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Abstract

The modified Laspeyres price indexes computed by the Bureau of Labor Statistics require
knowledge of the base period quantities of each item. Currently, however, only base period
expenditure information is available. The Bureau divides these expenditures by estimates of the
corresponding base period prices, thereby obtaining estimates of the required quantities. The use
of estimated, rather than actual, base period prices is a potential source of error in the resulting
index. The magnitude and direction of this error depend on the method used to estimate the base
period prices. This note analyzes the impact of alternative methods. For tractability, the analysis
assumes a simpler sampling environment than the Bureau actually confronts.
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1. Introduction

The modified Laspeyres price indexes computed by the Bureau of Labor Statistics (BLS)
require knowledge of the base period quantities of each item. Currently, however, only base
period expenditure information is available. BLS divides these expenditures by estimates of the
corresponding base period prices, thereby obtaining estimates of the required quantities. The use
of estimated. rather than actual, base period prices is a potential source of error in the resulting
ildea. The magnitude and direction of this error depend on the method used to estimate the base
period prices. Reinsdorf (1994) has shown that the method used by BLS for many years creates a
particular type of upward error known as "formula bias.” In this note I analyze the impact of
some alternative methods.

For tractability, I assume a simpler sampling environment than the Bureau actually confronts.
In: particuiar, I consider the following scenario: suppose we have n independently and identically
Hq=inere s oo o= ations on (B, L,C), and our goal is to estimate E(C/B)/E(L/B). A consistent
estimator is the corresponding ratio of the sample means, m /(_L/?) where
(C/B)=n" iC,. /B; and WB‘_) =n" ilﬁ /B,. To relate this to BLS activities, think of

: =1

i=]

B, L, and C, as, respectively, the base, link, and comparison period prices for item i. Under the
i.i.d. sampling assumption the target quantity E(C/B) /E(L/B) then equals the population
Laspeyres index, while the estimator (C/B)/(L/B) equals the sample Laspeyres index.



3. Process 2

I next derive the bias for Process 2. 1 first determine the bias in estimating the numerator of

the target quantity E(C/B)/E(L/B). To do this, I expand C/B around the point E(C)/E(B):
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/C\ _ E(C) . _E©O) dp_pan] - L .
ELB) 5 " Tl £|(B-E(B))] Ty ElC - ECNE E(B))]

_ E(©) E(C) o1
= EB) + [E(B)]3 ar(B) C.B)

_ E(C) " E(C)var(B)— E(B)cov(C,B)
E(B) [E®] '




Now assume instead that we do not observe B, but rather B. 1consider a variety of different

measurement processes for generating B. The point of this note is to determine, for each
process, the asymptotic bias incurred by estimating E(C/B)/E(L/B) with (C/ B) / (L/ B) where

(c/B)= ; ¢./B and (L/B)=n"3 L/E.

The processes I consider are:

Process 1: B, =0oL,

Process2: B, = é; + U, E(“ﬁ) = E(é,-u,-) =0

-~

Process 3: B, =By, v,>0, v, independent of B,

i i

Process 4: é‘. = B, +¢, E(e,)=E(Bg,)=0

Process 1 represents the current BLS procedure of using adjusted link period prices as estimates
of base period prices. Process 2 represents the hedonic regression B =wB+u,, with ﬁl. =wb
and E(wu,)=0. Process 3 represents the logarithmic hedonic regression In(B,) = w0 +u,, with

B =e"* v, =e*, E(4)=0,and  independent of w,. Note that using w; =1 in either Process 2

or 3 will give a B that is the same for all , so that (C/ E’) (L/ é) equals the sample Dutot index.

7 ~ce = dous niot correspond to any procedure currently proposed for BLS adoption; however,
it is the standard "classical errors-in-variables" measurement process, so I have included it for

completeness. For all four processes I will evaluate the bias

(1)  BIAS = plim (/B) | _ ECB)
'(1755 E(L/B)



2. Process 1 and Formula Bias

Process 1 generates the infamous "formula bias." To obtain a more useful expression for this

bias, substitute 3‘ =L, into (C/ ﬁ) (L/ é):

= Yc/h nYc/eL :
(C B; - i=] = =l e n“‘EC'_/L..

LB Y LjeL, @
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so the first term of (1) equals plimi (c/ L)|. The assumed i.i.d. sampling implies
plim| (C/L) | = E(C/L), s0

E(C/B) _ E(C/L)E(L/B)—E(C/B)
E(L/B) E(L/B)

(2)  BIAS, = E(C/L) -

*

where the subscript "1" indicates that this formula is valid only for Process 1. A more insightful

expression can be obtained by noting that
{(EME)] = dAENE)] - A)E) - (5) - ALk
L) \B LAB L) \B B L B
Substituting this into (2) gives the "formula bias" as

—cov[(C /L).(L/B)]
E(L/B) '

3)  BIAS, =

My intuition is that this will often be positive, because for given C and B an increase in L

decreases C/L while increasing L/B.



Treating the ratio C /B in the same fashion gives
i
B

The probability limit of (C/ fb’) equals E(C/ 3), so the asymptotic bias of (C/ E’) as an estimator

E(C) + E(C)var(ﬁ)—E(ﬁ)cov(C,ﬁ).

ELE) [£(8)]

n

of E(C/B) is
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E(C)var(B)- E(B)cov(C.B)  E(C)var(B)- E(B)cov(C, B)
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E(C )[var( var(B)] B [cov(C,ﬁ) - cov(C,B)]
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where the second line follows because Process 2 implies E(B) = E( ) Process 2 also implies

var(B) = var( 8) +var(u) and cov(C,B) = cov(C,B) +cov(C,u), letting us further write

C] _ E(é)cov(C,u)—E(C)va.r(u)

(4)  BIAS,, = E[%] ) E(E ()]

where the subscript "2,N " is to remind us that this is the bias, under Process 2, in estimating the

numerator of our target quantity E(C/B)/E(L/B). A similar analysis applies to the

denaminator, yielding



B

(L LY _ E(ﬁ)cov(L,u)—E(L)var(u)
(5 BIAS, , = E(E) - ( ] - [E(é)]s

as the bias of (L/ E’) in estimating E(L/B). Putting the two sets of results together lets us

determine the asymptotic bias of (C/ ﬁ’)/ (Lf E‘) as an estimator of E(C/B)/E(L/B). There are a

variety of ways of expressing this bias. One way is obtained by substituting

© plim (c/B) _ p]im[(c_/ﬁ_)] _ E(C/B) _ E(C/B)+BIAS,,
'(‘,j/?) pﬁm[(—g/gﬂ E(L/B) ~ E(L/B)+BIAS,,

for the first right hand side term in (1), and then rearranging the result as

( BIAS,, _ BIAS,

@ Bias, = | -EEB) __EWL/E) [E(C/B)}
' | 4 BIAS, E(L/B)
. E(L/B)

In general this is nonzero, but unlike "formula bias" has an indeterminate sign. Note that the

bias equals zero if

BIAS., _ BIAS,,
E(C/B) ~ E(L/B)

() ( Zero bias condition for Process 2 )

Thus, if we think the numerator and denominator biases are about the same proportion of their
targets, then the overall bias (7) should be close to zero. This would appear to be a plausible
assumption in at least some instances.

Under Process 2 it may be possible to obtain consistent estimates of the target quantity

E(C/B)/E(L/B). even when the estimator (C/E’) (L/ﬁ) suffers from a nonzero value for the



bias (7). If the measurement error equation B = B+ u is an out-of -sample predictor obtained

from hedonic regression, then there will be residuals #, from estimating the latter which can be

_ used to consistently estimate var(u), cov(C,u), and cov(L,u). Estimates of

E(C), E(L), and E(f?) can be obtained from the corresponding sample means. Plugging all of

these estimates into (4) and (5) then gives consistent estimates of BIAS, , and BIAS, ;.
Substituting the latter along with (C/ 3) and (L/ fi‘) into the right hand side of

E(C/B) _ E(C/ﬁ)—BIASz_N
E(L/B)  E(L/B)-BIAS,, -

&)

then gives a consistent estimator. CAUTION: The resulting consistent estimator may well have
a larger finite sample mean square error (or other measure of accuracy) than does the
inconsistent estimator.

Recall the special case of Process 2 where w, =1 implies the same B for every i, resulting in

a Duiot index. Here the first term in (1) satisfies

| {/8) | _ oim (C7B)]  poys _ EQ)

(10} pihnl 9 phm[(L/Bﬂ T EWL)/B  EWLY

which when substituted into (1) gives the Dutot bias as

_ ECQ) _ ECB)

an BIAS, = T~ Eimy

A zero bias condition analogous to (8) would be

(12) ), o T
E(C/B)  E(L/B)

( Zero bias condition for Dutot )



4. Process 3

To evaluate the bias for Process 3 we write the first term in (1) as

S| H-G| g
B, B /v, B,
(13) - L = =
dL) L | gk
B, B, /v, B,
dropping the i subscripts for convenience, the bias formula (1) becomes

(%) _=3)
(14) BIAS, = —2L - 28

- E[BJ E[Ej.

Like the bias in Process 2 the algebraic sign of this bias appears indeterminate. The special case

where w, =1 results in the Dutot process, in which case (14) will equal (11).

Modifying Process 3 by further assuming that v, is independent of (C;, L) will eliminate the

bias. This follows from

RCE R
&8 )
1)



are consistently estimable. Combining these facts with the appropriate analog to (9) yields the
following consistently estimable bounds on the target quantity: if E(L/ B)# U(BIAS, ;) then

E(C/B) . E(C/B) _ E(C/B)-U(BIAS.x)

Y E(L/B)-U(BIAS,,) ~ E(L/B) ~ E(L/B)

11



Unfortunately, this additional assumption is not likely to be true. For example, assume the

simplest hedonic specification, In(B,) =8+ u,, in which case B, = ¢° is a constant not depending
oni. All of the variation in B, is then due to v, so to say that the latter is independent of (C,,L,)
is equivalent to saying B, is independent of (C,,L,). More generally, the additional assumption

requires w, explain all of the variation in B, that is related to (C,,L,).
5. Process 4
The analysis of Process 4 is similar to that for Process 2, and leads to’

E(C)var(e)—- E(E‘)crw(C,E)

EG

E(L)var(e)—-;—E(ﬁ)cov(L,e)
[2(8)

BIAS,, _ BIAS,,
as) sias, = |-EC/B) EWL/B) | E(C/B)
”‘ |, BiAs, | \EW/B))

E(L/B)

(16)  BIAS,

(17)  BIAS,,

Consistent estimation is not possible under Process 4. However, with some additional
assumptions on the measurement process it is possible to estimate a type of "errors-in-vaﬁables"
bound. In particular, assume cov(C,e) =0 and cov(L,g) =0, so that

BIAS,, = E(C)var(e)/[E(B)]| and BIAS,, = E(L)var(e)/[E(B)] . The original
assumptions of Process 4 then imply 0 <var(e) < var(ﬁ'), and thus

0 < BIAS, , < E(x)var(B / [E U(BIAS, ;) and

() < BIAS,, < E(L)var(B / [5 U(BIAS, ;). Note that both U(BIAS, ) and U(BIAS, 5

10



6. Conclusion

This concludes my formal derivations. It may be useful at this point to mention that the

sample geometric mean, when considered as an estimator of E(C/B)/E(L/B), is also

inconsistent. This is because the sample geometric mean is a consistent estimator of the

population geometric mean, and the latter generally differs from the population Laspeyres
E(C/B)/E(L/B). The algebraic sign of this bias is indeterminate.

I have found that (C/ f?) (L[ é) is an inconsistent estimator of E(C/B)f E(L/B)except under

the (probably unrealistic) modified Process 3. As noted, the geometric mean is also inconsistent.
A consistent estimator of E(C/B)/E(L/B) that is not of the form (C,-'é) (L/ 3‘) may be available

under Process 2. However, this estimator depends on a first stage of bias estimation, and the
adcitional noise arising from this first stage may cause the resulting consistent estimator to have
larger finite sample mean squared error than the inconsistent estimator (C / E’) /m i

It is important to note that only the "formula bias" in expression (3) could be confidently given
an algebraic sign based on prior knowledge. In my opinion an estimator having a bias of unknown
sign can for many practical purposes be treated as if it were unbiased. This view is justified by

Bayesian analyses using zero-mean prior distributions for the bias, which can result in posterior
distributions centered at the realized value for (C/ ﬁ)/ (L/ é): in such analyses the unknown bias

causes only an increase in posterior uncertainty, not a shift in posterior location. (See Leamer, p.
2938.) This explains why many (all?) CPI critics seem exclusively concerned with whether
alleged biases are "upward" or "downward." They may well be satisfied with an alternative
biased estimator, so long as the algebraic sign of the bias is unknown and/or is thought to be
close to zero. My results suggest that this is probably the best we can do, so long as the
population Laspeyres is the target parameter. The situation is different if instead the population
ceomatric mean is the target parameter. In the latter case the sample geometric mean is a

consistent estimator. Yet another possible target parameter is the "true" cost-of-living index

12



derived from some aggregate utility function. Here data limitations again create a situation in
which the best we could hope to do with regard to asymptotic bias is obtain an inconsistent
estimator having a bias of unknown sign and/or likely to be close to zero.

A final caveat. This paper has addressed concerns about asymptotic bias. By itself this can
only be a useful criterion for estimator performance if it is assumed that competing estimators
have essentially identical finite sample biases and (more importantly) variances. In particular,
finite sample "closeness” criteria such as mean absolute error, mean squared error, probabilities
of lying within a given distance of the target parameter, etc., are superior guides for determining

accurate estimates.
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