interest to consider extensions of this
work in several area. For example, one could ex-
plore the extent to which reporting rates are asso-
ciated with other indicators of data quality, or with
measures of interviewer training and experience. In
addition, one could consider the use of more detailed
modeling and estimation methods.

6. References

Cho, M., Eltinge, J., and Swanson, D. (2003). In-
ferential Methods to Identify Possible Interviewer
Fraud Using Leading Digit Preference Patterns
and Design Effect Matrices. 2003 Proceedings of
the American Statistical Association. Survey Re-
search Methods Section [CD-ROM], Alexandria, VA:
American Statistical Association.

Cho, M., Eltinge, J., and Steinberg, B. (2004). Tem-
poral Patterns of Survey Response Rates and Re-
porting Rates in the U.S. Consumer Expenditure
Interview and Other Panel Surveys. 2004 Proceed-
ings of the American Association for Public Opinion
Research. Survey Research Methods Section [CD-
ROM], Alexandria, VA: American Statistical Asso-
ciation. To appear.

Cochran, W. (1977). Sampling Techniques. Third
Edition, New York: John Wiley & Sons, Inc.

Eltinge, J., and Cho, M. (2003). Nonidentified
Item Nonresponse and Reporting Rate in the U.S.
Consumer Expenditure Interview Survey. Proceed-
ings of the 14th International Workshop on House-
hold Survey Nonresponse. Belgium. Available at
http://www.nonresponse.org

Gabler, S., Haeder, S., and Lahiri, P. (1999). A
Model Based Justification of Kish’s Formula for De-
sign Effects for Weighting and Clustering, Survey
Methodology, vol. 25, pp. 105-106, 1999.

Groves, R., and Couper, M. (1998). Nonresponse
in Household Interview Surveys. New York: John
Wiley & Sons, Inc.

MathSoft, Inc.(1995), S-PLUS Guide to Statistical
and Mathematical Analysis, Seattle, WA

Silberstein, A., and Jacobs, C. (1989). Symptoms of

Repeated Interview Effects in the Consumer Expen-
diture Interview Survey. In D. Kasprzyk, G. Dun-
can, G. Kalton and M.P. Singh (eds.),pp 289-303,
New York: John Wiley & Sons, Inc.

Silberstein, A. (1990). First Wave Effects in the
U.S. Consumer Expenditure Interview Survey. Sur-
vey Methodology, Vol.16, No. 2, pp. 293-304.

Silberstein, A., and Scott, S. (1991). Expenditure
Diary Surveys and Their Associated Errors. In P.
Biemer, R. Groves, L. Lyberg, N. Mathiowetz, and
S. Sudman (eds.), Measurement Errors in Surveys,
pp 303-326, New York: John Wiley & Sons, Inc.

Spencer B. (2000). An Approximate Design Ef-
fect for Unequal Weighting When Measurement
May Correlate With Selection Probabilities. Sur-
vey Methodology, Vol.26, No. 2 (December, 2000),
pp. 137-138.

Swanson, D., Cho, M., and Eltinge, J. (2003). De-
tecting possibly fraudulent or error-prone survey
data using Benford’s Law. Proceedings of the Amer-
ican Statistical Association. Survey Research Meth-
ods Section [CD-ROM]. Alexandria, VA: American
Statistical Association.

Wolter, K. (1979). Composite Estimation in Finite
Populations. Journal of the American Statistical As-
sociation, Vol. 74, No. 367. (Sep., 1979), pp. 604-
613.

Wolter, K. (1985). Introduction to Variance Estima-
tion. New York: Springer-Verlag.



Log(ni)

R
es

id
ua

l

2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 1: Residual against Log(ni)
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Figure 2: Plot of Deff against Reporting Rate (π̂i,uw)
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Figure 3: QQ Plot of Standardized Residual (r̂i)
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