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Multiple Imputation Manual: 

Supplement to 2004 Consumer Expenditure Interview Survey Public Use Microdata Documentation 
 
 
I.  BACKGROUND 
 
The purpose of this manual is to provide instructions to users regarding the proper use of multiply imputed 
data to draw statistically valid inferences in their works.  Therefore, the main portion of this text describes 
application and usage of multiply imputed data, rather than its production or its statistical properties and 
derivations.  However, for data users who are interested in better understanding them, detailed descriptions 
of the theoretical underpinnings of this process are documented elsewhere.1 
 
A. Introduction and Method Overview. 
 
Starting with the publication of the 2004 data, the Consumer Expenditure Surveys include income data that 
have been produced using multiple imputation.  The purpose of this procedure is to fill in blanks due to 
nonresponse (i.e., the respondent does not know or refuses to provide a value for a source of income 
received by the consumer unit or a member therein) in such a way that statistical inferences can be validly 
drawn from the data.  The process preserves the mean of each source of income, and also yields variance 
estimates that take into account the uncertainty built into the data from the fact that some observations are 
imputed, rather than reported. 

 
The method used to derive the multiple imputations is regression-based.  Essentially, a regression is run to 
provide coefficients for use in estimating values for missing data points.  The coefficients are then 
“shocked” by adding random noise to each, and missing values are estimated using the shocked 
coefficients.  To each of these estimated values, additional random noise is added, to ensure that consumer 
units (or members) with identical characteristics (e.g., urban service worker aged 25 to 34) will not receive 
identical estimates for their income.  The resulting values are used to fill in invalid blanks where they 
occur, while reported values are retained.  This process is then repeated four times, so that a total of five 
imputed values are computed for each missing value.  In addition, for the small number of cases in which 
the respondent does not report receipt of any source of income collected either at the member or consumer 
unit level, receipt of each source is imputed using logistic regression.  In each case where receipt is 
imputed, the income value is treated as a missing data point, and is imputed using the method described 
above.    

 
B. Historical Income Data Differences and Guidelines for use of Imputed Data. 
 
Starting with the publication of the 1972-73 data, the Consumer Expenditure Survey introduced the 
concept of the “complete income reporter.”  In general, consumer units are defined as complete income 
reporters if their respondents provide values for at least one of the major sources of income, such as wages 
and salaries, self-employment income, and Social Security income.  However, even complete income 
reporters may not have provided a full accounting of all sources of income.  The first difference, therefore, 
between the data previously published and those available starting in 2004 is that the imputed data have all 
invalid missing values filled in, so that estimates using income can be generated for all consumer units, not 
only for complete income reporters. 

 

                              
1 Rubin, Donald B.  Multiple Imputation for Nonresponse in Surveys  (New York:  John Wiley and Sons, 
Inc., 1987). 
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In addition, the collected data contain only one observation of each income value for each consumer unit or 
member for whom a value is reported.  The imputed data include five estimates of each observation, plus 
one additional estimate representing the mean of all five estimates.  For example, when examining the 
collected data for a subset of interest (say, 100 particular consumer units who all report receipt of 
INTEARNX), there is one column of data identifying the selected consumer units (i.e., 100 observations of 
NEWID) and one column of data containing the associated income values of interest (i.e., 100 observations 
of INTEARNX).  However, with the imputed data, there are five columns of data (each containing 100 
observations), each of which has a different value for income if the original value (INTEARNX) is missing 
due to an invalid nonresponse, or the same value as the original value, if the original value is provided by 
the respondent.  In addition, there is a sixth column of data (also containing 100 observations) that contains 
the mean of the five columns of data just described. 

 
A common assumption may be that it does not matter which column is used in data analysis, so it is 
reasonable to select one randomly and use it to draw inferences.  Unfortunately, using one column of data 
in this way does not adequately capture the uncertainty built into the data by the very nature that some of it 
has been imputed rather than collected from the respondent.  Therefore, at a minimum, variance estimates 
obtained from using one column of data will be biased downward.  Proper variance estimation requires use 
of the five columns of imputed data.  Similarly, proper calculation of the estimated mean requires 
averaging the estimates from all five columns of data.  However, it can be shown that finding the average 
of the 500 observations (that is, the five columns of imputed data for each of the 100 consumer units 
selected for examination) yields the same answer as averaging each of the five imputations to get one 
column of 100 imputed means, and then finding the mean of the 100 observations.  (See “Computing 
Means.”)  Therefore, the sixth column is included as a convenience for users who are interested only in 
calculating means.  However, it is not recommended that users who want to compute variances, regression 
parameters, or other statistical results use only the sixth column in their analyses. 
 
C. Variable Names. 
 
Imputed income data appear on both the MEMB and FMLY files.  Their names are as follows: 

 
Income variable 
name:  MEMB file 

Associated 5 imputed income 
variables  

Mean imputed income variable 

SALARYX SALARYX1 - SALARYX5 SALARYXM = mean (SALARYX1 - SALARYX5) 

NONFARMX NONFARM1 - NONFARM5 NONFARMM = mean(NONFARM1 - NONFARM5) 

FARMINCX FARMINC1 - FARMINC5 FARMINCM = mean(FARMINC1 - FARMINC5) 

RRRETIRX RRRETIR1 - RRRETIR5 RRRETIRM = mean(RRRETIR1 - RRRETIR5) 

SOCRRX SOCRRX1 – SOCRRX5 SOCRRM =  mean(SOCRRX1 – SOCRRX5) 

SSIX SSIX1 - SSIX5 SSIXM = mean(SSIX1 - SSIX5) 
 
 
Income variable 
name:  FMLY file 

Associated 5 imputed income 
variables 

Mean imputed income variable 

PENSIONX PENSION1- PENSION5 PENSIONM=mean(PENSION1- PENSION5) 

INTEARNX INTEARN1- INTEARN5 INTEARNM=mean(INTEARN1- INTEARN5) 

FININCX FININCX1- FININCX5 FININCXM=mean(FININCX1- FININCX5) 

INCLOSSA INCLOSA1- INCLOSA5 INCLOSAM=mean(INCLOSA1- INCLOSA5) 

INCLOSSB INCLOSB1- INCLOSB5 INCLOSBM=mean(INCLOSB1- INCLOSB5) 

UNEMPLX UNEMPLX1- UNEMPLX5 UNEMPLXM=mean(UNEMPLX1- UNEMPLX5) 

COMPENSX COMPENS1- COMPENS5 COMPENSM=mean(COMPENS1- COMPENS5) 
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WELFAREX WELFARE1- WELFARE5 WELFAREM=mean(WELFARE1- WELFARE5) 

CHDOTHX CHDOTHX1- CHDOTHX5 CHDOTHXM=mean(CHDOTHX1- CHDOTHX5) 

ALIOTHX ALIOTHX1- ALIOTHX5 ALIOTHXM=mean(ALIOTHX1- ALIOTHX5) 

OTHRINCX OTHRINC1- OTHRINC5 OTHRINCM=mean(OTHRINC1- OTHRINC5) 

FOODSMPX  FOODSMP1-FOODSMP5 FOODSMPM=mean(FOODSMP1-FOODSMP5) 

FINCBTAX* FINCBTX1- FINCBTX5 FINCBTXM=mean(FINCBTX1- FINCBTX5) 

FINCATAX* FINCATX1- FINCATX5 FINCATXM=mean(FINCATX1- FINCATX5)  

FSALARYX* FSALARY1-FSALARY5 FSALARYM =mean(FSALARY1-FSALARY5) 

FNONFRMX* FNONFRM1-FNONFRM5 FNONFRMM =mean(FNONFRM1-FNONFRM5) 

FFRMINCX* FFRMINC1-FFRMINC5 FFRMINCM =mean(FFRMINC1-FFRMINC5) 

FRRETIRX* FRRETIR1-FRRETIR5 FRRETIRM =mean(FRRETIR1-FRRETIR5) 

FSSIX* FSSIX1-FSSIX5 FSSIXM =mean(FSSIX1-FSSIX5) 
* Summary variable created from MEMB file data. 
 
D. Other Related Variables. 
 
Additional variables are also available that are created from, or related to, the imputed income variables.  
These include INC_RANKn and various descriptor variables (section D2. below), which describe the 
reason for imputation. 
 
D1. INC_RANKn. 
 
As described in the main documentation, INC_RANK is created using complete income reporters only.  
They are sorted in ascending order of FINCBTAX, and ranked according to a weighted population rank, so 
that quintiles and other distributional measures can be obtained. 
 
For the imputed data, INC_RANK1 through INC_RANK5 and INC_RANKM are also created in a similar 
way.  The difference is that they each use all consumer units, instead of complete reporters only, and that 
they are based on sorts of FINCBTXn.  (That is, INC_RANK1 is derived from FINCBTX1.) 
 
D2. Descriptor Variables. 
 
Imputation descriptor variables are coded to describe whether the income variable has undergone multiple 
imputation, and if so, for what reason.  The imputation descriptor variable for each income variable is 
defined in the following tables. 
 
MEMBER INCOME VARIABLES 
Income 
variable name 

Associated imputation 
descriptor variable 

SALARYX SALARYXI 

NONFARMX NONFARMI 

FARMINCX FARMINCI 

RRRETIRX RRRETIRI 

SOCRRX SOCRRXI 

SSIX SSIXI 
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FMLY INCOME VARIABLES 
Income 
variable name  

Associated imputation 
descriptor variable 

PENSIONX PENSIONI 
INTEARNX INTEARNI 
FININCX FININCXI 
INCLOSSA INCLOSAI 
INCLOSSB INCLOSBI 
UNEMPLX UNEMPLXI 
COMPENSX COMPENSI 
WELFAREX WELFAREI 
FOODSMPX FOODSMPI 
CHDOTHX CHDOTHXI 
ALIOTHX ALIOTHXI 
OTHRINCX OTHRINCI 
 
 
SUMMARY FMLY INCOME VARIABLES* 
Summary FMLY 
income variable 

Associated imputation 
descriptor variable 

FSALARYX FSALARYI 

FNONFRMX FNONFRMI 

FFRMINCX FFRMINCI 

FRRETIRX FRRETIRI 

FSSIX FSSIXI 

FINCBTXM FINCBTXI 

* These represent the sum of the member-level income variables for each family. 

Each descriptor variable has a numeric value three characters in length.  There are no blanks or blank codes 
(such as “A”, “D” or “T”) for descriptor variables.  The descriptor variables are defined as follows: 
 
CODE VALUE CODE DESCRIPTION 
100* no multiple imputation – reported income is a valid value, or valid blank 
201 multiple imputation due to invalid blank only 
301 multiple imputation due to bracketing only 
501 multiple imputation due to conversion of a valid blank to an invalid blank 

(occurs only when initial values for all sources of income—MEMB and FMLY--
for the consumer unit were valid blanks) 

* Note that when no imputation occurs, the assigned code value is 100 at both the individual source level 
and at the summary level. 

Description of code values for Summary FMLY Income imputation descriptor variables 
CODE VALUE CODE DESCRIPTION 
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100 No imputation.  This would be the case only if NONE of the variables that are 
summed to get the summary variables is imputed. 

2nn Imputation due to invalid blanks only.  This would be the case if there are no 
bracketed responses, and at least one value is imputed because of invalid blanks. 
 

3nn Imputation due to brackets only.  This would be the case if there are no invalid 
blanks, and there is at least 1 bracketed response 
 

4nn Imputation due to invalid blanks AND bracketing. 
5nn Imputation due to conversion of valid blanks to invalid blanks.  (Occurs only 

when initial values for all sources of income for the consumer unit and each 
member are valid blanks.) 

 
Definition of nn: 
 
nn is the count of the number of members in the consumer unit who have imputed data (whether due to 
invalid blanks, brackets, or both). 

 
E. Topcoding. 
 
DESCRIBE HERE IF NOT ALREADY ADDRESSED IN OTHER PARTS OF DOCUMENTATION.  
(For the internal release, no topcoding need be applied, because the analysts will have access to the 
internal files anyway after imputation is effected.) 

 
II.  Applications. 
 
A. Computing Means. 
 
A1. Unweighted means. 

 
As noted in the text, the mean income for a group of interest can be calculated by summing all data 
observations for the five imputations, and dividing by the total number of observations.  Mathematically, 
the formula that applies is: 
 

)/()(
1 1

mnX
m

j

n

i
ij ×∑∑

= =

 

 
where X is the value of income, n is the number of rows, and m is the number of columns. 

 
As an applied example, consider the following: 
 
INTEARNX INTEARNX1 INTEARNX2 INTEARNX3 INTEARNX4 INTEARNX5 
100  100  100  100  100  100 
D  50  250  300  20  80 
 
In this example, the first consumer unit has reported a value for INTEARNX ($100), but the second 
consumer unit has only reported receipt of this income source.  However, values (INTEARNX1 through 
INTEARNX5) are imputed for this consumer unit. 

 
To find the mean value for the complete data set (i.e., the collected data and the imputed data), sum each 
observation (100 + 100 + …  100 + 50 + …. + 20 + 80) and divide the resulting total (1200) by the total 
number of observations (n*m=5*2=10) to get a mean value of 120. 

 



 6

However, the same value results when the mean of each row is calculated, and the mean of those means is 
then found.  Using the same example, the data would now appear as follows: 
 
 
INTEARNX1 INTEARNX2 INTEARNX3 INTEARNX4 INTEARNX5 INTEARNXM 
100  100  100  100  100  100 
50  250  300  20  80  140 
 
Adding the two means (100+140) yields a total of 240.  Dividing this by the number of means added (2) 
yields 120, the same value as obtained by finding the mean of all 10 observations. 
 
A2. Weighted means. 
 
In order to calculate the weighted mean without including variance calculations, the process using the 
complete data set is also straightforward.  The weighted mean for the sixth column of data (INTEARNXM 
in this example) is calculated using the appropriate data weighting method described in the main text for 
which this documentation serves as supplement.  The result is the weighted mean for this group.  
Specifically, suppose that the first consumer unit represents 5,000 similar units in the U.S. population, and 
the second consumer unit represents 7,500.  In these circumstances, FINLTWT21 is 5,000 for the first 
consumer unit and 7,500 for the second unit.  The weighted mean is:  [(100*5,000) +  (140*7,500)]/(5,000 
+ 7,500) or 124. 

 
When variances are to be calculated, as described in the next section, it is recommended that the mean be 
found by calculating the mean of each of the five columns containing imputed data (that is, INTEARNX1 
through INTEARNX5), and then averaging these means.  Nevertheless, the mean will be the same, as 
demonstrated above for unweighted means.   Following this procedure, the weighted means for each 
column are: 

 
INTEARNX1 INTEARNX2 INTEARNX3 INTEARNX4 INTEARNX5 

70  190  220  52  88 
 

and the mean of these observations (70, 190, 220, 52, and 88) is 124.   
 

B. Computing Variances. 
 
When using multiply imputed data, the proper variance computation is straightforward, but involves more 
steps than the computation of variance from data sets in which no observations are initially missing.  The 
reason is that in the latter case, all information is known.  However, when data are imputed, there is 
additional uncertainty added to the complete data set by the very fact that the imputed data are estimates of 
values, rather than collected values.  With multiple imputation, this imputation-related uncertainty is 
incorporated into the variance term, because more than one estimate of each missing value is posited.   The 
proper variance is composed, then, of three elements:  the “within imputation variance”, which is the usual 
variance computed for each column of the completed data set; the “between imputation variance”, which 
accounts for variance across the columns of data; and an imputation adjustment factor described in Rubin 
(1987),2 to account for the fact that a finite number of columns of data are created in the imputation 
process. 
 

                              
2 P. 84-91. 
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B1. Variances for Unweighted Means. 
 
Consider the example shown in the section entitled, “Computing Means.”  In this case, two hypothetical 
consumer units reporting receipt of INTEARNX are shown, one of which reports a value ($100) while the 
other has values imputed.  The data shown are: 
 
INTEARNX INTEARNX1 INTEARNX2 INTEARNX3 INTEARNX4 INTEARNX5 
100  100  100  100  100  100 
D  50  250  300  20  80 
 
The first step is to compute the mean of each column of completed data (INTEARNX1 through 
INTEARNX5).  Using notation consistent with Rubin (1987), this is: 
 

n

Q
Q

n

j
ij

i

∑
== 1

*

*
ˆ   (1) 

where ijQ*  is the nth observation of column i.  In the current example, 1 <= i <= 5, and n = 2 for each 

column. 
 
The next step is to calculate the average of the five complete data estimates mQ :  

m
Q

Q
m

i i
m

∑== 1 *
ˆ

 (2) 

 
where m is the number of columns containing multiply imputed data (i.e., m equals 5).  Using the numbers 
above, mQ  is 120.  (That is, it is the mean of the five column means, or the mean of 75, 175, 200, 60, and 
90).  
 
The third step is to calculate the variance of each column of data, using the standard variance formula: 
 

( ) ( )1 
n

1

2
Q̂**

=*Q̂V   * −




∑

=
−= n

j iij
QiU i . (3) 

 
 
The fourth step is to calculate the mean of these variances, or: 
 

m
U

U
m

i i
m

∑== 1 *
 (4) 

 
where mU  is the estimate of the within imputation variances.  In the current example, the variances of the 
columns are found to be 1,250; 11,250; 20,000; 3,200; and 200.  The mean of these values is 7,180. 
 
The fifth step is to calculate the variance between (or among) the five complete data mean estimates: 
 

( ) ( )∑
=

−−=
m

i
mim mQQB

1

2

* 1ˆ  (5)  
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That is, Bm measures the variance of the means of each of the five columns.  In the current example Bm is 
found to be 3,987.5, or the variance of 75, 175, 200, 60 and 90. 
 
Now that the elements of the variance have been computed, the final step is to insert them into the formula 
for total variance )( mT : 
 

( ) mmm BmUT 11 −++=  (6) 
 
where ( )11 −+ m  is the imputation adjustment factor.  Because there are 5 imputations in the completed 
data set, the factor is equal to 1.2.  When all the elements are included in the equation, the variance of the 
unweighted mean (120) is computed to be  11,965 (that is, 7,180 plus 1.2 times 3,987.5).   
 
B2. Variances for Weighted Means. 
 
When calculating the variance for the weighted mean, the procedure is similar to the procedure for 
unweighted means.  In this case, the weighted mean is used instead of the unweighted mean where 
appropriate.  That is, continuing to rely on the example from the “Computing Means” section (in which the 
first consumer unit represented 5,000 similar units and the second represented 7,500), it can be shown that 
the five observations for each iQ*

ˆ   are 70, 190, 220, 52, and 88, and that mQ  equals 124.  Computing the 

variance, of each iQ*
ˆ  is not easily shown, as it depends on the values of the 44 replicate weights.  The 

method for computing these variances, though, is described in the main document to which this work is a 
supplement.  That is, 
 

( ) ( )  
44

1
2

Q̂*Q̂
44

1
=*Q̂V   * ∑

=
−=

r iriiU i  

 
The formula for computing mT  is the same as described in the unweighted variance section, as is the 

computation of its elements ( mU  and mB  ).  
 
C. Standard Error of the Mean (SE). 
 
C1.  Computation. 
 
Once the total variance ( mT ) is calculated, the standard error of the mean (SE) of the imputed data is 

calculated as usual—that is, mTSE = .  Once obtained, the SE is used in the usual way in hypothesis 

testing.  For example, the value can be used to compute a standard 95 percent confidence interval around 
the mean of the complete data set value of interest (that is, around Q ).  However, the degrees of freedom 
associated with the t-value used in this computation are calculated according to a special formula described 
by Rubin (p. 77).  See “Use in Hypothesis Testing,” below, for details. 
 
C2.  Use in Hypothesis Testing. 
 
As noted above, the SE can be used in standard hypothesis testing.  For example, a standard confidence 
interval can be built around Q  using SE in the conventional way.  According to Rubin (p.77), the formula 
for the standard 100(1-α)% interval estimate of Q  is: 
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2
1

)2/( mTtQ αυ±  
 
“where ( )2αvt  is the upper 100α/2 percentage point of the student t distribution on v  degrees of 

freedom (e.g., if ∞=v  and 95.1 =−α , ( ) 96.12 =αvt .” 
 
Note, though, that the value for degrees of freedom is calculated in a special way for imputed data.  Again 
according to Rubin (p. 77), 
 

( )( )2111 −+−= mrmv  
 

where mr  is defined as the relative increase in variance due to nonresponse, and is computed according to 
the following formula: 
 

( ) mmm UBmr 11 −+= . 
 

In addition, Rubin (p. 77) provides the formula for computing an F-test in which Q  is compared against a 

null value of interest, 0Q : 
 

( ){ }mm TQQF 2
0,1Prob −>υ  

 
“where υ,1F  is an F  random variable on one and v degrees of freedom.” 

 
C2a.  Example:  Computing a confidence interval 
 
Using the example from the unweighted means section, recall that Q  equals 120, and 965,11=mT .  To 
compute the 95 percent confidence interval around this value, the formula described earlier in this section 
applies.  That is, 
 

2
1

)2/( mTtQ αυ±  
 
where 
 

;120=Q  

.109965,112
1

≈== SETm  
 

To find )2/(αυt , the degrees of freedom must be calculated.  As described earlier, B  equals 3,9875.5, 

and U  equals 7,180.  Using this information, mr  is computed as follows: 
 

( ) ( )[ ] ( ) 664429.0180,75.975,3511 11 =×+=+= −−
mmm UBmr . 
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Thus, ( )( ) ( ) ( )[ ] 10.25664429.011511 2121 ≈+−=+−= −−
mrmv .  The t-value for the 95 percent 

confidence level with 25 degrees of freedom is approximately 2.06.  Therefore, the confidence interval is 
computed as follows: 
 

( ))109*06.2120)2/( 2
1

±=± mTtQ αυ  
 
The resulting confidence interval is: 
 

345105 ≤≤− Q . 
 
C2b. Example:  Conducting an F-test 
 
As described earlier, the F-test is used to compare Q  to a null value.  For example, suppose that the rest of 
the population reports average interest income of $150.  To test whether or not the mean of the test sample 
($120) is statistically significantly different from $150, the F-test is carried out as follows: 
 

( ){ } ( ){ } { }075.0Prob965,11120150ProbProb 25,1
2

25,1
2

0,1 >⇒−>⇒−> FFTQQF mmυ  

 
At the 95 percent confidence level, 24.425,1 =F .  Because 4.24 is greater than 0.075, the null hypothesis 

is not rejected. 
 
 
D. Distributional Analyses using Imputed Income 
 
Currently, the Consumer Expenditure Survey publishes two standard tables that describe income class:  
range (e.g., less than $5,000) and quintile.  Using these classifications, at least two different types of 
analysis can be performed:  one where other characteristics are described as a function of, or related to, 
income; and one in which income distribution alone is of interest.  An example of the first case is the 
current standard table publication.  That is, these tables show how expenditures, age of reference person, 
and other characteristics differ across income classifications.  An example of the second case is 
computation of the Lorenz curve or Gini coefficient for a particular group.  (Examples of each follow.)  
The first method is used to produce the standard published tables, and is called the “publication method” 
throughout the remainder of this section.  The second method is called the “distributional method.” 
 
D1. Publication Method. 
 
In the standard published tables, income is used as a classifier variable, and means for expenditures, age of 
reference person, and other variables are described by income class (for example, less than $5,000 or first 
income quintile).  With imputed income, the values in the “mean” column (i.e., the values for 
FINCBTXM) are used to classify consumer units by income group.  This is because FINCBTXM 
represents the “best guess” of income for the consumer unit.  As an example, suppose that the following 
observations are selected for study:3 
 
CU FINCBTX1 FINCBTX2 FINCBTX3 FINCBTX4 FINCBTX5 FINCBTXM 

1 51,580 22,701 53,967 87,617 298 43,233
2 89,164 96,337 62,853 74,799 45,814 73,793
3 38,841 83,616 72,586 75,456 30,077 60,115

                              
3 These data are not actual imputed data.  They are simulated by starting with $50,000 and adding or 
subtracting a random value between $0 and $49,999 to ensure all simulated values are between $1 and 
$99,999.  Whether the random number is added or subtracted is also randomly determined. 
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4 20,568 19,116 54,186 19,190 4,896 23,591
5 5,114 10,352 44,733 39,086 36,163 27,090
6 41,488 64,692 626 94,851 77,271 55,786
7 58,957 535 35,711 22,920 17,212 27,067
8 54,711 16,527 85,930 54,136 18,579 45,977
9 92,395 90,650 54,030 98,502 61,983 79,512

10 98,228 25,890 54,191 34,835 97,515 62,132
  
To compute means and variances for the $20,000 to $29,999 income group, consumer units 4, 5, and 7 are 
used.  The unweighted mean income for this group is:  (23,591 + 27,090 + 27,067)/3 = $25,916.  To 
compute the variance for this income group, the method described in the variance section is used.  That is, 
the variance U1 is calculated using the values from FINCBTX1 for this group (20,568; 5,114; and 58,957).  
Using the formulas described in the variance calculation section (section IIB.), the standard error of the 
mean for this group is $21,413.  To compute weighted means and standard errors, these same consumer 
units and their appropriate weights would be used in the way described in the variance computation 
section. 
 
D1a. Quintiles. 
 
Using these data, the mean and variance for each quintile can also be calculated.  Because there are 10 
observations shown here, each (unweighted) quintile is composed of two consumer units.  To find the 
mean income for the first quintile, the data are sorted by FINCBTXM, and the first two consumer units 
(i.e., the first 20 percent in line) are selected for analysis.  The resulting data set is: 
 

CU 
FINCBTX
1 

FINCBTX
2 

FINCBTX
3 FINCBTX4 

FINCBTX
5 FINCBTXM

4 20,568 19,116 54,186 19,190 4,896 23,591
7 58,957 535 35,711 22,920 17,212 27,067

 
Mean income for this quintile is $25,329.  The standard error of the mean for this quintile is $23,437. 
 
D1b. Regression. 
 
In regression analysis, it may be useful either to use income category as a binary variable, or to run 
separate regressions by income group.  (For example, to calculate marginal propensity to consume food for 
the $20,000 to $29,999 group.)  In these cases, the same classifications would be used as just described:  
that is, for consumer units 4, 5, and 7, the binary variable is equal to 1, and is equal to 0 for all other 
consumer units.  If income is to be used as a continuous variable for the $20,000 to $29,999 group, then 
five regressions are run using FINCBTX1 through FINCBTX5 as described in the regression section. 
 
D2. Distributional method. 
 
At times, only mean income per group, and not variance, is needed.  Two related applications of this case 
involve tools used in analysis of income distribution:  The Lorenz curve and the Gini coefficient.  (See 
section D2c. for details.) 
 
To compute means by quintile in this case, each income variable (FINCBTX1 through FINCBTX5) is 
sorted by its associated INC_RANK value (that is, FINCBTX1 is sorted by INC_RANK1, etc.).  Within 
each column, consumer units are divided into the appropriate quintiles, based on their INC_RANK group.  
Means are then calculated column by column for each quintile.  The mean for each quintile derived from 
each column can be averaged as appropriate to derive the estimated mean for the quintile under study.  For 
example, using the data shown earlier, the unweighted mean for the first income quintile would be found as 
follows: 
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1. Sort each column in ascending order of income. 
 

FINCBTX1 FINCBTX2 FINCBTX3 FINCBTX4 FINCBTX5 
5,114 535 626 19,190 298

20,568 10,352 35,711 22,920 4,896
38,841 16,527 44,733 34,835 17,212
41,488 19,116 53,967 39,086 18,579
51,580 22,701 54,030 54,136 30,077
54,711 25,890 54,186 74,799 36,163
58,957 64,692 54,191 75,456 45,814
89,164 83,616 62,853 87,617 61,983
92,395 90,650 72,586 94,851 77,271
98,228 96,337 85,930 98,502 97,515

 
2. Select the first two rows of this table.  These rows contain the data for the first 20 percent of the 

income observations within each column. 
 

FINCBTX1 FINCBTX2 FINCBTX3 FINCBTX4 FINCBTX5 
5,114 535 626 19,190 298

20,568 10,352 35,711 22,920 4,896
 
3. Sum the 10 values shown and divide by 10.  The result ($12,021) is the unweighted mean for the 

first quintile. 
  
A similar procedure is followed when deriving mean income for a particular income range.  For example, 
to calculate unweighted mean income for the $70,000 and over group, observations from each column that 
fit this description are selected.  For FINCBTX1 and FINCBTX2, the last three observations shown in the 
table in step 1 are selected.  From FINCBTX3 and FINCBTX5, only the last two observations are selected.  
From FINCBTX4, the last 5 observations are selected.  Averaging these values yields the mean ($87,661) 
for the $70,000 and over group. 
 
In each case, weighted means are derived after applying the appropriate weights and following similar 
procedures. 
 
D2a. Variances. 
 
Note that no method for producing variances is described here.  The reason is that each column of imputed 
income data can have a different number of observations when this method is used.  As noted, the number 
of observations for mean income for the $70,000 and over group ranges from two (for FINCBTX3 and 
FINCBTX5) to 5 (for FINCBTX4).  This difference in number of observations per column was not a factor 
in calculating the unweighted quintile values, but could be when weights are applied.  Because the number 
of observations per column differs, the degrees of freedom for the calculation of variance as described by 
Rubin is no longer valid.  In addition, note that the same consumer unit can appear in each of the five 
quintiles (because each of the five imputed values could fall in a different quintile) or income range.  
Therefore, computing average expenditure or age by range or quintile when using this method is not as 
straightforward as it is in the publication method.  In the example shown in the publication method, the 
mean expenditure for the first quintile is the mean of the expenditure by consumer units 4 and 7.  However, 
in this method, the mean expenditure for the first quintile is the mean expenditure by consumer units 4 and 
5 for the first column of data; mean expenditure of units 5 and 7 for the second column of data; and so 
forth.  Once each of these individual means are found, they would be added and divided by 5 to get the 
estimated mean expenditure by the first quintile under this method. 
 
D2b. Regression. 
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For regression analysis, a similar problem occurs.  When creating a binary variable indicating income is 
$70,000 or greater, for instance, the first and second regressions would have three observations of 1, and 
seven of 0.  But the third and fifth regressions would have two observations of 1 and eight of 0.  If actually 
running regressions by income class, again, each regression as a whole would have a different number of 
observations.  The computation of the parameter estimates and their standard errors as described in the 
regression section would be invalid due to the degrees of freedom problem already described. 
 
 
D2c. Examples:  Lorenz curve and Gini coefficient. 
 
The Lorenz curve depicts the percentage of total population income received by a particular percentage of 
the population.  For example, the statement “Those in the lowest income quintile account for 20 percent of 
the population but receive 10 percent of total income in the country of interest” describes a point that 
would be depicted on a Lorenz curve.  The Lorenz curve is usually compared to a 45 degree line, which 
indicates that income is equally distributed.  (That is, at every point, X percent of the population controls X 
percent of income.)  The Gini coefficient is the ratio of the area of the gap between the perfect equality 
(i.e., the 45 degree line) and the Lorenz curve to the total area under the perfect equality line.  If there is 
perfect equality of income distribution (that is, all families or earners receive the same income), the gap 
between the two curves is zero, and therefore, the Gini coefficient is zero.  If there is perfect inequality of 
distribution (one family has all the income in the country, to that the 100th percentile controls 100 percent 
of income, but the 99th percentile controls zero percent), the area of the gap equals the area under the 
perfect equality line, and the Gini coefficient equals 1.   
 
The following table describes the data used to derive a Lorenz curve and Gini coefficient for a hypothetical 
country. 
 
Populatio
n Income 

0% 0% 
20% 10% 
40% 20% 
60% 40% 
80% 60% 

100% 100% 
 

According to this table, 20 percent of the population of this country receives 10 percent of the income.  
These data can be depicted graphically as follows: 
 
 

Lorenz Curve for a Hypothetical Country
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The area under the 45 degree line is 5,000 square percentage units (because the area of the triangle under 
the 45 degree line is {0.5*[100 percent*100 percent]}).  The area between the 45 degree line and the 
Lorenz curve is 1,400 square units.  The Gini coefficient is 1,400/5,000 = 0.28. 
 
E. Computing Regression Results. 
 
In order to use the multiply imputed income data in a regression framework and to calculate the mean and 
variance of the estimated coefficients, use repeated-imputation inference (RII).  The proper estimation uses 
all five implicates for income by estimating the regression model once with each implicate.  The procedure 
described applies to both weighted and unweighted regression analyses. 
 
Note:  This section uses examples specific to Ordinary Least Squares (OLS) regression.  However, the 
process used to compute the OLS estimates from multiply imputed data sets generalizes to other types of 
regression, such as logistic regression.  
 
A linear regression model is used for the formulas and for the empirical example.  To begin, there is a 
dependent variable, y, and a vector of independent variables, x.  For simplicity, assume a linear model is 
run for complete income reporters only on an intercept, before-tax income (FINCBTAX), and one other 
independent variable: 
 
y = α + β(FINCBTAX) + γX + ε,  (1) 
 
in order to obtain estimates of the α, β, and γ.  To obtain results using the imputed data for all consumer 
units, the regression model is estimated five times, once for each implicate: 
 
y = a1 + b1(FINCBTX1) + g1X, 
y = a2 + b2(FINCBTX2) + g2X, 
y = a3 + b3(FINCBTX3) + g3X,  (2) 
y = a4 + b4(FINCBTX4) + g4X, and 
y = a5 + b5(FINCBTX5) + g5X, 
 
To obtain the point estimates for each coefficient, calculate the mean of the five coefficients.  For the slope 
coefficient on income, calculate: 
 

  
 

  (3) 
 
 
 
where m equals the number of implicates (five in this case).  Similarly, to calculate the best point estimate 
for the intercept or slope coefficient on X, calculate the mean of the five estimates (a1, a2…, a5 or g1, g2…, 
g5). 
 
To obtain the variance of the point estimate b-bar, the formula is identical to the formula given in the 
previous section.  As a reminder the formula for the total variance ( mT ) is: 
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where mT  is the total variance of the coefficient, U-bar is the within imputation variance, and Bm is the 
between imputation variance.4  The formulas for U-bar and Bm are: 
 

 
where Ui is the variance of the estimated coefficient for implicate i.  In other words, U-bar equals the mean 
of the five estimated variances.  And, 
 

 
Like above, Bm is referred to as the between imputation variance because it takes into account the 
uncertainty involving the point estimate.  Consequently, Bm equals the variance of the point estimates. 
 
Once Bm and U-bar are estimated, the variance of the b-bar can be calculated using (4), and the standard 
error of the b-bar is the square root of T. 
 
E1. Other Statistics of Interest. 
 
E1a. T-statistic. 
 
To determine whether the point estimate is statistically different from zero, the simple t-statistic is 
calculated as the point estimate divided by the standard error. 
 
E1b. F-statistic – single linear constraints. 
 
To test whether the coefficient, b-bar, equals a constant, bo, use an F-statistic:  

 
with one and v degrees of freedom, where v equals: 
 

 
and, rm is the ratio of the between imputation and the within imputation variance, again weighted by the 
adjustment factor: 
 

 
                              
4  The between imputation is weighted by the term in parentheses because we use a finite number of 
imputations.  As m approaches infinity, the adjustment factor approaches one. 
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E1c. Variance/Covariance matrix. 
 
The variance/covariance matrix is calculated just like the variance.  There is now a kxk matrix for Bm, 
where k is the number of independent variables plus the intercept (three in this example). 
 

 
 
And, the kxk matrix for U is calculated the same way, where each element is the average of the five 
elements in each implicates variance/covariance matrix. 
 
 
E2. Numerical Example. 
 
The following example derives from a regression of ZTOTAL on the variables described below. 
 
 Coefficient Std. 

error 
Variance t-statistic 

First implicate     
Before-tax 
income 0.078 0.001 1.99e-06 55.06 

Family size 808.171 62.574 3915.544 12.92 
Intercept 3923.866 181.290 32866.20

9 21.64 

     
Second implicate     
Before-tax 
income 0.078 0.001 2.04e-06 54.70 

Family size 801.539 62.735 3935.699 12.78 
Intercept 3923.418 181.702 33015.43

5 21.59 

     
Third implicate     
Before-tax 
income 0.078 0.001 2.05e-06 54.31 

Family size 803.341 62.878 3953.622 12.78 
Intercept 3958.626 181.993 33121.48

8 21.75 

     
Fourth implicate     
Before-tax 
income 0.079 0.001 2.07e-06 54.96 

Family size 797.967 62.650 3924.999 12.74 
Intercept 3896.088 181.527 32951.97

9 21.46 

     
Fifth implicate     
Before-tax 
income 0.078 0.001 2.08e-06 54.46 

Family size 795.397 62.849 3949.982 12.66 
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Intercept 3919.280 181.992 33120.94
2 21.54 

     
     
RII technique     
Before-tax 
income 0.078 0.002 2.28e-06 51.74 

Family size 801.283 62.970 3965.185 12.72 
Intercept 3924.256 183.345 33615.31

5 21.40 

 
The components of the variance are also as follows: 
 
 U B 
Before-tax 
income 2.04e-06 2.00e-07 

Family size 3935.969 24.347 
Intercept 33015.211 500.087 
 
Test whether the coefficient on before-tax income equals 0.1.  The hypothesis is: 
 
H0: b-bar = 0.1 
H1: b-bar ≠ 0.1 
 
The F-statistic = 208.07, with 1 and 362 degrees of freedom.  The critical value for this F(1, 362) is 
approximately 3.8, suggesting that the hypothesis that the coefficient on income equals 0.1 is rejected. 
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