M VIE

W

U.S. Department of Labor

U.S. Bureau of Labor Statistics

## BLS at 125: Using historic principles to track the 21st-century economy

Volume 132, Number 6
June 2009
BLS at 125: using historic principles to track the 21st-century economy ..... 3The focus on objectivity, confidentiality, relevance, accuracy, and transparency has allowedBLS to fulfill its mission and will continue to do so in the 21st century
William J. Wiatrowski
How shifting occupational composition has affected the real average wage ..... 26
Analyzing Occupational Employment Statistics survey data reveals how occupational wage and employment changes have affected real average wage growth
Rebecca Keller
What do OES data have to say about increasing wage inequality? ..... 39
Occupational Employment Statistics survey data are used to measure changes in wage dispersionand examine wage growth by occupational group, wage rate, skill level, and ties to technologyJohn I. Jones
Productivity trends in business cycles: a visual essay ..... 50
Michael Chernousov, Susan E. Fleck, and John Glaser
Regional report
The prominence of Boston area colleges and universities ..... 64
Denis M. McSweeney and Walter J. Marshall
Departments
Labor month in review ..... 2
Book review ..... 69
Précis ..... 71
Current labor statistics ..... 72

## The June Review

## BLS celebrates a birthday

The Bureau of Labor Statistics (BLS) is commemorating its 125 th anniversary this month. Congress passed legislation establishing the Bureau in 1884, and President Chester A. Arthur signed the bill into law on June 27 of that year. Carroll D. Wright, the Bureau's first Commissioner, took office in January 1885. Keith Hall, the current Commissioner of Labor Statistics, is only the 13th since the agency's inception. BLS has been part of the U.S. Department of Labor since the Department was established in 1913. The Bureau today has approximately 2,400 employees in its National Office in Washington, D.C., its 6 Regional Offices, and in smaller offices around the country. It employs economists, statisticians, information technologists, and data collectors, among other occupations.

As Monthly Labor Review readers are aware, during its long tenure BLS has been a leader in pioneering, refining, and disseminating critical measures of consumer and producer prices, employment and unemployment, compensation and benefits, productivity, and workplace safety. BLS also has long been a leader in producing career guidance information and the occupational projections upon which it is based.

In the preparation of its data and analyses, BLS adheres to widely recognized principles of objectivity and impartiality, timeliness, relevance, and transparency. The lead article in this month's Revierw, by Associate Commissioner William J. Wiatrowski, uses those principles as a roadmap to examine significant events
and changes to BLS programs and methods over the last quarter century, since our 100th anniversary in 1984. He notes that "Since its centennial, the BLS has witnessed rapid growth in technology, a movement towards instantaneous news, the advent of online pundits with quick access to data, and a constantly changing economy that can be difficult to measure. Much of what the Agency measured as standard work characteristics a quarter century ago is no longer standard, with such new phenomena as teleworking, medical savings accounts, employee leasing arrangements, green jobs, offshoring, and a host of others challenging the traditional means of measuring labor."


Change, in fact, has been a constant for the Bureau, as it has altered its programs and functions many times over the years to try and keep up with appropriately measuring a changing country and economy. In its early days, prior to the creation of many of the regulatory and mediation agencies we're familiar with today, BLS played a role sometimes far beyond measurement. Commissioners Wright and Charles P. Neill (appointed by President Theodore Roosevelt) were essential in mediating many labor disputes; in fact, Neill helped in settling around 60 railway controversies. Because this work absorbed such enormous amounts of time, Neill worked with Congress to set up the Board of Mediation and

Conciliation, after which Commissioners of Labor Statistics were no longer required to mediate labor disputes. Between 1908 and 1916, BLS administered workmen's compensation for Federal employees. Commissioner Royal Meeker (appointed by President Woodrow Wilson) was instrumental in expanding the program to cover all Federal workers and occupational diseases. He later worked with Congress to establish a Board to relieve BLS of this duty.

But the heart of the Bureau's mission always has been the collection of data and the preparation of descriptive and analytical summaries of the findings. The employees of BLS have striven to provide the public and policymakers with the fullest possible understanding of labor markets contemporary to their time. Commissioner Ethelbert Stewart (also a Wilson appointee) said in 1918, "For 30 years, I have been struggling to put some flesh upon the bony skeleton of mere tabulation." The analytical and editorial staff at BLS, through the vehicle of Monthly Labor Review and other publications, continues to happily engage in that struggle.

In today's world of ever-heightening scrutiny over government data and policy, it may be useful to remember the words stated by Commissioner Wright when speaking of the Bureau near the end of his term (which concluded in January 1905): "It is only by the fearless publication of the facts, without regard to the influence those facts may have upon any party's position or any partisan's views, that it can justify its continued existence, and its future usefulness will depend upon the nonpartisan character of its personnel." Words for a statistical agency to live by, and ones the Bureau has tried to adhere to for 125 years.

# BLS at 125: using historic principles to track the 21 st-century economy 

Relying on its core principles of objectivity, confidentiality, relevance, accuracy, and transparency, as well as a core set of disciplines-economics, statistics, information technology, and behavioral science-the Bureau of Labor Statistics at 125 has incorporated new labor phenomena arising over the past quarter century into its repertoire of programs and services

William J. Wiatrowski

William J. Wiatrowski is Associate Commissioner, Office of Compensation and Working Conditions, Bureau of Labor Statistics.

The U.S. Bureau of Labor Statistics (BLS) used its centennial in 1984 as "an opportunity to reflect on what we can learn from history and a time to think about emerging problems and their implications" for the future. ${ }^{1}$ At that time, it would have been hard to imagine the growth and change in the economy over just a quarter century-and the growth and change at the BLS designed to keep up with the changing economy. Remarkably, some things that could not have been imagined in 1984 are now commonplace at the BLS: the use of the Internet for data collection and dissemination, computers on every employee's desk, staff telecommuting, distance training via video and computer, cognitive review to improve the clarity and accuracy of BLS questionnaires and publications, blogs and wikis, and more. But all of these changes are needed to track an economy that is increasingly global, lightning fast, and constantly being reinvented. Gone are the days when the BLS counted girdle manufacturers and stenographers. To keep up with the world of satellite communications and nanotechnology, the Agency had to reinvent itself.

The 100-year anniversary was marked with the publication of a volume that traced the growth of the BLS through the terms of 10

Commissioners. ${ }^{2}$ Although each Commissioner left his or her own mark, all supported and expanded upon a core set of principles to guide the organization and its work. An additional quarter century may not deserve another historic volume; rather, this article is intended as an update of BLS activities over the past 25 years. And while Commissioners have come and gone, the guiding principles remain, having been tested and strengthened. This look back is organized not by time or by program, but by those principles, which are still relevant today. A brief introduction will provide some context on how these principles manifest themselves in today's BLS.

## What is the BLS?

Those not familiar with the BLS are nonetheless often aware of some of the key measures and data that come from the Agency, including the monthly Consumer Price Index (CPI), the unemployment rate, and payroll employment figures. In fact, nearly every American is affected by some BLS data, most notably annual adjustments to Social Security payments and Federal income tax brackets, both of which result from changes in the CPI. The relative anonymity of the BLS is perhaps a byproduct of its commitment to objectivity:
the statistics, not the agency that produces them, are the story. And although the measures just cited are among the most widely known, the BLS actually produces data from about two dozen programs covering such topics as employment, prices, spending, compensation, workplace safety and health, and productivity. These programs vary widely: some are large while others are small, and some offer broad overviews of the economy while others are rich in detail. Exhibit 1 provides a look at the current programs of the BLS.

The BLS is the principal factfinding agency for the Federal Government in the broad field of labor economics and statistics. As specified in its mission statement, the BLS "collects, processes, analyzes, and disseminates essential statistical data to the American public, the U.S. Congress, other Federal agencies, State and local governments, business, and labor." ${ }^{3}$
In the sections that follow, the principles that guide the work of the BLS have been grouped into five categories that describe the current focus of the Agency's activities. Of course, any such grouping is arbitrary, and other combinations might be as good or better at allowing readers to understand the tenets that go into producing high-quality labor statistics. Similarly, the examples that accompany each principle often speak to multiple principles. Nor are the examples exhaustive; other ones could easily have been substituted. The intent, however, transcends the particular examples chosen: to provide an illustration of the variety of challenges facing the BLS in the 21st century and of how a set of principles continues to guide the reactions to those challenges.

## Objectivity, fairness, and impartiality

The BLS is an agency of the U.S. Department of Labor, but is also an "independent statistical agency," meaning that it is not involved in policy decisions. Although BLS data frequently are used by policymakers to formulate regulations, enact legislation, and illuminate the outcomes of new policies, the staff who produce these data have no role in developing or enforcing policy. Underscoring this independence, the BLS has but one political appointee: the Commissioner. Commissioners are nominated by the President, are confirmed by the Senate, and serve fixed 4 -year terms. Their terms do not necessarily coincide with those of Presidents; for example, the current BLS Commissioner, Keith Hall, was appointed by President George W. Bush and continues to serve under President Barack H. Obama.

Despite this independence, many individuals and organizations try to draw the BLS into the policy arena. An example of this phenomenon occurred repeatedly during 2008, as the Agency reported on reductions in payroll
employment. The BLS frequently was asked whether the declining employment figures meant that the U.S. economy was in a recession. In response, the BLS explained that such a declaration was not within its purview. The official declaration of a recession, as well as details of the specific timing of the business cycle, is made by the National Bureau of Economic Research (NBER), a nongovernmental independent research organization. ${ }^{4}$ Data from the BLS can inform the issue, however; for example, the BLS can provide information from previous recessions on job losses and the amount of time that it took for employment to recover to its prerecession peak.

Attempts to draw the BLS into policy issues invariably come from external sources. For instance, Congress may include language in legislation that requires the BLS to conduct certain policy-related analysis, and other Federal Government Agencies may request that the BLS be involved in similar policy analysis. Such requests are turned down and in many cases are transferred to the relevant policy Agencies within the Department of Labor. (BLS statistical programs often have a parallel policy and enforcement agency, such as the Occupational Safety and Health Administration or the Wage and Hour Division of the Employment Standards Administration.) An example of the type of policy analysis that frequently is requested of the BLS is an analysis of the effect of increases in the minimum wage on employment. Although the BLS may provide information on the number of workers earning at or below the minimum wage and information on the characteristics of those workers, such as their demographics and educational attainment, the BLS does not predict the effect of changes to the minimum wage.

Beyond avoiding policy discussions, the BLS often includes caveats about its data to caution readers against drawing certain conclusions. For example, the following caution appears in the BLS news release of data comparing union and nonunion earnings:

The difference [between union and nonunion earnings] reflects a variety of influences in addition to coverage by a collective bargaining agreement, including variations in the distributions of union members and nonunion employees by occupation, industry, firm size, or geographic region. ${ }^{5}$
A second example, from the annual Highlights of Women's Earnings, is about differences in earnings between men and women:

In 2007, women who were full-time wage and salary workers had median weekly earnings of $\$ 614$, or

## Exhibit 1. Statistical programs of the Bureau of Labor Statistics, 2009

| BLS statistical program | $\begin{array}{c}\text { Major outputs }\end{array}$ | $\begin{array}{c}\text { Significant events } \\ \text { in past 25 years }\end{array}$ |  |
| :--- | :--- | :--- | :--- |
| $\begin{array}{l}\text { American Time Use Survey } \\ \text { (ATUS) }\end{array}$ | $\begin{array}{l}\text { Annual and quarterly estimates } \\ \text { of how, where, and with whom } \\ \text { Americans aged 15 years and old- } \\ \text { er spend their time }\end{array}$ | $\begin{array}{l}\text { New program began in 2003; } \\ \text { first federally funded continuous } \\ \text { time-use survey in the United } \\ \text { States. }\end{array}$ | $\begin{array}{l}\text { Only Federal survey providing } \\ \text { data on the full range of non- } \\ \text { market activities, from childcare } \\ \text { to volunteering; the U.S. Depart- } \\ \text { ment of Agriculture sponsored }\end{array}$ |
| secondary questions on eating |  |  |  |$\}$

Exhibit 1. Continued—Statistical programs of the Bureau of Labor Statistics, 2009

| BLS statistical program | Major outputs | Origins | Significant events in past $\mathbf{2 5}$ years |
| :---: | :---: | :---: | :---: |
| Current Population Survey (CPS) | Unemployment rate and demographic characteristics of the labor force | Monthly collection of the CPS began in 1940 as a Work Projects Administration project. Responsibility for the planning, analysis, and publication of labor force statistics from the CPS was transferred to BLS in 1959. | Periodic supplemental surveys were developed on a variety of topics, including displaced workers (introduced in 1984), disabled veterans (1985), home-based work and flexitime (1985), contingent and alternative work arrangements (1995), and volunteering (2002). A significant redesign of the survey was introduced in 1994, including computerization of the instrument, changes to the questionnaire, and the availability of new data. Survey questions on nativity (1995) and new race/ethnicity categories (2003) were added. Special questions to identify Hurricane Katrina evacuees were added to the CPS from October 2005 to October 2006. Collection of monthly data on persons with disabilities began in 2008. |
| Employment Projections | Long-term industry and occupation employment projections; information for career planning and for planning education or training | First projections and career information published in 1949; prepared on a biennial basis since then. | Began publishing Career Guide to Industries in 1992. Incorporated offshoring analysis system into projections process starting with 2004-14 projections. |
| Import and Export Price Indexes | Prices indexes covering U.S. exports and imports of goods and selected services | First series started in 1971. Full coverage reached in 1983. | Shifted from quarterly to monthly basis in 1989; in 2004, began switching from a mail survey to collecting data via a Web-based application. |
| Industry Productivity and Costs | Annual measures of labor productivity and unit labor costs for detailed industries | Studies of output per hour in individual industries date back to the 1800s. | The number of industries covered by labor productivity measures has more than tripled over the last 25 years. Aggregation of detailed outputs was improved in 1995 by introducing value-weighted chained superlative indexes in place of unit labor requirements weights. Labor compensation and unit labor cost series were introduced in 1999. CPI research series were incorporated in 2001 for deflating some industry receipts. Improvements were made to hours estimates for nonproduction and supervisory workers. |
| International Labor Comparisons | Annual and monthly data comparing the United States with more than 30 countries on one or more of the following measures: employment counts and unemployment rates, productivity, hourly compensation costs, and Consumer Price Indexes | BLS has reported on foreign labor developments and statistics since its earliest days; a program to develop internationally comparable labor statistics began in the 1960 s and was among the first of its kind. | Regular publication of data comparing compensation per hour for manufacturing workers began in the 1990 s, and country coverage has been expanded significantly in the 2000s. A chartbook on the international labor situation was first published in 1995; annual publication of the chartbook began in 2006. Special studies have been completed on labor underutilization, the family and work, Mexico's labor market, and China's manufacturing employment and labor costs. |

Exhibit 1. Continued—Statistical programs of the Bureau of Labor Statistics, 2009

| BLS statistical program | Major outputs | Origins | Significant events in past 25 years |
| :---: | :---: | :---: | :---: |
| International Technical Cooperation | Provides technical assistance on labor statistics to economists, statisticians, and policymakers throughout the world. Coordinates BLS participation in international cooperative activities. | Carroll Wright, the first BLS Commissioner, strongly supported and encouraged international cooperation activities. BLS international technical assistance programs formally began as part of the Marshall Plan to rebuild Europe and Japan following World War II. | This program expanded during the early 1990s to assist statistical agencies in new democracies in eastern Europe. BLS activities included sponsoring an international conference on statistical needs of economies in transition. Since 2001, demand to conduct BLS technical assistance programs overseas has grown. Today, BLS staff conduct training programs and serve as consultants under the auspices of international organizations and direct foreign government sponsorship in countries throughout the world. |
| Job Openings and Labor Turnover Survey (JOLTS) | Monthly rates and levels of job openings; monthly and annual rates and levels of hires, quits, layoffs, discharges, and other separations | New program begun in 1999. Data series starts with December 2000. | Program began collecting data in 2000. Began releasing monthly data as a developmental series in July 2002. Became official bLS series in April 2004. |
| Local Area Unemployment Statistics (LAUS) | Monthly and annual average estimates of the labor force, unemployment, and the unemployment rate for nearly 7,300 areas that geographically exhaust the United States | Program was transferred to BLS from another DOL agency in 1972. | The first stand-alone PC-based estimating system was provided to States in 1983. Modeling of estimates for States was initiated in 1989, and two newer generations of models have been implemented since then. A major redesign of the program was completed in 2005. |
| Major Sector Productivity and Costs | Quarterly and annual measures of output per hour and unit labor costs for the nonfarm business sector and other sectors | Total private-sector labor productivity measures were first published in 1959; BLS switched to the "business sector" in 1976. | After extensive consultation with the Bureau of Economic Analysis (BEA), in 1996 BLS switched its business-sector output measures from the "income side" to the "product side" of the National Income and Product Accounts and also based these measures on BEA's new "chain-type annual indexes." These improvements have reduced the number of revisions to the series. |
| Mass Layoff Statistics (MLS) | Plant closings and mass layoffs involving at least 50 people who filed unemployment insurance claims against an employer over a 5-week period, for the Nation and States, by detailed industry; extended plant closings and layoffs lasting more than 30 days, by State and detailed characteristics of the layoff | Program began in 1984 at the direction of Congress. After the program was terminated in December 1992, Congress restored it in 1994. | Nationwide participation in the MLS program in 1994. A standalone PC-based operating system was provided to States in 1995. In 1996, the monthly news release on all layoffs, regardless of duration, was introduced. In 2000, a major program review involving BLS, the Employment and Training Adminstration (ETA), and the States was conducted. In 2004, the collection of data on job losses due to offshoring and outsourcing was initiated. |

Exhibit 1. Continued-Statistical programs of the Bureau of Labor Statistics, 2009

| BLS statistical program | Major outputs | Origins | Significant events in past 25 years |
| :---: | :---: | :---: | :---: |
| Multifactor Productivity (Industry and Major Sector) | Annual measures for the private business sector and selected industries. These measures expand the list of inputs with which output is compared. | Multifactor productivity (MFP) measures for private business were first issued in 1983. This report went a step beyond labor productivity analysis by accounting for capital inputs as well as labor. | The first set of manufacturing MFP measures comparing "sectoral output" (instead of real value added) with inputs of capital (C), labor, (L) energy (E), non-energy materials (M), and business services (all together KLEMS) was published in 1987. Estimates of the effects of the education and experience of the work force on private business productivity were issued in 1993. A set of KLEMS MFP measures for nonmanufacturing industries was prepared and used to critique the quality of available real output measures in 1999. A comprehensive set of MFP measures for detailed manufacturing industries was introduced in 2000. |
| National Compensation Survey (NCS), including the Employment Cost Index (ECI) | Quarterly rates of change in employer costs for wages and benefits; quarterly employer costs for wages and benefits; annual national, regional, and locality pay data by occupation; annual data on the incidence and characteristics of employee benefits | Studies of occupational wages in specific industries were among the earliest studies conducted by the BLS; ad hoc studies of employee benefits and workplace practices were also conducted periodically. After World War II, the need for occupational wage data by locality and industry was recognized; first sample of localities used to represent all metropolitan areas was introduced in 1960. Studies of wage and benefit costs date to the late 1950s; the current Employment Cost Index was introduced in 1976. The current benefits program began in 1979. | Separate Employment Cost Index (ECI),occupationalwage, and employee benefit programs were combined in the mid-1990s to create the National Compensation Survey, which uses a single sample, collection process, and estimation methodology for all outputs. In 2009, the first locality ECI estimates were published for 14 large metropolitan areas. Annual wage and benefit cost levels were introduced in 1987; quarterly data were introduced in 2002. To meet the needs of the 1990 Federal Employees Pay Comparability Act,occupational wage data expanded from initial coverage for a fixed set of occupations to the current random selection from all occupations. Benefits data have expanded over time to the current coverage of all private industry and State and local governments. |
| National Longitudinal Survey (NLS) | Microdata from periodic interviews of a constant sample of people regarding working, education, and other life experiences Used by researchers in government and academia. | Began in the mid-1960s with four cohorts of individuals who were followed into the 2000s. | A new cohort of youths aged 12-16 years was started in 1997. More than 2,000 articles using NLS data have been written in scholarly journals in the last 25 years. |


| Continued—Statistical programs of the Bureau of Labor Statistics, 2009 |  |  |  |
| :---: | :---: | :---: | :---: |
| BLS statistical program | Major outputs | Origins | Significant events in past 25 years |
| Occupational Employment Statistics (OES) | Annual occupational employment and wage data by geographical area or industry | Initial data collection efforts began in late 1960s and early 1970s; national industry-specific occupational employment estimates published since late 1980s; wage and geographical area data since late 1990s. | National industry-specific occupational employment estimates developed in late 1980s, with each industry available once every 3 years; in late 1990s, program expanded to include wage information, to cover all industries in each year, and to produce national, State, and local area cross-industry data. |
| Producer Price Index (PPI) | Family of indexes that measure average change over time in selling prices received by domestic producers of goods and services | Began in 1902 as Wholesale Price Index and is oldest continuous statistical series published by BLS. Comprehensive overhaul in 1978 resulted in restructured Producer Price Indexes. | Major expansion in coverage of services (from less than 1 percent of services GDP in 1985 to more than 77 percent now); added indexes for several types of nonresidential building construction in 2002-08; conversion to use of broadcast fax for mail surveys beginning in late 1990s. |
| Quarterly Census of Employment and Wages (QCEW) | Monthly employment and quarterly wages by detailed industry and geography down to the county level | Economic and statistical responsibility for the QCEW program (formerly known as ES-202) was transferred to BLS from the Employment and Training Administration (ETA) in 1972. Full funding and administrative responsibility were transferred to BLS in 1984. | Worksite- and establishment-level reporting was instituted in 199192. The program began to geocode data at the establishment level in 2003. The data review and publication process was accelerated by 3 weeks in 2005 . |
| Survey of Occupational Injuries and IIInesses (SOII) | Annual counts and rates of workplace injuries and illnesses | Periodic data collection since 1910s; annual survey began in 1973. | Several external reviews in late 1980s; significant program revisions in early 1990 s added demographics of injured workers and characteristics of incident; recent addition of rates by occupation and demographics. |

about 80 percent of the $\$ 766$ median for their male counterparts. This ratio has grown since 1979. ..when women earned about 62 percent as much as men.... Readers should note that the comparisons of earnings in this report are on a broad level and do not control for many factors that can be significant in explaining earnings differences. ${ }^{6}$

Because the statements that the BLS makes about its data are limited to fact-based descriptions and analysis, journalists and commentators often go elsewhere to obtain policy and political reactions.

## Protecting confidentiality; reducing burden

Carroll D. Wright, the first Commissioner of Labor Statistics, defined the principles that are followed by the BLS to this day. Among those principles were "firsthand data collection, voluntary reporting and confidentiality of returns." ${ }^{7}$ Although the methods of data collection have changed dramatically, the principles of voluntary reporting and confidentiality continue to be the focus for all BLS data collection activities. ${ }^{8}$

The BLS and its regional offices, State agencies, and contractors collect a wide range of data from employ-
ers-data on employment, wages, compensation, prices, and workplace safety and health-for input into two dozen surveys and programs. In general, the BLS and its partners enjoy good relationships with employers and obtain data from a large proportion of those surveyed. Still, the relationship between the BLS and survey respondents has changed considerably over the past 25 years, and the Agency has had to take a number of steps to maintain and improve the way it interacts with employers.

One of the biggest changes has been an explosion of new technology, particularly in the area of communications. Today, data requested by the BLS often are available electronically, reducing the employer's burden of compiling data. Along with this expansion of electronic records, however, comes heightened concern about security. Although the BLS has always pledged that employers' data would remain confidential and would be used for statistical purposes and only in the aggregate, the threat of inadvertent disclosure of the data adds to the complexity of maintaining confidentiality.

A major milestone in the 125 -year history of the BLS came in 2002 with the passage of the Confidential Information Protection and Statistical Efficiency Act (CIPSEA). This law provides statutory protection of data collected by a Federal Agency under a pledge of confidentiality for exclusively statistical purposes (a principle that is essential for gaining the cooperation of both employers and individuals). The law also allows the BLS, the Bureau of Economic Analysis, and the Census Bureau to enter into data-sharing agreements to promote statistical efficiency. ${ }^{9}$

In addition to exerting efforts to allay fears about data security and confidentiality, the BLS has undertaken many initiatives over the past quarter century to use technology and automation to make it easier for respondents to provide data. Often, the efforts focus on methods that work at the convenience of the employer. For example, rather than having to schedule a visit or call from a BLS representative at a particular time, employers frequently can provide information at their convenience. (See box, pages 11-12.)

The same individuals and organizations that provide data to BLS frequently are users of BLS data as well. To capitalize on these unique relationships, the BLS often uses a "corporate" strategy to coordinate the collection of data for multiple programs, thereby reducing the number of independent contacts with the employer. By understanding the full nature of the employer's data needs, the BLS can offer customized data products to meet those needs-these days frequently provided over the Internet.

Some BLS programs are administered in conjunction with the States. The relationship between BLS and the States has changed considerably over the past quarter century. Beginning in 1984, the BLS has been responsible for the administration of agreements with the States for both labor market information and safety and health statistics. The BLS has full responsibility for planning, managing, and funding all the Federal-State cooperative programs.

The Federal-State cooperative activities allow State governments to leverage their existing relationships with employers, which can assist in building cooperation. The BLS and State representatives also work together through the Workforce Information Council to improve State and local data. ${ }^{10}$ Through these efforts and others, the availability of State and local labor market data has greatly expanded over the past quarter century. For example, in recent years the Current Employment Statistics (CES) program has expanded the amount of seasonally adjusted payroll employment data to the point that such data are now available for all States and nearly all metropolitan areas. In the same vein, the Local Area Unemployment Statistics (LAUS) program provides monthly estimates of employment and unemployment for 7,300 areas, including States, counties, and cities.

Employers responding to BLS data requests are remarkably generous with their time. This high degree of voluntary cooperation stems from two sources: (1) the high level of professionalism of the data collection staff and (2) the great care the BLS takes to protect the confidentiality of the information that respondents furnish. These partnerships with employers have been instrumental in maintaining consistently high response rates as well as high-quality data. ${ }^{11}$ To maintain close relationships with employers and partners within State governments, the BLS realigned its regional offices in 1999. The streamlined regional structure (moving from eight to six regional offices) provided greater flexibility for the BLS to meet the needs of respondents and data users.

## Relevance to economic and social conditions

The Act establishing the BLS (originally called the Bureau of Labor) within the Department of the Interior was signed by President Chester A. Arthur on June 27, 1884, and mandated that the Commissioner "shall collect information upon the subject of labor, its relation to capital, the hours of labor, and the earnings of laboring men and women, and the means of promoting their material, social, intellectual, and moral prosperity." ${ }^{12}$

Since its inception, the BLS has focused many of its
studies on current economic and social conditions. Early studies "were broadly conceived and directed at social issues such as marriage and divorce, temperance, and laboring women and children, but, with periodic economic depressions and a growing industrial labor force, the Bureau was called upon increasingly to deal with more strictly economic issues such as wages, hours of work, prices, and the cost of living. ${ }^{13}$ These core economic topics-wages, employment, hours of work, and prices-along with worker productivity and safety, continue to represent the fundamental statistics produced by the BLS. But changing economic and social conditions have led to an expansion in the topics covered, such as employer-provided childcare, the price of cellular phone service, and the identification of green jobs. Even in just a 25 -year period, there are many examples of modifications in BLS programs and outputs made in recognition of a changing world.

Classification systems. One method of providing consistent
data on a variety of topics is through the use of standard classification systems. To categorize data, the BLS utilizes several classification systems, some exclusively, others as a result of collaboration within the U.S. Government statistical community, and still others as a result of agreements with multiple countries.

Perhaps the most widely used of these systems among all BLS programs is the industry classification system, which has undergone radical changes over the past 25 years. Gone are separate categories for chewing-gum manufacturers (now part of nonchocolate confectionary manufacturing) and girdle manufacturers (now included among manufacturers of lingerie and nightwear); added are many new categories, often with a technological bent, such as satellite telecommunications. Standardization of industry classification in the United States began in the 1930s; early work soon became the Standard Industrial Classification (SIC) system. The SIC was updated sporadically over 60 years, before rapid changes in the types of

## Interaction with data providers in an electronic age

New technology calls for the development, testing, and implementation of new methodologies. The explosion of the capabilities of microcomputers and other telecommunication features of the 1980s spawned experimentation and the largescale implementation of new methods for collecting data for all BLS programs. The Current Employment Statistics (CES) program has been especially at the forefront of electronic collection efforts, driven in part by the rapid turnaround time needed between collection and publication of monthly payroll employment data. The CES program tested a number of alternative data capture methods, including touch-tone data entry and computer-assisted telephone interviewing. The first touch-tone data entry and voice recognition technologies were included in new methods that substantially increased response rates for CES data. An electronic data interchange collection center opened in Chicago in 1995 to handle electronic data submissions from large firms. Also, the CES program implemented the first Internet collection in an ongoing Federal survey in 1996. Indeed, what was once an all-mail collection is now practically all collected by a costeffective array of telephone- and Internet-based methods. And this work continues to evolve with technology and the needs of respondents. The work has been copied, modified, and designed to meet the specific needs of many programs in the BLS and around the world.

The BLS Internet Data Collection Facility (IDCF) is a centralized resource currently available to all BLS programs for electronic data collection. The IDCF uses a standard interface and security protocol for users to enter the facility, so that respondents to multiple surveys will not need different logon IDs or passwords. Once in the system, respondents may see different collection methods or different entry screens, depending upon which survey they are completing; however, applications adhere to design standards that result in the same "look and feel."

The IDCF contains two approaches to Internet data collection: standard and "lite." Using the standard format, respondents may be able to see data from their establishment from a prior period and can then enter current-period data. Respondents can save incomplete information and return to complete their entry at a later date. Alternatively, the "lite" version, typically used for small amounts of data capture, has a simpler logon procedure and does not show previous-period data. Respondents must enter all of their data during one session, because data cannot be saved. The two versions were designed to meet different needs: greater security, availability of data from a previous period, and multiple logons for more complex requests (standard collection), compared with simple logon and entry for simpler requests ("lite" data collection). Both versions have been successful.

Like the CES program, the Survey of Occupational Inju-

## Continued-Interaction with data providers in an electronic age

ries and Illnesses (SOII) has had considerable success in moving its sample of more than 200,000 establishments toward electronic collection. Depending upon an establishment's injury and illness experience, data entry can be quite extensive. In 2003, the survey began offering the Internet as an optional data collection mode; included with the lengthy paper survey form was a flyer describing how respondents could enter their data over the Internet. That year, about 10,000 establishments did so, and over the next 3 years Internet data collection grew, despite limited marketing, to 53,000 establishments in 2006. In an attempt to further encourage Internet collection, beginning in 2007 survey forms were eliminated from the mailing sent to some establishments. As a result, Internet collection ballooned: in 2008, almost 100,000 establishments used the Internet to enter data. Beginning in 2009, nearly all establishments receive a short mailing requesting that data be entered over the Internet.

One activity that has helped to test and improve the IDCF is the use of "eye-tracking" technology (see photo below) through the BLS cognitive laboratory. The technology can follow a subject's eyes as he or she looks at a computer screen and, in particular, at a Web site. Changes to data collection screens,

especially as regards where and how instructions are presented, were made on the basis of the results of eye-tracking tests.

The BLS also has attempted to expand the information available to respondents, to make it clear how important their continued cooperation is to all BLS programs. Over the past few years, several BLS programs have added Internet pages targeted specifically at respondents. These pages typically provide questions and answers about the survey, including answers such as how establishments are selected and BLS procedures for maintaining the confidentiality of respondent data; definitions of, and concepts having to do with, the data being collected; and how respondents (and all employers) can use the results of data collection. The BLS expanded upon these pages in 2006, testing a new respondent page with detailed instructions for completing survey forms. Finally, as part of the 2008 Internet redesign, BLS introduced a set of pages with information targeted at selected audiences, including a "Survey Respondents" page that explains the importance of individual establishment responses and highlights the confidentiality precautions that the Agency takes. (See photo below.) The page has links to respondent information for many surveys, some of which have been updated to expand upon earlier test pages for respondents.

| 䍃 Bureau of Labor Statistics |  |  |  |  | Newsroom \| Tutoriats | Release Calender [] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Home | Sutjec Areas | Dutabuses a raties | Pullcations | tconomic Rehases | A-ztedex\|Abotels |
| Survey Respondents |  |  |  |  |  |


domestic industries and increased globalization led the United States, Mexico, and Canada to work together to develop a standard classification across the three countries in 1997: the North American Industry Classification System (NAICS). ${ }^{14}$ Nearly every BLS program has some industry component, and all have converted to NAICS
over the past decade. The box on page 13 provides a brief description of several classification systems: industries, occupations, geographic areas, characteristics of worker injuries and illnesses, and expenditures. Each system has been updated over the past 25 years to keep pace with the ever-changing economy.

## BLS classification systems

Much of the data captured and published by the Bureau of Labor Statistics is categorized by a variety of classification systems. What follows is a brief description of some of the major classification systems used for BLS data.

## Industry: NAICS

Developed under a production-oriented conceptual framework in cooperation with Canada and Mexico, the North American Industry Classification System (NAICS) represents one of the most profound changes for statistical programs focusing on emerging economic activities. NAICS groups establishments into industries on the basis of the activity in which the establishments are primarily engaged. Establishments using similar raw-material inputs, similar capital equipment, and similar labor are classified into the same industry. In other words, establishments that do similar things in similar ways are classified together. (For more information on NAICS, which was introduced in 1997, see "North American Industry Classification System (NAICS) at BLS" (Bureau of Labor Statistics, May 13, 2009), on the Internet at www.bls.gov/bls/naics.htm, visited June 17, 2009.)

## Occupation: SOC

The 2000 Standard Occupational Classification (SOC) system was developed in response to a growing need for a universal occupational classification system. Such a system allows government agencies and private industry to produce comparable data. Users of occupational data include government program managers, industrial and labor relations practitioners, students considering career training, jobseekers, vocational training schools, and employers wishing to set salary scales or locate a new plant. Used by Federal agencies collecting occupational data, SOC provides a means of comparing occupational data across agencies. Reflecting the current occupational structure in the United States, the SOC system is designed to cover all occupations in which work is performed for pay or profit. The 2000 SOC is the result of a cooperative effort on the part of all Federal Agencies that use occupational classification systems to maximize the usefulness of occupational information collected by the Federal Government. The BLS plays a leading role in occupational classification by chairing the SOC Policy Committee, which is currently developing revisions to the system that are to be implemented in 2010. (For more information on SOC, see "Standard Occupational Classification" (Bureau of Labor Statistics, no date), on the Internet at www.bls.gov/soc, visited June 17, 2009.)

## Geography: statistical areas

The BLS produces certain data series by State and by smaller
geographic divisions, including metropolitan and micropoli$\tan$ statistical areas. These areas are defined by the U.S. Office of Management and Budget and are revised following each decennial census. The general concept of a metropolitan or micropolitan statistical area is that of a core area containing a substantial population nucleus, together with adjacent communities having a high degree of economic and social integration with that core. Currently defined metropolitan and micropolitan statistical areas are based on the application of 2000 standards to 2000 decennial census data. (For more information on definitions of geographic areas, see "Metropolitan and Micropolitan Statistical Areas"(U.S. Census Bureau, no date), on the Internet at www.census.gov/population/www/metroareas/aboutmetro.html, visited June 17, 2009.)

## Workplace injuries and illnesses: ollcs

The Occupational Injury and Illness Classification System (OIICS) is the classification system that is used to code the case characteristics of injuries, illnesses, and fatalities in the BLS Survey of Occupational Injuries and Illnesses (SOII) and Census of Fatal Occupational Injuries (CFOI). Worker injuries, illnesses, and fatalities are classified by the following characteristics: nature of injury or illness, part of body affected, source (primary or secondary) of injury or illness, and event or exposure. For example, a nurse sprains (nature) her back (part of body) from overexertion in lifting (event) a health care patient (source). The OIICS was originally developed by the BLS in 1992; other organizations have adopted this coding structure for their own use. The most recent update of the OIICS was in 2007. (For more information on the characteristics of workplace injuries and illnesses, see Injuries, Illnesses, and Fatalities: Occupational Injury and Illness Classification Manual (Bureau of Labor Statistics, July 11, 2008), on the Internet at www.bls.gov/iif/oshoiics.htm, visited June 17, 2009.)

## Expenditures on goods and services

The BLS Consumer Price Index (CPI) and Consumer Expenditure Survey (CE) classify goods and services purchased for consumption into several hundred categories, which are then aggregated and published by major group, such as food, housing, apparel, transportation, health care, and recreation. While the major groups are kept consistent over time, the classifications are updated as new or changed goods and services are identified. (The CE information booklet Consumer Expenditure Surveys: Quarterly Interview Survey (Bureau of Labor Statistics, Apr. 1, 2009), on the Internet at www.bls.gov/ cex/current/i_infobook.pdf, visited June 17, 2009, provides more detail on the groupings of expenditures. The current CPI structure is discussed in Appendix 3 of the December 1996 issue of the Monthly Labor Review.)

Employment data. Within the BLS employment programs, a major redesign of the Current Population Survey (CPS)-the source of national unemployment data-was implemented in 1994. The primary objective of the redesign was to improve the quality of the data derived from the survey; this was done by introducing a new questionnaire and modernized data collection methods. ${ }^{15}$ The redesign had four main objectives:

- to adopt a computer-assisted interviewing environment,
- to measure the official labor force concepts more precisely,
- to expand the amount of data available, and
- to implement several definitional changes. ${ }^{16}$

These changes led to the refinement of several alternative measures of unemployment that have been available for many years. Because of the redesign, the BLS now publishes six monthly measures of labor underutilization; these measures gain considerable attention especially during periods of rising unemployment. ${ }^{17}$ One such measure identifies those individuals who presently are working part time although they would prefer to work full time. Chart 1 shows the trend in each of the different measures of unemployment over the past several years.

In addition to refining its statistics, the BLS has expanded its employment statistics programs considerably over the past 25 years. Among surveys of households, the American Time Use Survey released its first-ever estimates in 2004 and the National Longitudinal Survey introduced a new survey of youth in 1997. Together, these programs provide a valuable look into the worklife and related economic and social activities of Americans, offering insight into work-family issues, changes in training requirements for the labor force, and the expansion of technology at work and at home. More recently, new data from the CPS on the employment status of individuals with disabilities were introduced in 2009.

From surveys of employers, the BLS added the Job Openings and Labor Turnover Survey and began publishing Business Establishment Dynamics data from the Quarterly Census of Employment and Wages. These programs help data users understand the underlying ebbs and flows in the labor market that might otherwise be masked by broader measures of employment and unemployment. ${ }^{18}$ In addition, the CES program was redesigned to improve statistical precision and broaden coverage to all workers, while the Occupational Employment Statistics program added to its publication of occupational staffing patterns

## Chart 1. Alternative measures of labor underutilization, seasonally adjusted, 1994-2009



NOTE: Shaded areas represent recessions as determined by the National Bureau of Economic Research (NBER). NBER has not yet deter-
mined an endpoint for the recession that began in December 2007. SOURCE: Bureau of Labor Statistics, Current Population Survey.
by including wages associated with those occupations. The Employment Projections program improved data on occupations and training requirements, while the Mass Layoff Statistics program added data on job losses associated with offshoring and outsourcing.

Compensation data. The past quarter century has yielded a considerable number of changes in the type (and magnitude) of worker compensation; the BLS has made every attempt to track those changes. Employer costs for benefits have more than doubled from $\$ 3.58$ per hour worked in 1986 to $\$ 7.98$ per hour worked in 2008 . As a percentage of total employer compensation costs, however, benefits in private industry have been relatively stable: 27 percent of compensation costs in 1986 and 29 percent in $2008 .{ }^{19}$ The benefits available have become more varied and more complex, and the responsibility for understanding and taking full advantage of benefit programs has shifted considerably from employers to employees. For example, in the early 1980s, traditional pension plans were quite prevalent; by 2008, such guaranteed plans had largely disappeared for private-sector workers. In their place are $401(\mathrm{k})$ and similar plans, often requiring workers to contribute in order to receive any contributions from their employer. The shift in retirement plans has had added complexities over the past 25 years, including the introduction of hybrid plans and employer activities that either canceled or froze existing plans. To provide data on each of these topics, the BLS has made numerous revisions to its benefits program in recent years. ${ }^{20}$ Policymakers use BLS benefits data to determine the need for changes to social programs and tax structures, among other things.

Workplace health care benefits have changed as well. As the BLS celebrated its centennial in 1984, health insurance plans-often employer-paid "basic" benefits plus "major medical"-were just beginning to change. Health care inflation was high in the 1980s (see charts 2 and 3), one of several factors that may have led employers to begin a series of changes to the benefits they provide. Legislative changes also influenced what employers were offering. ${ }^{21}$ First came health maintenance organizations, then preferred provider organizations, followed by point-ofservice plans, and, finally, consumer-driven health care. ${ }^{22}$ Employee premiums and employees' share of total premiums grew, as did out-of-pocket expenses such as deductibles and copayments. One overarching theme of these changes has been the introduction of more choice and more responsibility for employees. Both of these features are evident in new arrangements such as medical savings plans and health reimbursement accounts. Benefits data
from the BLS National Compensation Survey have been expanded and redefined over time to keep up with these and other changes in employee benefits.

Beyond changes in retirement and health benefits, employees at the end of the first decade of the 2000s have access to such benefits as childcare assistance, parental leave, long-term care insurance, and financial counseling. Employers are establishing employee assistance and wellness programs to care for the well-being of their workforces. In addition, the traditional notion of the workday is no longer as rigid as it once was, with telework arrangements gaining considerable attention. The BLS reports on the percentage of workers who have these workplace options.

Price data. The BLS has produced data on prices and expenditures-consumer prices, producer prices, import and export prices, and consumer expenditures-for much of its history. Originally focused on the cost of living for U.S. workers, today's data expand upon that concept to provide broader measures of inflation, price levels, and expenditure patterns. The CPI is used to adjust billions of dollars in Federal payments and programs, including annual adjustments to Social Security benefits and income tax brackets. Consumer Expenditure Survey (CE) data are used to adjust the standard sales tax amounts that can be deducted from Federal income taxes. CPI and Producer Price Index (PPI) data also are used as escalators in wage and price contracts, and PPI data are used as well to deflate a variety of economic time series, such as measures of inventories and sales, that are input into gross domestic product (GDP) calculations.

The wide use of BLS price measures and the large sums of money that are dependent upon such measures demand that they be precise and up to date. Several enhancements have occurred over the past quarter century to improve the accuracy of these data and maintain their relevance. In the CPI, expenditure weights, which are derived from patterns captured in the CE, are now updated every 2 years, rather than the less frequent updates that occurred prior to 2002. By updating the CPI market basket of goods and services used to construct the index, as well as the weights associated with those goods and services, the CPI improves its measurement of price changes for current U.S. consumers. For example, computing services represented 0.2 percent of the CPI market basket of goods and services in 1984; a quarter century later, such services have increased to 0.9 percent of the market basket-a fourfold increase reflecting their increased prevalence in the lives of Americans. The PPI has made significant progress toward its goal of expanding coverage of the U.S. economy. In 1985, only 1
percent of services, as measured by the GDP, was covered by the PPI; currently, 77 percent of services are included in the PPI, reflecting the growth in service industries in the Nation's economy. The PPI has been recognized for the development of innovative measures in health care and nonresidential buildings and specialty trades.

Other BLS data. Over the last 25 years, the BLS has improved the relevance of its productivity measures for the domestic economy in a number of ways: by improving consistency with the GDP National Accounts at the major sector and subsector level, by conducting research into factors affecting productivity, by expanding coverage of industry productivity, and by incorporating broader measures of multifactor productivity for industries as well as major sectors. As a result of improvements to the BLS productivity series and expanded visibility of these data, several countries, including Canada, Australia, and the European Union, have started producing multifactor productivity measures in the past few years, adopting approaches first used by the BLS. ${ }^{23}$

The BLS international labor comparisons program began in the 1960 s, with comparisons of unemployment and productivity for a few major industrial countries. In the
past 25 years, the program has maintained its relevance by expanding coverage of both indicators and countries. The main indicator added was international comparisons of manufacturing compensation costs, an important measure of competitiveness in tandem with productivity. With globalization, the needs of policymakers for comparative data on developing countries increased. The BLS met those needs by instituting studies of Mexico, China, India, and other countries that are of growing importance in international trade. In particular, the work on Mexico has been useful to those analyzing the labor market impact of the North American Free Trade Agreement. ${ }^{24}$ The work on China and India has focused on hourly compensation and employment in manufacturing.

For some statistical measures, maintaining relevance comes from added detail. In the case of data on worker safety and health, the BLS changed its focus in the early 1990s in order to capture both the demographics of workers who are injured, taken ill, or killed and the circumstances that affected the individual. Today, not only are the available statistics on worker safety and health detailed and extensive, but some items added over the past quarter century highlight a variety of current workplace safety concerns:

Chart 2. Employment Cost Index, 12-month change, private industry, cost of total benefits and cost of health benefits, 1982-2009


Chart 3. Growth in CPI-U and CPI-medical care, 1984-2008, not seasonally adjusted


- Identification of workers with musculoskeletal disorders;
- Identification of categories of perpetrators in workplace homicide cases, including family members, customers or clients, and robbers;
- Identification of the time of the incident and the length of time the employee had been at work when a workplace injury occurred;
- Identification of fatally injured Hispanic workers as either native or foreign born.

Reacting to unique circumstances. Although the BLS attempts to keep track of changes to the economy and seeks to anticipate the need to refine its programs, unforeseen circumstances can occur that require quick reaction. Two examples over the past quarter century are the terrorist attacks in September 2001 and Hurricane Katrina in August 2005. Both events stressed the BLS systems for capturing current and accurate data; both also resulted in the release of new or different outputs to reflect the specific economic condition. To ensure that statistics were reported accurately and completely, the BLS quickly introduced new procedures
and collection methods for identifying the operational status of businesses while minimizing disruption to respondents.

The 2001 terrorist attacks led to the special publication of workplace fatality data on individuals who were in "work status" when they were killed in the attacks. Among those included were office workers at the World Trade Center and the Pentagon, business travelers on each of the airplanes that were hijacked, and rescue workers killed in their attempt to save victims. Of the workers who were fatally injured as a result of the terrorist attacks, 80 percent were working in an office building, 14 percent were involved in rescue efforts, and the remainder were airline passengers. ${ }^{25}$

Soon after Hurricane Katrina hit, the monthly CES program modified its procedures in recognition of the fact that many employers in heavily affected areas were likely to be temporarily or permanently out of business. Further, the BLS provided estimates of the effect of the hurricane on national payroll employment: the loss of 35,000 jobs in September 2005 was in stark contrast to the average monthly gain of 194,000 over the previous 12 months. ${ }^{26}$ Finally, special questions were added to the CPS to identify individuals displaced by the hurricane.

The BLS released new Internet pages that showed the number of employees and business establishments in the counties that had been declared a disaster area following Hurricane Katrina. This feature of the Internet site was one of the first examples of "quick response" capabilities that the BLS has built; other examples have included special information on workplace fatalities related to mine cave-ins and crane collapses, employment effects of floods and hurricanes, and information on employment trends in finance, automotive, and other industries in the news.

## Improved accuracy and timeliness

There are many examples of successful, ongoing efforts to improve the accuracy of BLS outputs. What these efforts frequently have in common is both the input of staff from many different disciplines to develop the best possible product and the advice of data users and other external experts. The BLS employs economists, statisticians, information technology specialists, behavioral scientists, program analysts, financial management specialists, and practitioners of many other disciplines; the Agency is organized by subject (employment, prices, compensation, and productivity), but also by areas of expertise (technology, data collection, publications, statistical methods, and administration). Professionals from each of these disciplines work together to build consensus around the best possible products.

High-quality methodology and research at the bLS flow from sustained and carefully focused long-term investments. An example of such an investment comes from 1988, when Commissioner Janet Norwood secured funding for laboratory-based research to improve survey measurement, leading to the integration of behavioral science theories and methods within the statistical sciences. Early work in the behavioral science research laboratory, also known as the cognitive laboratory, used the theories and methods of cognitive science to investigate accuracy, timeliness, and response burden by evaluating the effects of alternative wording and ordering of questions, variations in the design and structure of questionnaires, the mode of data collection on the quality of survey data, and the accuracy and timeliness of survey responses. BLS laboratory research has since expanded to all aspects of data collection, including interviewer training, computer-assisted interviewing technology, data processing, and areas outside of data collection, such as the dissemination of data and customer satisfaction. In another example, economic research units associated with each BLS program provide both expertise in program development and inde-
pendent research.
One example in which the cognitive laboratory has had a valuable and ongoing impact on BLS operations is its review of the BLS Internet Data Collection Facility, which supports Web-based data collection for several BLS programs. Since its inception and throughout several iterations, the facility has gone through cognitive usability testing, designed to identify how respondents will react to data collection screens and how best to design those screens to get the desired data from respondents. Recent tests have included high-technology eye-tracking software that follows a user's eye as he or she reads an Internet screen and enters information. Such testing has optimized the user experience when reporting data and furthered the BLS mission of providing timely and accurate data.

In the area of statistical methods, the BLS also has invested in research activities designed to improve the accuracy and statistical soundness of various of its programs. Projects such as the conversion of the CES survey to a probability sample and improvements to seasonal adjustment techniques for many BLS programs come directly from this research. The Local Area Unemployment Statistics program, the first BLS program to use a model-based approach to estimation, incorporates regular updates to the modeling process.

Through both formal and informal means, the BLS reaches out beyond its borders to obtain input from many users. At present, the Agency has two formal advisory groups: the Federal Economic Statistics Advisory Committee (FESAC) and the Data Users Advisory Committee (DUAC). FESAC is a joint effort among the blS, the Census Bureau, and the Bureau of Economic Analysis. FESAC members are generally from academic institutions and have backgrounds in economics, statistics, behavioral science, and related disciplines. The group meets with senior staff from the three statistical agencies; the agenda typically includes presentations on topics of interest across the agencies, such as inputs into the GDP accounts, statistical methods, and changes to industry or occupational classifications. The sessions include time for discussing ongoing research by the academicians, who often partner with Agency staff on projects of mutual interest. FESAC has been active since 1999, and the input of the various experts has led to improvements in the American Time Use Survey and in the PPI, among other BLS programs.

The DUAC is a recently formed advisory committee that replaces two longstanding committees: the Labor Research Advisory Committee (LRAC) and the Business Research Advisory Committee (BRAC). Both LRAC and

BRAC provided valuable input for nearly 60 years. The change in the advisory committee structure was designed to take the best aspects of those two groups and combine and expand participation to include a wide range of data users. DUAC's mission is as follows:

- To bring together data users from various sectors of the U.S. economy, including the labor, business, research, academic, and government communities;
- To engage in a dialogue on technical matters related to the collection, tabulation, and analysis of BLS statistics, on the Agency's published reports, on its data dissemination methods, and on the broader aspects of the overall BLS mission and function.

Other external inputs that help the BLS improve the accuracy of its statistics include formal and informal conversations with a wide variety of stakeholders. Many BLS programs that are administered in cooperation with the States have policy and advisory groups that provide a forum for State input into program operations and development. Field economists who collect data from employers often report on changes in economic conditions or new employer practices that might be ripe for future survey collection or tabulation. Individual programs participate in conferences and trade shows to encourage respondent participation in BLS surveys and to publicize BLS data. Through these interactions with stakeholders, the BLS gains valuable insight into the labor force and identifies potential improvements in survey programs.

Following delays in the implementation of a largescale revision in the PPI, the BLS established several internal review processes. Programs identify "missioncritical projects" that are monitored more carefully by experts throughout the Agency. As a requirement of monitoring, large and highly visible projects must include detailed plans and written cross-organizational implementation strategies. These activities follow strict project management procedures to help ensure their success. In recent years, the BLS has developed several new measures under strict project management guidelines. Among these measures are employment cost indexes for 14 large metropolitan areas and rates of workplace injury and illness by occupation and demographic characteristics. The BLS continues to identify a half dozen or more mission-critical projects each year and has expanded its project management skills to help ensure the success of these projects.

More broadly, the BLS has implemented a rotating series of reviews of each of its statistical programs in order to pro-
vide multidisciplinary input to managers on program objectives and processes. These reviews focus on a number of aspects of a statistical program: what is being measured and what should be measured, proper planning, program operations, the use of information technology, program outputs and outreach efforts, and financial management. Although such reviews, which are being expanded to include input from external stakeholders, may not identify a large-scale problem that was unknown to program management, they have helped programs to develop long-run strategic plans that identify multiple improvements to be tackled over time. The inclusion of experts from various BLS programs and offices on the review teams helps to break down barriers and share best practices across the Agency.

Two aspects of the development of accurate estimates from statistical samples that are a constant challenge for the BLS (and, indeed, for any statistical organization) are variance and bias. Variance is a measure of the variability in estimates that can be attributed to random variability of the sampling and measurement process. Typically, the closer the sample size is to the size of the population, the lower is the variance. The BLS works to reduce variance by refining the sources of its samples, adjusting sampling sizes, and improving the allocation of the sample across certain variables, such as industry or geography. In recent years, these types of changes have resulted in lower variance estimates in a number of surveys.

Bias arises when the sample is not representative of the population being studied or when the data collection process results in systematic distortions. For example, if a large proportion of incomplete data in a particular survey came from one industry, the results of the survey might have a particular bias related to that industry. Similarly, if the misunderstanding of certain questions will lead to underreporting or overreporting of some expenditure, then the overall estimated mean expenditure may be biased. Improvements in sampling and estimation techniques, as well as in the data collection process, can help to reduce bias.

Over the past quarter century, BLS activities related to the measurement of variance and bias have included the following:

- Adding a measurement of statistical bias, as was done in the International Price Program;
- Increasing the quantity of published variance data, such as data on employee benefits;
- Conducting an analysis of nonresponse bias for the CES program;
- Implementing formal quality assurance processes, such as that for the Survey of Occupational Injuries


## and Illnesses;

- Standardizing collection processes and procedures, as was done in the Mass Layoff Statistics and Occupational Employment Statistics programs;
- Improving nonresponse follow-up procedures, such as call scheduling in the American Time Use Survey;
- Improving the design and wording of forms, as was done for the CES; and
- Computerizing the survey collection instrument, as was done for the CPS.

The rapid pace of technology change has allowed the BLS to implement numerous improvements in survey collection, processing, and dissemination techniques, among other things, but technological improvements have had some negative effects as well. Twice in the late 1990s, the BLS released key economic data on its Internet site ahead of the designated release time. These errors led to the implementation of strict human and technological procedures to guard against early release, including processes that involve the use of the Navy's atomic clock to ensure accurate release times.

Improved collection and processing techniques (such as Internet collection and high-speed data processing) have resulted in more timely releases of data. In addition, the greatly expanded use of technology in data dissemination has helped transmit data to users more quickly. These improvements are most noticeable in the rapid adoption of the Internet for data dissemination. In January 1994, the BLS went live with an Internet presence-one of the first Federal Agencies to take advantage of this medium. Since that time, the Web has become the Agency's primary and most heavily used data dissemination mechanism. (See box, pages 21-22.)

The BLS gathers customer feedback on its Web products and uses that feedback to improve public access to data. Such feedback was key to major Web site redesigns that occurred in 2001 and again in 2008, including multiple iterations of empirical usability testing involving representative end users (researchers, journalists, librarians, students, economic analysts, and others). In the process, the BLS incorporated lessons learned from ongoing site operation. The Agency's current Web site highlights new content every business day and provides expanded search and query capabilities. Future plans include developing interactive graphics, including charts, maps, and other data visualizations, to make it easier to understand large data sets. Also under investigation are improved site and database search tools, more cross-program data compila-
tions, expanded subscription capabilities, and improved educational materials.

## Insistence on transparency and candor

A BLS tradition that dates to the first annual report of Commissioner Caroll Wright in March 1886 is the inclusion of information about the methods employed in the development, collection, and tabulation of data. ${ }^{27}$ Today, information on definitions, methodology, and limitations of the data can be found in tables and charts, as well as in technical notes that accompany most releases of data. The reason for such transparency is to make readers aware of the known limitations of the data, to guide them in the appropriate use of the information, and to assure them that proper statistical standards and techniques have been used. A comprehensive compilation of this technical material is available in the BLS Handbook of Methods. The Handbook, with chapters on each of the BLS programs, was published as a bound volume up until the end of the last century; it is now available online. One advantage of developing an online version of the Handbook is to allow more frequent updating. At present, each chapter is updated whenever methodologies change. ${ }^{28}$

Among the types of information available to data users in the Handbook and elsewhere are response rates and variance estimates for survey data. Most BLS survey data are collected from employers, and most responses to requests for such data are voluntary. Although the response rate is often quite good, nonresponse can result in a decline in the quality of the data. The BLS publishes detailed statistics on response rates for its surveys. For example, the following tabulation indicates that the 2008 CPI included data from 84.5 percent of all items for which prices were sought, ranging from 53.6 percent of apparel prices to more than 91 percent of prices for food and beverages and for other goods and services: ${ }^{29}$

| CPI component | Response rate |
| :---: | :---: |
| Total | 84.5 |
| Food and beverages.. | 91.4 |
| Housing., | 89.9 |
| Apparel.. | 53.6 |
| Transportation. | 90.5 |
| Medical care.. | 75.9 |
| Recreation.. | 84.5 |
| Education and communication. .................... | 82.8 |
| Other goods and services............................ | 91.7 |

Beyond the regular publication of information on methodology, BLS statistical programs are often the subject of external reviews, some initiated by the Agency it-

## Development of the BLS Internet

The Internet has been the focus of much of the change that has occurred at the BLS in the last quarter century-and specifically, since the first BLS Internet site was launched in 1995. This initial foray onto the Web was inwardly focused, as pages were organized on the Internet in much the same way that BLS offices were organized. The first BLS Internet homepage was a grid of nine boxes (see photo below), and as users navigated beyond those boxes, they found the formal name of the Office that developed certain statistics. Users who were looking for data on workplace fatalities had to know that such data were produced in the Office of Compensation and Working Conditions. Select that box, and you might find the data you want; select another box, and you were lost.

As the data available on the BLS Web site accumulated, so did the Agency's interest in providing a better interface to help serve customers. That interface, which debuted in October 2001, attempted to organize data by topic, rather than by office. (See photo, next column.) As the Internet evolved, the new design presented some challenges for users. First, the theory behind the design was to provide users with a link from the homepage to anything they might want, so the page contained more than 100 links and could be overwhelming to the uninitiated. Second, the titles of the links often related to internal BLS program names or used other jargon, so getting where the user wanted to go still was nonintuitive.

But in some sense, problems with the interface no longer mattered, because users were not getting to BLS data by visiting www.bls.gov. Rather, the advent of the Internet search engine
meant that users were searching for their topic of interest; with luck, the search results provided a link to the appropriate BLS Internet page. For example, if you were to enter "workplace fatality statistics" into Google, the BLS homepage would appear as the third choice, although the first two choices would take you to the same BLS statistics on the Occupational Safety and Health Administration Web site.

The BLS changed its Internet homepage again in 2008, this time reducing the number of links on the page, adding fresh content up front each business day, and identifying resources that users might need. (See photo, next page.) The goal of the homepage has changed from providing a link to everything available from the Agency to providing highlights of the latest data available. The goal of the new homepage is to get users accustomed to coming back to it again and again for BLS information, rather than coming upon such information through a search engine or from a secondary source.

As the BLS Internet site has evolved, Web activity has expanded greatly. In 1995, the first year of its operation, the BLS Web site averaged 70,000 hits per month; in June 2008, the figure was 30 million hits. The pattern of use varies throughout the year and has remained consistent for many years. The heaviest usage is generally in the fall and spring, corresponding with the academic year. Usage typically declines during the summer. In addition, spikes in usage often coincide with the release of new data, such as the release of employment projection data every other November.

Finally, the BLS has begun to add material on its Internet


## Continued-Development of the BLS Internet

site that focuses on broad economic themes, moving away from the program focus that has dominated the site since its inception. The new Web site includes spotlights on timely topics, such as older workers and African-American History Month, with data from a number of BLS programs. Special pages also are available that demonstrate how the BLS can
serve various constituents, such as jobseekers, investors, policymakers, journalists, and students. With fresh content now available on the homepage each business day, and with new features such as audio, video, so-called really simple syndication (RSS) Web feed format, and podcasts, more than ever do users have a single portal for labor statistics.

self, others initiated externally. Over the past quarter century, standards for the operation of statistical surveys have evolved, and in 2006 the Federal Office of Management and Budget (OMB) updated and compiled those standards into a single volume. ${ }^{30}$ Topics included in the standards are as follows:

- Development of concepts, methods, and design
- Collection of data
- Processing and editing of data
- Production of estimates and projections
- Data analysis
- Review procedures
- Dissemination of information products

Reviews of the survey process are a regular part of the business of producing government statistics. The OMB reviews all requests to collect statistical data; approval for such collection must be obtained periodically, at which time the OMB reviews each program for compliance with standards, as well as for relevance and potential duplication with other Federal data collection efforts. Certain major statistical programs receive an additional periodic
review from the OMB to ensure sound statistical practices. Reviews also are performed from time to time by the Government Accountability Office and the Department of Labor's Office of Inspector General; not infrequently, these topic-based reviews result in recommendations to improve survey processes.

Although many reviews of BLS programs result in recommendations for improvement, some reviews conducted by the aforementioned organizations and others receive considerable public attention or recommend sweeping changes. A few examples from the past quarter century illustrate the breadth of these inquiries and the effect they can have on the data being produced.

In one example, as a result of the Occupational Safety and Health Act of 1970 the BLS developed an ongoing program to capture and report data on workplace injuries, illnesses, and fatalities. This data collection effort concentrated on broad estimates of the number and rate of workplace injuries, but included little detailed information (such as the occupation or demographics of injured workers or details of the injury). Further, a sample survey was used to capture information on workplace fatalities, an effort that proved inadequate for the collection of rare
events. Criticism of the BLS occupational safety and health statistics in the mid-1980s led the Agency to request the National Academy of Sciences to convene an expert panel to review data on workplace safety and health. The panel's exhaustive study resulted in recommendations for major changes to the program, including the collection of data on the characteristics of injured workers and on the circumstances surrounding their injuries, as well as the introduction of a census format to capture all fatal work injuries. The BLS implemented these changes in the early 1990s. ${ }^{31}$

In another, perhaps more well known example, the work of the U.S. Advisory Commission to Study the Consumer Price Index (known more commonly as the Boskin Commission), which took place in the mid-1990s, confirmed internal BLS research that had identified issues with the index that were thought to result in overestimates of price increases, which in turn led to increases in the cost of Social Security, among other things. The BLS responded to these issues not only by introducing a number of changes to the CPI over the last decade, but also by publishing a number of reports on progress toward the implementation and on the effect of the changes. ${ }^{32}$

Even without the impetus of outside reviews, the BLS strives to address questions and concerns about its statistics and implement changes where warranted. A few current examples demonstrate how the BLS has acknowledged criticisms of its data and provided clarification. In the area of employment statistics, data users have expressed concerns about differences between two surveys that provide similar information. The CES survey is a survey of employers that reports on the number of employees on the employers' payrolls each month. The CPS is a survey of households that reports on the number of individuals holding jobs, as well as the number and rate of unemployed persons. The employment levels reported by the CES and the CPS can differ, as can the direction and magnitude of the change in employment from month to month. The simple reason for such apparent discrepancies is that the surveys are measuring two different things: jobs and workers, respectively. Differences between the two kinds of estimate can result from individuals holding multiple jobs or from differences in the scope of the workers covered. The BLS provides considerable information to help data users understand this issue. For example, each monthly employment release includes a selection of frequently asked questions, the first of which relates to the different estimates provided by the two programs. ${ }^{33}$

In another example, with increased attention to the monthly payroll employment data from the CES program,
the methodology used to account for newly formed businesses, known as the "birth-death model," has generated interest among data users. Again, the BLS has taken actions to help users understand the issue, providing considerable detail about the model on its Internet site and in publications. ${ }^{34}$

Finally, the BLS recently published two articles designed to assist data users in understanding controversies that had arisen concerning certain BLS statistics. Such proactive acknowledgement of external criticisms is not new, but in a world of fast-paced information, the BLS is still learning how to address criticisms in a timely manner. A Monthly Labor Review article designed to identify and dispel myths about the CPI includes the following passage:

Within the past several years, commentary on the CPI...has not been concentrated in a single profession, academic discipline, or political group, but comes instead from an array of investment advisers, bloggers, magazine writers, and others in the popular press....This article is an attempt to correct some of the misunderstandings underlying those criticisms. ${ }^{35}$

In the same issue of the Review, an article addressing allegations that the BLS undercounts workplace injuries and illnesses includes the following rejoinder:

The BLS Survey of Occupational Injuries and Illnesses (SOII or Survey) has come under criticism for undercounting the number of injury and illness incidents in the workplace....This article summarizes and critiques some of these studies and describes BLS efforts to better understand and address the undercount issue.

The Bureau of Labor Statistics...has instituted a number of activities to understand and, where possible, address the issue. First, in 2007 BLS conducted a quality assurance survey....Second, BLS is extending the scope of SOII to include all public-sector workers....Third, BLS has instituted a program of research....Fourth, BLS is undertaking focused interviews of employers to learn about decisions made to report injuries and illnesses on OSHA logs and to other data systems. Finally, BLS is exploring partnerships with other organizations, including the $\mathrm{Na}-$ tional Institute for Occupational Safety and Health, to research the use of alternative data sources to complement the data available from SOII. ${ }^{36}$

The BLS is no stranger to controversy, and such criticisms are not unique to the last quarter century. Earlier controversies were similar in nature, expressing concerns about the accuracy of, and political influence on, statistics. What is different today is the rapid pace of news and the widespread nature of public commentary, often on the Internet. The BLS will continue to address these issues as they arise.

## Looking forward

Since its centennial, the bls has witnessed rapid growth in technology, a movement toward instantaneous news, the advent of online pundits with quick access to data, and a constantly changing economy that can be difficult to measure. Much of what the Agency measured as standard work
characteristics a quarter century ago is no longer standard, with such new phenomena as teleworking, medical savings accounts, employee leasing arrangements, green jobs, offshoring, and a host of others challenging the traditional means of measuring labor. The BLS has moved at different speeds to incorporate these phenomena into its programs and continues to develop new means of keeping abreast of changes in the labor environment and adapting its programs to those changes. The continued focus on its core principles-objectivity, confidentiality, relevance, accuracy, and transparency-and on its commitment to developing a staff grounded in a core set of disciplines, namely, economics, statistics, information technology, and behavioral science, has allowed the BLS to fulfill its mission to date. This focus will serve the Agency well as the characteristics of work continue to evolve in the 21st century.

```
    \({ }^{12}\) Goldberg and Moye, The First Hundred Years, p. 4.
    \({ }^{13}\) Ibid., p. 21.
```

${ }^{14}$ NAICS has been updated twice since it was first released; the most recent version dates from 2007. For more information, see "North American Industry Classification System (NAICS) at BLS" (Bureau of Labor Statistics, May 13, 2009), on the Internet at www.bls.gov/bls/naics.htm (visited June 17, 2009).
${ }^{15}$ The CPS, a monthly survey of households conducted by the U.S. Census Bureau for the BLS, provides a comprehensive body of data on the labor force, employment, unemployment, and persons not in the labor force.
${ }^{16}$ BLS Handbook of Methods, chapter 1, on the Internet at www.bls.gov/ opub/hom/homch1_a.htm (visited June 17, 2009).
${ }^{17}$ For more information on the variety of measures of unemployment, see John E. Bregger and Steven E. Haugen, "BLS introduces new range of alternative unemployment measures," Monthly Labor Review, October 1995, pp. 19-26.
${ }^{18}$ For more information on new measures of labor dynamics, see Zhi Boon, Charles M. Carson, R. Jason Faberman, and Randy E. Ilg, "Studying the labor market using BLS labor dynamics data," Monthly Labor Review, February 2008, pp. 3-16.
${ }^{19}$ Data are from the BLS Employer Costs for Employee Compensation series for private industry, March 1986 and December 2008. More information may be found on the Internet at www.bls.gov/ncs/ect (visited June 17, 2009).
${ }^{20}$ For more information on changes in retirement plans in recent years, see Stephanie L. Costo, "Trends in retirement plan coverage over the last decade," Monthly Labor Review, February 2006, pp. 58-64.
${ }^{21}$ Examples of Federal legislation related to employer health benefits include the Health Maintenance Organization Act of 1973 and the Mental Health Parity Act of 1996.
${ }^{22}$ Definitions of the various types of health insurance plans are found in National Compensation Survey: Employee Benefits in Private Industry in the United States, 2005, Bulletin 2589 (Bureau of Labor Statistics, May 2007).
${ }^{23}$ Further information on the recent history of the BLS Office of Productivity and Technology's productivity program appears in Edwin R. Dean and Michael J. Harper, "The BLS Productivity Measurement Program," in Charles R. Hulten, Edwin R. Dean, and Michael J. Harper, New Developments in Productivity Analysis (Chicago, University of Chicago Press, 2001), pp. 55-84.
${ }^{24}$ For a historical review of the international comparisons program, see $\mathrm{Pa}-$ tricia Capdevielle and Mark K. Sherwood, "International comparisons: providing comparable international labor statistics," Monthly Labor Review, June 2002, pp. 3-14; for information on China, see Erin Lett and Judith Banister, "China's manufacturing employment and compensation costs," Monthly Labor Review, April 2009, pp. 30-38. An article on India is forthcoming in the Review.
${ }^{25}$ Complete data on work-related fatalities from the terrorist attacks are available in Fatal Workplace Injuries in 2001: A Collection of Data and Analysis, Report 970 (Bureau of Labor Statistics, September 2003).
${ }^{26}$ These statistics were released in the BLS Commissioner's statement that appeared concurrently with the October 2005 "Employment Situation" release. For more information on the effects of Hurricane Katrina on the Current Employment Statistics program, see "BLS Information: Effects of Hurricane Katrina on BLS Employment and Unemployment Data Collection and Estimation" (Bureau of Labor Statistics, May 2, 2006), on the Internet at www.bls.gov/katrina/ cpscesquestions.htm (visited June 17, 2009). The Commissioner's statement appears on the Internet at www.bls.gov/news.release/history/jec_10072005. txt (visited June 17, 2009).
${ }^{27}$ Goldberg and Moye, The First Hundred Years.
${ }^{28}$ Some material from this section is based on information found in the Handbook; see note 11 for the Web address of the publication.
${ }^{29}$ Information on response to requests for data on the Consumer Price

Index is available on the BLS Internet site at www.bls.gov/cpi/cpirr2008.pdf (visited June 17, 2009).
${ }^{30}$ For more information on standards and guidelines for statistical surveys, see "Statistical Programs and Standards" (Office of Management and Budget, various dates), on the Internet at www.whitehouse.gov/omb/inforeg/statpolicy. html (visited June 17, 2009).
${ }^{31}$ See Earl S. Pollack and Deborah Kellerman Keimig, Counting Injuries and Illnesses in the Workplace: Proposals for a Better System (Washington, DC, National Academy Press, 1987).
${ }^{32}$ For information on the Boskin report and follow-up activities from the BlS, see David S. Johnson, Stephen B. Reed, and Kenneth J. Stewart, "Price measurement in the United States: a decade after the Boskin Report," Monthly Labor Review, May 2006, pp. 10-19.
${ }^{33}$ See "Frequently Asked Questions about Employment and Unemployment Estimates" in the monthly Employment Situation news release, on the Internet at www.bls.gov/news.release/empsit.toc.htm (visited June 17, 2009).
${ }^{34}$ For more information on the CES birth-death model, see "Monthly Employment Situation Report: Quick Guide to Methods and Measurement Issues" (Bureau of Labor Statistics, Aug. 8, 2008), on the Internet at www.bls.gov/bls/ empsitquickguide.htm (visited June 17, 2009).
${ }^{35}$ John S. Greenlees and Robert B. McClelland, "Addressing misconceptions about the Consumer Price Index," Monthly Labor Review, August 2008, pp. 3-19.
${ }^{36}$ John W. Ruser, "Examining evidence on whether BLS undercounts workplace injuries and illnesses," Monthly Labor Review, August 2008, pp. 20-32.

# How shifting occupational composition has affected the real average wage 

> OES data from 2002-2007 reveal that an overall shift in employment towards occupations with lower mean wages hindered growth in the U.S. real average wage and that wage growth was concentrated in bigher paying occupations; the data also show a shift in employment from the middle-paying occupations to the highest and lowest paying occupations

Rebecca Keller

Rebecca Keller is an economist in the Office of Employment and Unemployment Statistics, Bureau of Labor Statistics. Email: keller.rebecca@bls.gov

Between November 2002 and May 2007, the cross-occupational average hourly wage in the United States increased by $\$ 2.46$, from $\$ 17.10$ to $\$ 19.56$, or by about 14 percent, according to the Occupational Employment Statistics (OES) program. Adjusting the 2002 figure to May 2007 dollars ${ }^{1}$ shows the real average hourly wage increased from $\$ 19.48$ to $\$ 19.56$, approximately a .41 -percent increase.

There have been numerous studies and programs devoted to understanding this recent slow growth in the Real Average Wage (RAW). Many studies attribute slow wage growth to the increasing cost of employee benefits and health insurance-a phenomenon that results in employees' wages becoming a smaller part of their total compensation. ${ }^{2}$ Other studies have analyzed how wage growth relates to income or wage inequality. ${ }^{3}$ This article seeks to contribute towards an understanding of RAW growth by quantifying how changes in the occupational composition of U.S. employment have affected the average wage.
This article analyzes occupational wage and employment data from the OES program to understand how changes in occupations' wages and changes in occupations' levels of employment each have contributed to growth in the U.S. RAW. Overall wage growth could stem
from increases in the mean wages of particular occupations, from a shift in employment towards occupations with higher wages, or from a combination of the two factors. This article's analysis of OES data from November 2002 to May 2007 finds that a shift in employment towards lower paying occupations hindered U.S. RAW growth, that increases in the real mean wages of individual occupations was the only factor that caused growth in the U.S. RAW, and that most of the average wage growth was due to increases in the wages of the highest paying occupations. This analysis also finds a shift in employment towards the highest paying and lowest paying occupations and away from middle-paying occupations. This article will show which occupations experienced growth and which experienced decline in real mean wages or in share of employment, and how these changes influenced the U.S. RAW. It will also reveal patterns of lower and higher paying occupations and of education and training categories, and give a brief analysis of changes in the average wages of U.S. States.

## Methods

The OES program estimates national employment and wages by occupation and provides a
data set for understanding changes in the average wage over the medium term. The OES program surveys 1.2 million business establishments, using 3 years of data collected in six semiannual panels to produce estimates for over 800 occupations. ${ }^{4}$ Because of the survey methods employed, it can be difficult to use the data for time-series analysis, but this study mostly overcomes the issue because it compares wage and employment data $41 / 2$ years apart and analyzes cross-industry wage and employment estimates that have been retabulated on the basis of a common coding system. ${ }^{5}$ However, between November 2002 and May 2007, OES implemented refinements in occupational coding procedures that have caused some management workers to be moved from one occupation to another. Therefore, some results of this analysis may have been affected by this worker classification change and must be interpreted cautiously.

Change in the U.S. average wage may be due to changes in the mean wages of individual occupations or to shifts in employment among higher and lower paying occupations. An occupation's share of national employment is the percent of total jobs in the Nation for which the occupation accounts. This article uses a "shift-share analysis" of OES data to quantify the effect of changes in mean wages and the effect of changes in employment share on the U.S. RAW from November 2002 to May 2007. ${ }^{6}$ OES data previously have been employed to examine the role of occupational composition, or the assortment of shares of national employment held by occupations, in the average wage differentials of U.S. States for one point in time. ${ }^{7}$ In this article, change in the U.S. RAW over time is analyzed in a similar fashion, by decomposing the components of the change.

To calculate the U.S. RAW, each occupation's mean wage is multiplied by its share of national employment and then the products are summed. Change in the U.S. RAW from time $t$ to time $t+1$ is found by subtracting the U.S. RAW at time $t$ from the U.S. RAW at time $t+1$. Just as the U.S. RAW is influenced by the two factors of occupational mean wages and occupational composition, change in the U.S. RAW is influenced by the two factors of changes in occupational real mean wages and change in occupational composition. The decomposition of U.S. RAW change into these two factors, expressed in words and in mathematical notation, is

Change in U.S. RAW $=$ National Wage Component + National Employment Component + National Residual Component

$$
\bar{w}_{t+1}-\bar{w}_{t}=\sum_{j=1}^{J}\left(\frac{N_{j}}{N}\right)_{t} \Delta \bar{w}_{j}+\sum_{j=1}^{J} \overline{w_{j t}} \Delta\left(\frac{N_{j}}{N}\right)+\sum_{j=1}^{J} \Delta \overline{w_{j}} \Delta\left(\frac{N_{j}}{N}\right)
$$

where
$j=\{1,2, \ldots j\}$ index occupations
$\Delta=$ Change from November 2002 to May 2007
$\bar{w}=$ U.S. real average wage (in May 2007 dollars)
$\bar{w}_{j}=$ Occupational real average wage (in May 2007 dollars) $N=$ National employment; $\quad N_{i}=$ Occupational employment
$t=$ November 2002; $\quad t+1=$ May 2007
Table 1 shows the results and constituents of this analysis for the sum of all occupations and for major occupational groups (obtained by summing the results of all occupations within each group), and includes mean wages (in May 2007 dollars) and national employment shares in November 2002 and May 2007. Table 2 shows the results and constituents of this analysis for selected occupations.

The contribution of changes in the mean wages of occupations to the change in the U.S. RAW, represented by the first term in the aforementioned equation, is called the "wage component." The wage component of an occupation is found by holding the occupation's share of national employment constant while considering only the change in the mean wage of the occupation. The wage component is measured by multiplying the change in mean wage from November 2002 (in May 2007 dollars) to May 2007 by the occupation's share of November 2002 national employment.

A positive wage component indicates that the mean wage of an occupation or group of occupations increased, while a negative result indicates that the mean wage decreased. For example, as seen in table 2, the occupation of accountants and auditors has a wage component of 1 cent, found by multiplying the occupation's real mean wage increase of $\$ 1.23$ by its November 2002 employment share of .70 percent. The national wage component is found by summing all occupations' wage components. A positive national wage component indicates that occupational mean wages grew overall, whereas a negative result indicates mean wages declined overall.

The contribution of changes in occupational composition to the change in the U.S. RAW, represented by the second term in the above equation, is called the "employment component." The employment component of an occupation is found by multiplying the occupation's change in employment share by its November 2002 mean wage (in May 2007 dollars). In other words, an occupation's

Table 1. Mean hourly wage, employment share, and components of change in the U.S. real average wage, by occupational group, Nov. 2002-May 2007

| Occupational group | 2002 <br> mean <br> wage, <br> in May <br> 2007 <br> dollars | 2007 <br> mean wage | Change in real mean wage ${ }^{1}$ | $\begin{aligned} & 2002 \\ & \text { employ- } \\ & \text { ment } \\ & \text { share } \end{aligned}$ | $\begin{aligned} & 2007 \\ & \text { employ- } \\ & \text { ment } \\ & \text { share } \end{aligned}$ | Change in employment share ${ }^{1}$ | Wage component | Employment component | Residual component | Total of three components ${ }^{1}$ | Employment effect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total, all occupations .......... | \$19.48 | \$19.56 | \$0.08 | 100.0 | 100.0 | - | \$0.22 | \$-0.11 | \$-0.03 | \$0.08 | \$-0.11 |
| Management occupations ${ }^{2}$........ | 43.19 | 46.27 | 3.08 | 5.56 | 4.47 | -1.09 | . 20 | -. 49 | -. 04 | -. 33 | -. 28 |
| operations occupations | 29.20 | 30.07 | . 87 | 3.74 | 4.48 | . 74 | . 02 | . 22 | . 00 | . 25 | . 08 |
| Computer and mathematical science occupations $\qquad$ | 33.75 | 34.71 | . 96 | 2.17 | 2.38 | . 20 | . 01 | . 08 | . 00 | . 09 | . 04 |
| Architecture and engineering occupations $\qquad$ | 31.77 | 33.11 | 1.34 | 1.89 | 1.85 | -. 04 | . 02 | -. 01 | . 00 | . 01 | . 00 |
| Life, physical, and social science occupations. | 28.69 | 29.79 | 1.11 | . 85 | . 93 | . 09 | . 01 | . 03 | . 00 | . 04 | . 01 |
| Community and social services occupations. $\qquad$ | 18.96 | 19.49 | . 53 | 1.24 | 1.33 | . 10 | . 01 | . 02 | . 00 | . 03 | . 00 |
| Legal occupations ...................... | 42.35 | 42.53 | . 18 | . 73 | . 74 | . 01 | . 00 | . 01 | . 00 | . 01 | . 01 |
| Education, training, and library occupations $\qquad$ | 22.01 | 22.41 | . 40 | 6.09 | 6.19 | . 10 | . 01 | . 03 | . 00 | . 05 | . 01 |
| Arts, design, entertainment, sports, and media occupations $\qquad$ | 22.81 | 23.27 | . 46 | 1.18 | 1.31 | . 13 | . 00 | . 03 | . 00 | . 04 | . 01 |
| Healthcare practitioner and technical occupations $\qquad$ | 29.75 | 31.28 | 1.53 | 4.87 | 5.12 | . 25 | . 06 | . 08 | . 01 | . 15 | . 03 |
| Healthcare support occupations $\qquad$ | 12.27 | 12.31 | . 03 | 2.49 | 2.70 | . 21 | . 00 | . 02 | . 00 | . 03 | -. 02 |
| Protective service occupations | 18.25 | 18.84 | . 58 | 2.35 | 2.30 | -. 05 | . 02 | -. 01 | . 00 | . 00 | . 00 |
| Food preparation and serving related occupations $\qquad$ | 9.40 | 9.34 | -. 06 | 7.89 | 8.39 | . 50 | . 00 | . 04 | . 00 | . 04 | -. 05 |
| Building and grounds cleaning and maintenance occupations. $\qquad$ | 11.44 | 11.33 | -. 11 | 3.34 | 3.28 | -. 06 | . 00 | -. 01 | . 00 | -. 01 | . 00 |
| Personal care and service occupations. $\qquad$ | 11.70 | 11.53 | -. 17 | 2.29 | 2.49 | . 20 | . 00 | . 02 | . 00 | . 02 | -. 02 |
| Sales and related occupations | 16.76 | 16.94 | . 18 | 10.46 | 10.67 | . 21 | . 02 | . 04 | . 00 | . 05 | . 00 |
| Office and administrative support occupations $\qquad$ | 15.28 | 15.00 | -. 28 | 17.84 | 17.32 | -. 52 | -. 04 | -. 09 | . 00 | -. 13 | . 01 |
| Farming, fishing, and forestry occupations $\qquad$ | 11.05 | 10.89 | -. 16 | . 35 | . 33 | -. 02 | . 00 | . 00 | . 00 | . 00 | . 00 |
| Construction and extraction occupations $\qquad$ | 19.93 | 19.53 | -. 40 | 4.80 | 4.99 | . 19 | -. 02 | . 04 | . 00 | . 02 | . 00 |
| Installation, maintenance, and repair occupations | 19.59 | 19.20 | -. 39 | 4.09 | 4.01 | -. 08 | -. 02 | -. 02 | . 00 | -. 03 | . 00 |
| Production occupations.............. | 15.43 | 15.05 | -. 38 | 8.41 | 7.55 | -. 86 | -. 03 | -. 13 | . 00 | -. 16 | . 04 |
| Transportation and material moving occupations | 14.93 | 14.75 | -. 18 | 7.37 | 7.17 | -. 20 | -. 02 | -. 02 | . 00 | -. 04 | . 02 |

${ }^{1}$ Numbers may not add precisely because of rounding.
${ }^{2}$ The results for management occupations should be interpreted with
caution because they may be affected by refinements in occupational coding procedures.
mean wage is held constant and only the change in an occupation's employment share is taken into account. A positive employment component indicates that the employment share of an occupation or group of occupations
increased, while a negative result indicates that its employment share declined. For example, as seen in table 1, the employment component of the production occupational group is -13 cents, found by multiplying the pro-

Table 2. Mean hourly wage, employment share, and components of change in the U.S. real average wage, for selected occupations, Nov. 2002-May 2007

| Occupation title | 2002 <br> mean <br> wage, <br> in May <br> 2007 <br> dollars | 2007 <br> mean <br> wage | Change <br> in real <br> mean <br> wage | 2002 <br> employ- <br> ment <br> share | 2007 <br> employ- <br> ment <br> share | Change <br> in <br> employ- <br> ment <br> share | Wage <br> com- <br> ponent | Employ- <br> ment <br> com- <br> ponent | Resid- <br> ual <br> com- <br> ponent <br> of <br> compo- <br> nents |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Employ- <br> ment <br> effect |  |  |  |  |  |  |  |  |  |  |
| Total, all occupations....... | $\$ 19.48$ | $\$ 19.56$ | 0.08 | 100.0 | 100.0 | - | 0.22 | -0.11 | $\$-0.03$ | $\$ 0.08$ |

Selected occupations with large positive wage components (sorted by wage component) ${ }^{2}$

| Registered nurses ............. | 27.29 | 30.04 | 2.74 | 1.76 | 1.84 | . 08 | . 05 | . 02 | . 00 | . 07 | . 01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pharmacists...................... | 41.15 | 47.58 | 6.43 | . 17 | . 19 | . 02 | . 01 | . 01 | . 00 | . 02 | . 00 |
| Sales representatives, wholesale and manufacturing, except technical and scientific products $\qquad$ | 28.00 | 28.94 | . 94 | 1.08 | 1.12 | . 04 | . 01 | . 01 | . 00 | . 02 | . 00 |
| Accountants and auditors $\qquad$ | 29.15 | 30.37 | 1.23 | . 70 | . 83 | . 13 | . 01 | . 04 | . 00 | . 05 | . 01 |
| First-line supervisors/ managers of nonretail sales workers. $\qquad$ | 35.19 | 37.58 | 2.39 | . 26 | . 21 | -. 05 | . 01 | -. 02 | . 00 | -. 01 | -. 01 |
| Sales representatives, wholesale and manufacturing, technical and scientific products $\qquad$ | 34.75 | 36.76 | 2.01 | . 29 | . 30 | . 01 | . 01 | . 00 | . 00 | . 01 | . 00 |
| Licensed practical and licensed vocational nurses $\qquad$ | 17.69 | 18.72 | 1.03 | . 54 | . 54 | -. 01 | . 01 | . 00 | . 00 | . 00 | . 00 |
| Waiters and waitresses..... | 8.64 | 8.93 | . 29 | 1.64 | 1.75 | . 12 | . 00 | . 01 | . 00 | . 02 | -. 01 |
| Computer software engineers, systems software. $\qquad$ | 41.53 | 43.65 | 2.12 | . 20 | . 26 | . 06 | . 00 | . 02 | . 00 | . 03 | . 01 |
| Executive secretaries and administrative assistants $\qquad$ | 19.19 | 19.57 | . 38 | 1.10 | 1.13 | . 03 | . 00 | . 00 | . 00 | . 01 | . 00 |

## Selected occupations with large negative wage components (sorted by wage component) ${ }^{2}$

| Office clerks, general ....... | 12.89 | 12.48 | -. 41 | 2.24 | 2.22 | -. 02 | -. 01 | . 00 | . 00 | -. 01 | . 00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Truck drivers, heavy and tractor-trailer. $\qquad$ | 18.81 | 18.06 | -. 76 | 1.19 | 1.26 | . 07 | -. 01 | . 01 | . 00 | . 00 | . 00 |
| Stock clerks and order fillers $\qquad$ | 11.63 | 10.93 | -. 71 | 1.26 | 1.35 | . 09 | -. 01 | . 01 | . 00 | . 00 | -. 01 |
| Cashiers ............................ | 9.14 | 8.84 | -. 30 | 2.65 | 2.64 | -. 01 | -. 01 | . 00 | . 00 | -. 01 | . 00 |
| Customer service representatives.. | 15.46 | 14.93 | -. 54 | 1.45 | 1.63 | . 18 | -. 01 | . 03 | . 00 | . 02 | -. 01 |
| Team assemblers.............. | 13.53 | 12.72 | -. 81 | . 89 | . 87 | -. 02 | -. 01 | . 00 | . 00 | -. 01 | . 00 |
| Securities, commodities, and financial services sales agents $\qquad$ | 46.94 | 43.49 | -3.44 | . 20 | . 20 | . 00 | -. 01 | . 00 | . 00 | -. 01 | . 00 |
| Secretaries, except legal, medical, and executive.. $\qquad$ | 14.45 | 14.04 | -. 42 | 1.41 | 1.36 | -. 04 | -. 01 | -. 01 | . 00 | -. 01 | . 00 |
| Computer support specialists. $\qquad$ | 23.18 | 21.78 | -1.40 | . 38 | . 39 | . 02 | -. 01 | . 00 | . 00 | . 00 | . 00 |
| Construction laborers ..... | 15.64 | 14.88 | -. 76 | . 65 | . 78 | . 13 | . 00 | . 02 | . 00 | . 01 | -. 01 |

[^0]| Table 2. Continued selected oc | Mean h pation | y wag ov. 20 | employ <br> -May 200 | nt share | and com | ents o | hange in | he U.S. r | al ave | ge wag | for |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Occupation title | 2002 <br> mean <br> wage, in May 2007 dollars | 2007 <br> mean <br> wage | Change in real mean wage ${ }^{1}$ | $\begin{aligned} & 2002 \\ & \text { employ- } \\ & \text { ment } \\ & \text { share } \end{aligned}$ | 2007 employment share | Change in employment share ${ }^{1}$ | Wage component | Employment component | Residual component | Total of components ${ }^{1}$ | Employment effect |
| Selected occupations with large positive employment effects (sorted by employment effect) ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |  |
| Computer software engineers, applications $\qquad$ | 40.41 | 41.18 | 0.77 | 0.28 | 0.37 | 0.09 | 0.00 | 0.04 | 0.00 | 0.04 | 0.02 |
| Computer software engineers, systems software $\qquad$ | 41.53 | $43.65$ | 2.12 | . 20 | . 26 | .06 | . 00 | . .02 | . 00 .00 | .03 | .01 |
| Accountants and auditors $\qquad$ | 29.15 | 30.37 | 1.23 | . 70 | . 83 | . 13 | . 01 | . 04 | . 00 | . 05 | . 01 |
| Packers and packagers, hand $\qquad$ | 9.94 | 9.77 | -. 17 | . 73 | . 59 | -. 13 | . 00 | -. 01 | . 00 | -. 01 | . 01 |
| Management analysts..... | 38.42 | 38.68 | . 26 | . 31 | . 37 | . 06 | . 00 | . 02 | . 00 | . 03 | . 01 |
| Market research analysts $\qquad$ | $33.00$ | 32.20 | -. 80 | . 10 | . 16 | . 07 | . 00 | . 02 | . 00 | . 02 | . 01 |
| Personal financial advisors $\qquad$ | 42.96 | 42.89 | -. 07 | . 06 | . 10 | . 04 | . 00 | . 02 | . 00 | . 02 | . 01 |
| Loan officers ..................... | 28.56 | 30.10 | 1.54 | . 17 | . 27 | . 09 | . 00 | . 03 | . 00 | . 03 | . 01 |
| Network systems and data communications analysts $\qquad$ | 33.62 | 34.02 | . 41 | . 10 | . 16 | . 06 | . 00 | . 02 | . 00 | . 02 | . 01 |
| Financial analysts .............. | 36.79 | 39.28 | 2.50 | . 13 | . 17 | . 04 | . 00 | . 02 | . 00 | . 02 | . 01 |
| Selected occupations with large negative employment effects (sorted by employment effect) ${ }^{\mathbf{2}}$ |  |  |  |  |  |  |  |  |  |  |  |
| Combined food preparation and serving workers, including fast food $\qquad$ | 8.30 | 8.03 | -. 27 | 1.57 | 1.94 | . 37 | . 00 | . 03 | . 00 | . 03 | -. 04 |
| Retail salespersons ............ | 11.91 | 11.79 | -. 12 | 3.05 | 3.30 | . 24 | . 00 | . 03 | . 00 | . 03 | -. 02 |
| Home health aides ............ | 10.43 | 10.03 | -. 40 | . 45 | . 62 | . 17 | . 00 | . 02 | . 00 | . 02 | -. 02 |
| Waiters and waitresses..... | 8.64 | 8.93 | . 29 | 1.64 | 1.75 | . 12 | . 00 | . 01 | . 00 | . 02 | -. 01 |
| Computer programmers. | 34.88 | 34.62 | -. 26 | . 36 | . 29 | -. 06 | . 00 | -. 02 | . 00 | -. 02 | -. 01 |
| Personal and home care aides $\qquad$ | 9.20 | 9.11 | -. 09 | $.35$ | . 44 | $.09$ | . 00 | $01$ | $.00$ | $\text { . } 01$ | -. 01 |
| Cooks, restaurant | 10.87 | 10.56 | -. 31 | . 56 | . 65 | . 09 | . 00 | . 01 | . 00 | $\text { . } 01$ | -. 01 |
| First-line supervisors/ managers of non-retail sales workers. $\qquad$ | 35.19 | $37.58$ | 2.39 | . 26 | . 21 | -. 05 | . 01 | -. 02 | . 00 | -. 01 | -. 01 |
| Stock clerks and order fillers. $\qquad$ | 11.63 | 10.93 | -. 71 | 1.26 | 1.35 | . 09 | -. 01 | . 01 | . 00 | . 00 | -. 01 |
| Customer service representatives $\qquad$ | 15.46 | 14.93 | -. 54 | 1.45 | 1.63 | . 18 | -. 01 | . 03 | . 00 | . 02 | -. 01 |
| 1Numbers may not add precisely because of rounding.${ }^{\text {a }}$ Management occupations and residual occupations are not included. |  |  |  |  |  |  |  |  |  |  |  |

duction group's November 2002 mean wage (in May 2007 dollars) of $\$ 15.43$ by its employment share decline of .86 percentage point. A higher paying occupation will have an employment component of a greater degree than a lower paying occupation with the same change in employment share. The national employment component is found by summing all occupations' employment components. A
positive national employment component indicates that higher paying occupations gained employment share relative to lower paying occupations, while a negative result indicates lower paying occupations gained employment share.

The final component of change in the U.S. RAW is the residual component, which captures the part of the
change in the RAW that is not attributable solely to either the employment component or the wage component. The residual component is less meaningful to this study than the wage and employment components, because it is small and does not represent either the change in occupational composition alone or the changes in occupations' wages alone.

The sums of the three components for each occupation or occupational group are the figures in the "total of components" column of tables 1 and 2. The sum of all three components of all occupations is equal to the change in the U.S. RAW. In addition to decomposing U.S. RAW change into its three components, this article also seeks to show how the change in each occupation's mean wage and the change in its employment share have affected the U.S. RAW. The effect of the change in an occupation's mean wage on the U.S. RAW is captured through its wage component. Occupations whose real mean wages have increased will have positive wage components and increase the U.S. RAW, while occupations whose real mean wages have declined will have negative wage components and decrease the U.S. RAW. For example, accountants and auditors' real mean wage increase of $\$ 1.23$ would have increased the U.S. RAW by 1 cent were employment shares to have remained constant, as seen in table 2.

Whereas the wage component indicates the effect that the change in an occupation's mean wage has on the U.S. RAW, the employment component does not indicate the effect that the change in an occupation's employment share has on the U.S. RAW. For example, a below-average paying occupation with a decline in employment share will have a negative employment component, but this decline in employment share will actually increase the U.S. RAW. There is, however, a calculation that can determine the effect that the change in one occupation's employment share has on the U.S. RAW, and the result of this calculation is referred to as the "employment effect." The employment effect takes into account both the change in an occupation's share of employment and the difference between the occupation's mean wage and the national mean wage. The overall employment effect of a group or category of occupations is calculated by summing the employment effects of all the occupations within that group or category. The national employment effect-that is, the employment effect of all occupations taken together-is found by summing the employment effects of all occupations in the United States, and it is equal to the national employment component. The occupational employment effect is shown in tables 1 and 2 , and its equation is

$$
E_{j}=\Delta S_{j} *\left(\bar{w}_{j t}-\bar{w}_{t}\right)
$$

where
$j=\{1,2, \ldots j\}$ index occupations
$\underline{E}=$ Occupational employment effect
$\underline{w}=$ U.S. real average wage (in May 2007 dollars)
$\bar{w}_{j}=$ Occupational real average wage (in May 2007 dollars)
$\Delta S=$ Change in occupational employment share
$t=$ November 2002
A positive employment effect indicates that the change in an occupation's employment share was a factor pushing the U.S. average wage upward. An occupation with a below-average mean wage and a decline in employment share will have a positive employment effect, as will an occupation with an above-average mean wage and an increase in employment share. Similarly, a negative employment effect indicates that the change in an occupation's employment share was a factor pushing the U.S. average wage downward. A negative employment effect is a result of either an occupation with a below-average mean wage gaining employment share or an occupation with an above-average mean wage losing employment share. For example, computer programmers' above-average November 2002 wage of $\$ 34.88$ and their loss of .06 percentage point in employment share from November 2002 to May 2007 resulted in an employment effect of -1 cent on the U.S. RAW.

## Results

The U.S real average wage increase of 8 cents was the combined result of a -11 cent employment component, indicating an employment shift toward lower paying jobs; a 22 cent wage component, indicating that the mean wages of occupations increased overall; and a -3 cent residual component.

The national wage component. The national wage component was 22 cents, indicating the U.S. RAW would have increased by 22 cents, or 1.1 percent, if the employment shares of occupations had remained constant. The national wage component more than offset the national employment component of -11 cents, and it alone propelled the U.S. RAW to positive growth. So, while the mean wages of occupations increased overall, growth in the U.S. RAW was hindered because lower paying occupations gained employment share relative to higher paying occupations.

The positive wage component indicates either that a majority of employment was in occupations with mean wage growth or that those occupations with mean wage growth had a greater degree of change in wage than did occupations whose mean wages declined. In fact, in November 2002 only about 41 percent of employment was in occupations whose mean wage was to grow through May 2007, and the remaining 59 percent was in occupations whose mean wage was to decrease or remain unchanged during the same period. Therefore, the positive wage component was driven by occupations with growth in the mean wage having a greater degree of change than occupations with a decline in the mean wage.

The influences of occupational wage components. Overall, about 51 percent of occupations, making up about 41 percent of employment, had positive wage components. The wage components of occupations depend on their employment shares in November 2002 and on the change in their mean wage from November 2002 to May 2007. An occupation with a higher employment share or greater growth in the mean wage will have a larger wage component. Conversely, an occupation with a lower employment share or lesser wage growth will have a smaller wage component. Those occupations with the largest wage components are generally higher paying and are mostly from the management, computer and mathematical science, healthcare practitioner and technical, and sales and related groups. As seen in table 2, registered nurses had one of the highest wage components, 5 cents, because the occupation had both strong real mean wage growth of $\$ 2.74$ and a high November 2002 employment share of 1.76 percent. General office clerks, heavy and tractortrailer truck drivers, and stock clerks and order fillers all had some of the most negative wage components, at -1 cent each, because of the occupations' high employment shares coupled with declines in their real mean wages. The management occupational group and the healthcare practitioner and technical occupational group had the largest wage components of all occupational groups, as shown in table 1. Production occupations and office and administrative support occupations had the most negative wage components.

The national employment component. The shifting occupational composition of the United States would have decreased the RAW by 11 cents, or 6 percent, had occupational mean wages remained constant. In other words, if the mean wages of all occupations had remained unchanged, changes in the distribution of employment among occu-
pations would have decreased the U.S. RAW by 11 cents. This negative employment component indicates that lower paying occupations gained employment share relative to higher paying occupations. In other words, lower paying occupations had faster employment growth than higher paying occupations, accounting for a greater share of total employment in May 2007 than in November 2002. Because the national employment component aggregates the employment components of all occupations, it signifies a trend that takes all occupations into account and does not necessarily indicate that only the lowest paying occupations gained employment share or that only the highest paying occupations lost employment share. Occupations that gained and lost employment share will be further explored later in this article.

The influences of occupational employment effects. Whereas the national employment component has documented the shift in employment share from higher paying to lower paying occupations, the employment effect of an occupation shows precisely the degree and direction that the occupation's change in employment share has had on the U.S. RAW. Overall, 42 percent of occupations, making up 46 percent of employment, had a negative or zero employment effect on the U.S. RAW. For example, the occupation of combined food preparation and serving workers, including fast food, has one of the most negative employment effects, -4 cents, on the U.S. RAW because this below-average paying occupation increased in employment share from 1.57 percent to 1.94 percent. Major occupational groups that had negative employment effects on the U.S. RAW include the healthcare support, food preparation and serving related, and personal care and service occupational groups.

Still, most occupations had positive employment effects on the U.S. RAW. Many of those occupations with the greatest positive employment effects were from the business and financial operations group or computer and mathematical science group, as many of these above-av-erage-paying occupations gained employment share. For example, the occupation of computer software engineers, applications had a positive employment effect of 2 cents on the U.S. RAW, as this high-paying occupation increased in employment share from .28 to .37 percent.

Grouping occupations by mean wage. Besides identifying how each occupation's mean wage and change in employment share affected the U.S. RAW, broader trends in the U.S. labor market can be understood through grouping occupations on the basis of mean wage. Doing so will illus-

Table 3. Employment shares and components of change in the U.S. real average wage, by pay category, Nov. 2002-May 2007

| Category of occupations or percentage summary | Pay categories ( organized by mean hourly wage) |  |  |  | All occupations |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lowest paying | Lower paying | Average paying | Highest paying |  |
|  | $\begin{aligned} & \text { Below } \\ & \$ 11.80 \end{aligned}$ | $\begin{gathered} \$ 11.80 \text { to } \\ \$ 15.67 \end{gathered}$ | $\begin{gathered} \$ 15.68 \text { to } \\ \$ 24.11 \end{gathered}$ | Above \$24.11 |  |
| All occupations |  |  |  |  |  |
| Employment share, Nov. ${ }^{\text {0 }}$, , in percent............. | 24.86 | 24.41 | 25.49 | 25.24 | 100.00 |
| Employment share, May 07 , in percent............ | 25.46 | 23.67 | 25.29 | 25.57 | 100.00 |
| Percentage point change in employment share, Nov. '02-May '07 | . 60 | -. 74 | -. 20 | . 33 | . 00 |
| Total wage component................................... | -. 03 | -. 06 | -. 04 | . 35 | . 22 |
| Total employment component........................ | . 05 | -. 10 | -. 03 | -. 03 | -. 11 |
| Total residual component............................... | . 00 | . 00 | . 00 | -. 03 | -. 03 |
| Total of three components ............................... | . 02 | -. 16 | -. 08 | . 30 | . 08 |
| Employment effect | -. 06 | . 04 | . 01 | -. 09 | -. 11 |
| Occupations whose mean wage increased Nov. ${ }^{\prime 02-M a y ~}{ }^{\prime 07}$ |  |  |  |  |  |
|  | 6.73 | 5.10 | 9.66 | 19.55 | 41.03 |
| Employment share, May 07 , in percent............ | 6.63 | 4.80 | 9.57 | 19.83 | 40.81 |
| share, Nov. ${ }^{\prime} 02-M a y$ '07 | -. 10 | -. 30 | -. 09 | . 28 | -. 22 |
| Occupations whose mean wage declined or remained the same Nov. ${ }^{\text {02 }}$-May ${ }^{\text {© } 07}$ |  |  |  |  |  |
| Employment share, Nov. ${ }^{\circ} 02$, in percent............. | 18.13 | 19.31 | 15.84 | 5.69 | 58.97 |
| Employment share, May ${ }^{\text {0 }}$, , in percent............. | 18.83 | 18.88 | 15.73 | 5.75 | 59.18 |
| Percentage point change in employment share, Nov. '02-May '07 $\qquad$ | . 71 | -. 44 | -. 11 | . 06 | . 22 |
| Percentage summaries |  |  |  |  |  |
| Percent of pay category's Nov. '02 employment that was in occupations whose mean wage increased Nov. '02-May '07. $\qquad$ | 27.08 | 20.88 | 37.88 | 77.45 |  |
| Percent of pay category's Nov. '02 employment that was in occupations whose mean wage declined or remained the same Nov. '02-May '07 | 72.92 | 79.12 | 62.12 | 22.55 |  |
| Percent of Nov. '02 employment in occupations whose mean wage increased that comes from this pay group $\qquad$ | 16.41 | 12.42 | 23.54 | 47.63 |  |
| Percent of Nov. '02 employment in occupations whose mean wage declined or remained the same that comes from this pay category......... | 30.74 | 32.75 | 26.86 | 9.65 |  |

trate how occupations with higher and lower mean wages experienced changes in mean wage and employment as a group, and how these changes influenced the U.S. RAW. Table 3 distributes occupations into four categories that had roughly equal shares of the Nation's employment in 2002. The categories vary by their 2002 mean wages, and they are labeled as follows: "highest paying" (mean wage
over $\$ 24.11$ ); "average paying" (mean wage of $\$ 15.68$ to $\$ 24.11$ ), a range within which the U.S. RAW of $\$ 19.48$ falls; "lower paying" (mean wage of $\$ 11.80$ to $\$ 15.67$ ); and "lowest paying" (mean wage below $\$ 11.80$ ). Table 3 also presents employment shares in November 2002 and May 2007, employment components, wage components, residual components, and employment effects for each of
Table 4. The number of occupations in the major occupational groups whose mean hourly wages are in each of 4 pay
categories, Nov. 2002 categories, Nov. 2002

| Occupational group | Total | Mean wage below \$11.80 | $\begin{gathered} \text { Mean wage of } \\ \$ 11.80 \text { to } \\ \$ 15.67 \end{gathered}$ | $\begin{gathered} \text { Mean wage of } \\ \$ 15.68 \text { to } \\ \$ 24.11 \end{gathered}$ | Mean wage above \$24.11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| All occupations | 762 | 76 | 150 | 285 | 251 |
| Management occupations | 30 | 0 | 0 | 4 | 26 |
| Business and financial operations occupations | 28 | 0 | 0 | 4 | 24 |
| Computer and mathematical science occupations | 16 | 0 | 0 | 2 | 14 |
| Architecture and engineering occupations | 34 | 0 | 0 | 9 | 25 |
| Life, physical, and social science occupations | 39 | 0 | 0 | 10 | 29 |
| Community and social services occupations | 14 | 0 | 2 | 11 | 1 |
| Legal occupations | 9 | 0 | 0 | 4 | 5 |
| Education, training, and library occupations | 58 | 1 | 3 | 9 | 45 |
| Arts, design, entertainment, sports, and media occupations | 37 | 1 | 3 | 20 | 13 |
| Healthcare practitioner and technical occupations | 46 | 0 | 7 | 12 | 27 |
| Healthcare support occupations | 15 | 4 | 8 | 3 | 0 |
| Protective service occupations | 20 | 2 | 3 | 9 | 6 |
| Food preparation and serving related occupations | 16 | 14 | 1 | 1 | 0 |
| Building and grounds cleaning and maintenance occupations | 9 | 3 | 4 | 2 | 0 |
| Personal care and service occupations | 33 | 17 | 9 | 6 | 1 |
| Sales and related occupations | 21 | 3 | 6 | 4 | 8 |
| Office and administrative support occupations | 55 | 6 | 21 | 28 | 0 |
| Farming, fishing, and forestry occupations | 13 | 4 | 4 | 5 | 0 |
| Construction and extraction occupations | 58 | 0 | 13 | 42 | 3 |
| Installation, maintenance, and repair occupations | 51 | 1 | 10 | 35 | 5 |
| Production occupations | 110 | 13 | 47 | 43 | 7 |
| Transportation and material moving occupations | 50 | 7 | 9 | 22 | 12 |

the four categories of pay.
Table 4 displays the occupational makeup of each pay category. The highest paying category consists mainly of management; business and financial operations; computer and mathematical science; life, physical, and social science; architecture and engineering; healthcare practitioner and technical; and education, training, and library occupations. However, some occupations from other groups also are included, such as power plant operators from the production group. The average-paying category consists of occupations from every occupational group. Still, accounting for most of this category of pay are occupations in the office and administrative support; arts, design, entertainment, sports, and media; construction and extraction; installation, maintenance, and repair; production; and transportation and material moving occupational groups. Most occupations within the lower paying category are in the office and administrative support; production; and construction and extraction occupational groups. The lowest paying category contains many occupations from the personal care and service; food preparation and serving
related; and production occupational groups.
Wage components by pay category. Analyzing the wage components of each category of pay as a whole illustrates how mean wage growth varied by category. When the wage components of occupations within each category are summed, only the highest paying category has a positive wage component, while the three other pay categories have negative wage components. When occupations are analyzed in the context of these four categories, only the highest paying category would have increased the U.S. RAW—by 35 cents-from November 2002 to May 2007 had employment shares remained constant during that period. The lower paying category has the most negative wage component, -6 cents, while the lowest paying category has a wage component of -3 cents and the average-paying category has a wage component of -4 cents. Breaking out occupations into these pay categories shows that the category of highest paying occupations is the largest factor in creating a positive national positive wage component of 22 cents.

The highest paying category's wage component of 35 cents indicates either that occupations whose mean wage increased make up the majority of employment in this category or that those occupations whose mean wage grew had a greater degree of wage change than did those whose mean wage declined or remained unchanged. The analysis shows that in fact about 77 percent of November 2002 employment in this category was in occupations with growth in the mean wage.

For each of the other three pay categories, all of which have negative wage components, the majority of employment was in occupations with declines in the mean wage. About 62 percent of November 2002 employment within the average-paying category, 79 percent of employment from that time within the lower paying category, and 73 percent of employment from that time within the lowest paying category was in occupations with a decline in the mean wage or an unchanged mean wage from November 2002 to May 2007. Thus, most employment in the aver-age-, lower, and lowest paying categories was in occupations with decline or no growth in mean wages, whereas the majority of employment in the highest paying category was in occupations whose mean wage increased.

Employment share by pay category. One can see from the negative national employment component that lower paying occupations gained employment share overall, but breaking out occupations into pay categories reveals that there also was an employment shift from the middle two pay categories to the lowest and highest paying categories. The lowest paying category had the largest increase in employment share, .60 percentage point, while the highest paying category increased employment share by about half that ( .33 percentage point). The average-paying category lost .20 percentage point of its share of employment, and the lower paying category lost the greatest employment share, with a decrease of .74 percentage point. This same "polarization" of the U.S. labor market was studied by David H. Autor, Lawrence F. Katz, and Melissa S. Kearney in the 1990s; they found "employment polarizing into highwage and low-wage jobs at the expense of traditional middle-skill jobs." ${ }^{8}$

Employment components and employment effects by pay category. Analyzing the overall employment effect of each category of pay reveals how shifts in employment share have influenced the U.S. RAW. The lowest paying category's gain of .60 percentage point in employment share resulted in an employment effect of -6 cents on the RAW. Still, the employment component of the category is
positive, at 5 cents, showing that within the lowest paying category, occupations with higher mean wages gained employment share. Meanwhile, the lower paying category lost .74 percentage point of employment share, causing a positive employment effect of 4 cents on the U.S. RAW. Within the lower paying category, however, employment share shifted away from higher paying occupations, evidenced by the category's employment component of -10 cents. The average-paying category had an employment effect of about 1 cent on the U.S. RAW, although its employment component of -3 cents indicates that among the occupations within the category, employment share shifted slightly towards lower paying occupations. Because the highest paying category contains many management occupations, the results of this analysis for the highest paying category should be interpreted with caution.

Examination of employment trends within the four pay categories shows that the negative national employment component is explained by the trend of an overall shift in employment towards the lowest paying category. There was also a shift in employment towards occupations with lower mean wages within two or three of the pay categories.

Grouping occupations by change in mean wage. In addition to grouping occupations on the basis of their November 2002 mean wage, another way to allow hidden patterns to emerge is to separate occupations into those with growth in the mean wage and those with a decline in the mean wage or an unchanged mean wage. Table 3 displays employment components, wage components, and changes in employment share for occupations whose mean wage increased from November 2002 to May 2007 and for occupations whose mean wage decreased or remained unchanged during the same period. As described earlier, in November 2002 only about 41 percent of employment was in occupations whose mean wage increased during the $41 / 2$-year period, and the remaining 59 percent was in occupations whose mean wage declined or remain unchanged during that time. The highest paying category accounted for about 48 percent of the November 2002 employment of occupations whose mean wage was to grow through May 2007. So, not only was most employment in the highest paying category in occupations that experienced growth in the mean wage, as discussed earlier, but the highest paying category accounted for almost half of employment among occupations whose mean wage increased. The average-paying category made up about 24 percent of employment in occupations whose mean wage increased, and the remaining 29 percent came from the
lower paying and lowest paying categories.
Among occupations for which the mean wage declined or remained the same from November 2002 to May 2007, the lowest and lower paying categories made up 63 percent of November 2002 employment. The average-paying category made up 27 percent of employment among the same occupations, and the highest paying category accounted for the remaining 10 percent. This finding further explains the strong positive wage components of the highest paying category and the negative wage components of the three other categories.

A final underlying trend behind the . 41-percent growth of the RAW was faster overall growth in employment among occupations whose mean wage declined or did not change, in comparison with occupations whose mean wage increased. Overall, those occupations whose mean wage decreased or remained the same gained .22 percentage point of employment share. Most of the loss in employment share from occupations with growth in the mean wage came from the average-paying, lower paying and the lowest paying categories, which lost a combined
.49 percentage point of employment share. The highest paying occupations with mean wage growth gained .28 percentage point of employment share. In contrast, the lowest paying occupations whose mean wage decreased or remained the same gained .71 percentage point of employment share; the lower paying and average-paying categories whose mean wage declined or stayed the same lost employment share. As mentioned earlier in this article, the lowest paying and highest paying categories were the two pay categories that gained employment share. Categorizing occupations by change in mean wage reveals that for the lowest paying category, most of the occupations that gained employment share were occupations with a decline or no change in the mean wage, and that for the highest paying category, most of the occupations that gained employment share were occupations whose mean wage increased.

## Additional applications

There are many potential additional applications for this

Table 5. Employment shares, wage components, and employment effects for categories of education and training, Nov. 2002-May 2007

| Education or training category | Number of occupations | Employment share, November 2002 | Change in employment share | Wage component | Employment effect | Number of occupations by pay category |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Mean wage below \$11.80 | Mean wage of $\$ 11.80$ to $\$ 15.67$ | Mean wage of $\$ 15.68$ to $\mathbf{\$ 2 4 . 1 1}$ | Mean wage above \$24.11 |
| All categories ................... | 759 | 100.00 | - | 0.22 | -0.11 | 76 | 150 | 283 | 250 |
| First professional degree.......... | 16 | 1.09 | 0.09 | -. 01 | . 04 | 0 | 0 | 0 | 16 |
| Doctoral degree ........................ | 45 | 1.09 | . 07 | . 02 | . 01 | 0 | 0 | 1 | 44 |
| Master's degree ........................ | 29 | 1.13 | . 09 | . 01 | . 01 | 0 | 1 | 6 | 22 |
| Bachelor's or higher degree, plus work experience ${ }^{1}$ $\qquad$ | 33 | 5.03 | -. 77 | . 17 | -. 22 | 0 | 0 | 4 | 29 |
| Bachelor's degree ..................... | 103 | 11.48 | . 95 | . 06 | . 10 | 0 | 1 | 28 | 74 |
| Associate degree...................... | 39 | 4.07 | . 12 | . 06 | . 01 | 0 | 2 | 25 | 12 |
| Postsecondary vocational award $\qquad$ | 48 | 5.00 | -. 07 | . 01 | . 00 | 3 | 12 | 27 | 6 |
| Work experience in a related occupation $\qquad$ | 47 | 8.92 | -. 34 | . 06 | -. 05 | 1 | 2 | 22 | 22 |
| Long-term on-the-job training | 86 | 6.47 | . 18 | -. 01 | . 00 | 2 | 15 | 51 | 18 |
| Moderate-term on-the-job training $\qquad$ | 180 | 19.63 | -. 34 | -. 07 | . 04 | 13 | 62 | 98 | 7 |
| Short-term on-the-job training. $\qquad$ | 133 | 35.83 | . 03 | -. 07 | -. 04 | 57 | 55 | 21 | 0 |
| Not classified ${ }^{2}$........................... | 3 | . 27 |  |  |  |  |  |  |  |

[^1][^2]article's analysis of the effects of changing employment shares and of changing occupational composition on change in the U.S. RAW. Two applications that will be briefly explored in this section are patterns among education and training categories and an analysis of the average wages of U.S. States.

Education and training categories. Just as this article groups occupations on the basis of their mean wage to demonstrate trends among lower and higher paying occupations, it also groups occupations into education and training categories to reveal trends among occupations associated with greater or lesser education and training. The BLS Employment Projections program assigns each occupation to 1 of 11 education and training categories, which range from "short-term on-the-job training" to "first professional degree." The most common source(s) and level of education for workers in a given occupation serves as the basis for placing the occupation in a particular category. Table 5 displays the employment shares, wage components, and employment effects of these categories of occupations.

The wage components of the three on-the-job training categories are negative, and the wage components of most of the eight other education and training categories are positive. The moderate-term on-the-job training and short-term on-the-job training categories both have the most negative wage components, -7 cents, and the longterm on-the-job training category has a wage component of -1 cent. Occupations in the category of bachelor's or higher degree, plus work experience had the greatest overall wage component, 17 cents, even though these occupations made up only 5 percent of employment in November 2002. This shows that this category had the greatest increase in real average wage of all the education and training categories. The categories of bachelor's degree, associate degree, and work experience in a related occupation each had relatively high wage components of about 6 cents.

Regarding shifts in employment share among the education and training categories, those occupations in the category of bachelor's degree gained the most employment share, .95 percentage point. Other education and training categories that made slight gains in employment share are long-term on-the-job training, short-term on-the-job training, associate degree, master's degree, doctoral degree, and first professional degree. The categories of work experience in a related occupation and moderate-term on-the-job training each lost about .34 percentage point of employment share, and the category of postsecond-

| Table 6. Components of change in the real average hourly wages of U.S. States, Nov. 2002-May 2007 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| State | Wage component | Employment component | Residual component | Total of three components ${ }^{1}$ |
| Alabama ...................... | \$0.05 | \$-0.13 | \$-0.02 | \$-0.10 |
| Alaska ......................... | . 11 | -. 03 | -. 13 | -. 04 |
| Arizona ....................... | . 19 | -. 18 | -. 12 | -. 11 |
| Arkansas ..................... | . 24 | -. 01 | -. 04 | . 19 |
| California .................... | . 11 | . 32 | -. 05 | . 38 |
| Colorado..................... | . 03 | . 03 | . 02 | . 08 |
| Connecticut................ | -. 31 | . 24 | -. 02 | -. 09 |
| Delaware ..................... | 1.00 | -. 29 | -. 28 | . 44 |
| Florida ........................ | . 60 | -. 21 | -. 16 | . 24 |
| Georgia ....................... | -. 32 | . 10 | -. 01 | -. 23 |
| Hawaii......................... | -. 07 | . 21 | -. 03 | . 11 |
| Idaho........................... | -. 01 | . 07 | -. 17 | -. 12 |
| Illinois ......................... | 1.24 | -. 31 | -. 16 | . 76 |
| Indiana ........................ | -. 12 | -. 25 | -. 02 | -. 38 |
| lowa ........................... | . 30 | -. 17 | -. 12 | . 01 |
| Kansas ........................ | -. 17 | -. 09 | -. 02 | -. 28 |
| Kentucky..................... | -. 19 | . 02 | -. 06 | -. 22 |
| Louisiana .................... | . 18 | -. 24 | -. 05 | -. 12 |
| Maine.......................... | . 44 | -. 14 | -. 07 | . 24 |
| Maryland .................... | 1.25 | -. 24 | -. 16 | . 85 |
| Massachusetts ............ | . 78 | . 03 | -. 06 | . 75 |
| Michigan..................... | -. 30 | . 04 | . 04 | -. 22 |
| Minnesota ................... | -. 06 | . 24 | -. 02 | . 15 |
| Mississippi................... | . 49 | -. 04 | -. 06 | . 39 |
| Missouri ...................... | . 52 | -. 49 | -. 20 | -. 17 |
| Montana ..................... | . 42 | -. 29 | -. 10 | . 03 |
| Nebraska..................... | . 37 | -. 36 | -. 13 | -. 12 |
| Nevada ....................... | -. 11 | -. 09 | . 05 | -. 15 |
| New Hampshire .......... | . 55 | . 04 | -. 01 | . 58 |
| New Jersey................. | . 20 | . 29 | -. 05 | . 44 |
| New Mexico................ | . 73 | -. 51 | . 01 | . 23 |
| New York..................... | -. 14 | . 34 | . 05 | . 25 |
| North Carolina............ | . 02 | -. 10 | -. 10 | -. 18 |
| North Dakota .............. | . 81 | -. 09 | -. 18 | . 54 |
| Ohio............................ | . 15 | -. 33 | -. 06 | -. 24 |
| Oklahoma ................... | -. 25 | . 05 | . 02 | -. 18 |
| Oregon....................... | . 00 | . 09 | -. 04 | . 05 |
| Pennsylvania .............. | . 49 | -. 60 | -. 15 | -. 25 |
| Rhode Island ............... | . 38 | . 26 | -. 09 | . 55 |
| South Carolina............. | . 12 | -. 20 | -. 11 | -. 18 |
| South Dakota .............. | . 11 | -. 09 | . 00 | . 02 |
| Tennessee .................. | . 00 | -. 13 | -. 02 | -. 15 |
| Texas ........................... | . 11 | -. 28 | -. 12 | -. 29 |
| Utah ........................... | . 16 | -. 02 | . 00 | . 14 |
| Vermont..................... | . 18 | . 10 | . 05 | . 32 |
| Virginia ....................... | 1.18 | -. 19 | -. 04 | . 95 |
| Washington ............... | . 32 | -. 04 | . 02 | . 30 |
| Washington, DC........... | 1.22 | . 29 | . 47 | 1.98 |
| West Virginia ............... | -. 03 | -. 36 | -. 07 | -. 47 |
| Wisconsin .................... | . 07 | -. 06 | . 02 | . 03 |
| Wyoming..................... | . 33 | . 27 | . 00 | . 61 |
| ${ }^{1}$ Numbers may not add precisely because of rounding. |  |  |  |  |

ary vocational award decreased in employment share by .07 percentage point. Autor, Katz, and Kearney, observed "more rapid employment growth in the bottom end of the
education distribution than in the middle" in the 1990s, but this article's findings from the 2000s indicate that the trend has changed.

Wage analysis by State. Just as OES data are used to analyze the U.S. RAW, they also can be used to analyze the components of changes in the average wages of U.S. States. The wage component, employment component, residual component, and total component for each State and the District of Columbia are shown in table 6. The patterns in employment and mean wages found at the national level also occur in most States. For example, the overall shift toward occupations with lower mean wages is found in 32 States. The States with the most negative employment components-that is, the most pronounced shift in employment toward occupations with lower mean wages-are Pennsylvania, New Mexico, Missouri, West Virginia, and Nebraska. The five places with the greatest positive employment components, or the most pronounced employment shift towards occupations with higher mean wages, are New York; California; New Jersey; Washington, DC; and Wyoming.

Most States have a positive wage component (35 States and the District of Columbia), but 15 States have negative occupational wage components, indicating that occupational mean wages declined overall in the State. The States with the most negative wage components are Georgia, with wage component of -32 cents; Connecticut, with wage component of -31 cents; and Michigan, with a wage component of -30 cents. The places with the greatest positive wage components are Maryland; Illinois; Washington, DC; and Virginia. Some States that have positive wage components still had a decline in the average wage-Pennsylvania being one example-because the negative employment component is greater in degree than the wage component. As seen in table 6, wage components and employment components differ greatly by State, with some States having an employment component and a wage component that are both negative, such as Kan-
sas and Indiana, and some States having an employment component and wage component that are both positive, such as Vermont and California.

USING OES DATA TO UNDERSTAND COMPONENTS of U.S. real average wage growth from November 2002 to May 2007 reveals many trends in occupational mean wages and employment shares. The analysis revealed that the increase of 8 cents in the U.S. RAW could be decomposed into an employment component of -11 cents, a wage component of 22 cents, and a residual component of -3 cents. These components indicate that overall, the mean wages of individual occupations grew faster than is evident from the national average wage growth statistic because the national average wage was suppressed by occupations with lower mean wages gaining employment share. Another finding was that a majority of employment was in occupations that experienced a decline or no change in the mean wage, and the group of occupations whose mean wage decreased or remained the same made a slight gain in employment share; these two phenomena also hampered the growth of the U.S. RAW.

Grouping occupations by mean wage revealed that the lowest, lower, and average-paying categories of occupations each have overall negative wage components, indicating that taken together, occupations within each of these categories experienced a decline in their mean wage. An additional finding of this article was a shift in employment from the two middle-paying categories of occupations to the lowest and highest paying categories. The lowest paying category increased the most in employment share, .60 percentage point, and most of this gain was made by occupations whose mean wage decreased or did not change. The pay categories also revealed that the increase in the U.S. RAW is due mostly to growth in the mean wages of occupations in the highest paying category, which had a wage component of 35 cents and made up 48 percent of employment among occupations whose mean wage increased from November 2002 to May 2007.

## Notes

[^3][^4]
# What do OES data have to say about increasing wage inequality? 

Wage distribution data from the Occupational Employment Statistics survey indicate that wages became more dispersed over the 2002-08 period; occupations paying higher wages tended to have workers with more education and higher level technical skills, while occupations paying lower wages tended to have workers with less education and lower skills

## John I. Jones

John I. Jones is an economist in the Division of Publication and Analysis, Office of Employment and Unemployment Statistics, Bureau of Labor Statistics. E-mail: jones.john@bls.gov

Most economists concur that wage inequality has been increasing in the United States since the 1970s. ${ }^{1}$ However, not all economists agree on the reasons behind this trend. ${ }^{2}$ One of the more widely held positions hypothesizes that increasing wage dispersion has been driven by skill-biased technical change benefiting those who possess greater technical skills. Specifically, advancements in technology have boosted the productivity and wages of skilled labor relative to that of unskilled labor. ${ }^{3}$ This article uses Occupational Employment Statistics (OES) survey data to explore wage inequality, measure changes in wage dispersion over time, and examine wage growth by occupational group, wage rate, skill level, and ties to technology.

The article first tests whether OES survey wage data support the notion that wage dispersion increased between 2002 and 2008. Then, occupational data are used to determine (1) whether wages for higher skilled occupations increased by more than wages for lower skilled occupations, (2) if so, which occupational groups were exceptions, and (3) whether occupations with the highest wage growth were most closely associated with technological
innovation. Educational attainment data from the Current Population Survey are used as a proxy for determining which workers in an occupation are "more skilled" and which are "less skilled." ${ }^{4}$

## OES data; testing wage dispersion

The OES survey is a survey of 1.2 million business establishments conducted in six semiannual panels over a 3-year period. Respondents are asked to list the occupation and wage range for each of their employees. Data from the six most recent panels are used each year to provide wage and employment estimates for more than 800 occupations by area and industry. The OES methodology that allows such detailed area and industry estimates also makes it difficult to use OES data for comparisons across short periods. To minimize both the difficulty of comparison over short periods and the difficulties associated with changes in occupational or methodological definitions, two nonoverlapping data sets, from 2002 and 2008, were selected for the analysis. The virtue of using OES data for this type of analysis is that each period examined includes wage and detailed occupational data on more than 80 million workers.

One of the limitations of using OES data
to explore wage growth is the methodology of collecting data in wage ranges, especially for high-paying occupations. The OES program uses data from the National Compensation Survey to apply values to the wages within each of 12 wage ranges. Mean wage rates and wage growth for occupations with workers earning more than $\$ 145,600$ per year may be underestimated because of the open-ended upper wage interval. Changes in percentile wage estimates should not be affected by changes in the upper interval as long as the percentile wages are below $\$ 145,600$.

## Results

If wage dispersion has increased over the study period, then the wage growth rate of higher wage earners will exceed that of lower wage earners. This hypothesis can be tested at the most aggregate levels by using the 10th, 25 th, 50 th (median), 75 th, and 90 th percentiles of the wage distribution for all occupations and industries from the OES survey. Table 1 shows the national annual wage in 2002 and 2008 for each percentile, along with the percent change. If there is no increase in wage dispersion between 2002 and 2008, then the wage growth would be equivalent across the percentile wages. However, that is not what is observed.

## Wage growth by percentile

Nationally, the 10th percentile of the wage distribution increased 15.4 percent over the period examined, while the median wage increased 17.0 percent and the 90th percentile increased 21.8 percent. Inflation-adjusted figures are shown in the last column of table 1; the 90 th-percentile workers are the only group to have experienced wage growth that exceeded inflation. As the wage percentiles increase, the growth in wages also
increases: by 2008, wages for higher earners exceeded those for lower earners by a larger margin than in 2002. Another way to look at this phenomenon is that in 2002 a worker in the 90 th percentile of the wage distribution earned 349 percent more than a worker in the 10th percentile, and by 2008 the worker in the 90th percentile earned 374 percent more than the worker in the 10th percentile.

This evidence of increasing wage dispersion does not necessarily show that individuals or groups of workers experienced the same wage growth as others in their percentile, because a shift may have occurred in the occupations that make up each group over time. Rather, the evidence simply points to a wider distribution of wages, the result of faster wage growth in high-paying occupations, uneven growth in employment between high-paying and low-paying occupations, or a combination of both factors. Faster wage growth may be due to structural changes in the economy that increase the demand for one group of workers relative to others, such as highly skilled workers, technologically oriented workers, or workers in the health care professions. The rest of this article focuses on the wage growth experience of both individual occupations and groups of occupations, and finds evidence that skillbiased technical changes in the occupational structure of the United States are benefiting certain groups more than others. Among those benefiting most are workers with higher levels of skills or education and workers whose jobs are technological in nature.

## Wage growth by occupational group

Because national wage data showed evidence of increasing wage dispersion between 2002 and 2008, the data will be examined by occupational group in order to see whether increasing wage growth is found across high-wage or high-skill occupations or is concentrated in just a few occupations. Such an examination also will aid in determining whether increasing wage growth is more prevalent in occupations related to

Table 1. National percentile wage growth, 2002-08

| Percentile wage | Year |  | Percent change in wage | Adjusted for inflation ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 2002 | 2008 |  |  |
|  | \$14,450 | \$16,680 | 15.4 | -3.6 |
|  | 18,580 | 21,590 | 16.2 | -2.9 |
| 50th........................................................................................ | 27,690 | 32,390 | 17.0 | -2.3 |
| 75th....................................................................................... | 43,340 | 51,540 | 18.9 | -. 7 |
|  | 64,900 | 79,020 | 21.8 | 1.7 |
| The inflation rate over the 2002-08 period was 19.7 percent. |  |  |  |  |

improved technology. The Standard Occupational Classification (SOC) system groups occupations by similar skills or work activities, so analysis of the OES data by SOC occupational group will serve as a starting point in looking for patterns in the occupational data.

Table 2 shows the mean annual wage for each occupational group in 2002 and 2008. Also listed is the wage difference for each group over the 2002-08 period and the percent change in the wage. To test the hypothesis that those occupational groups which had higher wages in 2002 had the greatest growth between 2002 and 2008, the data in the table are sorted by mean annual wage in 2002. If the highest percent wage growth corresponded perfectly to the highest annual mean wage, then the percent changes in the wage would appear in descending order. In general, as the 2002 wage for the occupational groups decreases, the percent change in the wage decreases with a correlation coefficient of 0.75 -although there are notable exceptions.

In most cases, the occupational groups that earned above the mean wage of $\$ 35,560$ in 2002 experienced wage growth greater than 18.9 percent and those which earned below the mean wage in 2002 experienced lower wage growth. However, there were exceptions. Each oc-
cupational group's 2002 wage and percent increase are plotted in chart 1 . The upper right-hand quadrant of the chart shows occupations with above-average wages and above-average wage growth, the lower left-hand quadrant occupations with below-average wages and below-average growth. The other two quadrants show the occupational groups that fall outside the trend.

In general, the occupations listed toward the top of table 2 and shown in the upper right quadrant of chart 1 had both the highest wages and the highest wage growth. Among these occupations are architecture and engineering occupations and business and financial operations occupations. Those occupations with the lowest wages had the lowest wage growth and are shown in the lower left quadrant. Included in this group are food preparation and serving related occupations and building and grounds cleaning and maintenance occupations. Two occupations fell outside this trend, experiencing above-average wages and lower-than-average wage growth, and are shown in the lower right quadrant: construction and extraction occupations and installation, maintenance, and repair occupations. Finally, among those occupations with below-average wages were community and social services occupations and protective service occu-

Table 2. Wage growth of Standard Occupational Classification (SOC) major groups, 2002-08

| $\begin{aligned} & \text { SOC } \\ & \text { code } \end{aligned}$ | Occupational group | $\begin{gathered} \text { Mean } \\ \text { annual wage, } \\ 2002 \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { annual wage, } \\ 2008 \end{gathered}$ | Difference (2008 wage minus 2002 wage) ${ }^{1}$ | Percent change |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11-0000 | Management .............................................................................. | \$78,870 | \$100,310 | \$21,440 | 27.2 |
| 23-0000 |  | 77,330 | 92,270 | 14,940 | 19.3 |
| 15-0000 | Computer and mathematical . | 61,630 | 74,500 | 12,870 | 20.9 |
| 17-0000 | Architecture and engineering.. | 58,020 | 71,430 | 13,410 | 23.1 |
| 29-0000 | Health care practitioners and technical....................................... | 53,990 | 67,890 | 13,900 | 25.7 |
| 13-0000 | Business and financial operations.............................................. | 53,350 | 64,720 | 11,370 | 21.3 |
| 19-0000 | Life, physical, and social science. | 52,380 | 64,280 | 11,900 | 22.7 |
| 27-0000 | Arts, design, entertainment, sports, and media.......................... | 41,660 | 50,670 | 9,010 | 21.6 |
| 25-0000 | Education, training, and library..................................................... | 40,160 | 48,460 | 8,300 | 20.7 |
| 47-0000 | Construction and extraction.. | 36,340 | 42,350 | 6,010 | 16.5 |
| 49-0000 | Installation, maintenance, and repair ..................................... | 35,780 | 41,230 | 5,450 | 15.2 |
| 00-0000 | Mean wage for all occupations ................................................... | 35,560 | 42,270 | 6,710 | 18.9 |
| 21-0000 | Community and social services ............................................ | 34,630 | 41,790 | 7,160 | 20.7 |
| 33-0000 | Protective service....................................................................... | 33,330 | 40,200 | 6,870 | 20.6 |
| 41-0000 | Sales and related. | 30,610 | 36,080 | 5,470 | 17.9 |
| 51-0000 | Production.. | 28,190 | 32,320 | 4,130 | 14.7 |
| 43-0000 | Office and administrative support.............................................. | 27,910 | 32,220 | 4,310 | 15.4 |
| 00-0000 | Median wage for all occupations ................................................ | 27,690 | 32,390 | 4,700 | 17.0 |
| 53-0000 | Transportation and material moving.......................................... | 27,220 | 31,450 | 4,230 | 15.5 |
| 31-0000 | Health care support. | 22,410 | 26,340 | 3,930 | 17.5 |
| 39-0000 | Personal care and service........................................................... | 21,370 | 24,120 | 2,750 | 12.9 |
| 37-0000 | Building and grounds cleaning and maintenance....................... | 20,850 | 24,370 | 3,520 | 16.9 |
| 45-0000 | Farming, fishing, and forestry ...................................................... | 20,220 | 23,560 | 3,340 | 16.5 |
| 35-0000 | Food preparation and serving related......................................... | 17,180 | 20,220 | 3,040 | 17.7 |
| ${ }^{1}$ Statistically significant at the 90-percent confidence level. |  |  |  |  |  |

## Chart 1. Wages and percent growth in wages, by occupational group, 2002-08


pations, both of which experienced wage increases slightly higher than the average. These two occupations are shown in the upper left quadrant. Groups falling outside the trend are examined further.

Three occupational groups had lower wage growth than would be expected on the basis of their relatively high wage: legal occupations; installation, maintenance, and repair occupations; and construction and extraction occupations. The legal occupations group showed one of the biggest differences between its 2002 wage and its subsequent wage growth: with the 2nd-highest average annual wage in 2002, this group had only the 11th-highest wage growth and is furthest from the trend line in chart 1 . Further study of the group reveals that the relatively low wage growth was influenced primarily by lawyers, the legal group's detailed occupation with the most employment, but a relatively low wage growth of 17.8 percent. This comparatively small wage growth may be a reflection of the limitation of the OES data and its methodology of collecting data in wage ranges. The top wage range in the OES survey is $\$ 145,600$ or more per year, so the survey is less effective in measuring wages of the highest wage earners. Therefore, the wage growth figure for legal occupations may be underestimated. This explanation is supported by an examination of the wages of lawyers who are unaffected by the survey's top-coding methodology.

Even the relatively lower paid lawyers showed higher-thanaverage wage growth: the 10th through 50th percentile of the wage distribution for lawyers showed increases of at least 22.4 percent.

The occupational group with the next-largest difference between its rank in wages in 2002 and its rank in percent change in wages is installation, maintenance, and repair. This group had the 11th-highest overall annual average wage in 2002, but the 20th-highest wage growth. Lower wage growth seems to be the norm for most, but not all, of the detailed occupations within the group, with 41 of the 51 detailed occupations having a percent change in wages that was below 18.9 percent for the period between 2002 and 2008. Some occupations in installation, maintenance, and repair that had large percent-change wage increases include watch repairers; manufactured building and home installers; and powerhouse, substation, and relay electrical and electronics repairers, all of which had wage increases of 21.0 percent or more.

The third group with wage growth that was lower than would be expected on the basis of its 2002 wages was construction and extraction occupations, which had the 10th-highest average wage in 2002, but only the 16thhighest wage growth. The slow growth in this group hides underlying trends for two subgroups: even slower growth
for construction-related occupations and faster-than-average wage growth for oil-and-gas-related occupations. Lower wage growth for occupations associated with residential and commercial construction may have been due to the slowdown in residential building after the housing bubble burst. ${ }^{5}$ Occupations associated with the commodities of oil and gas, which, as an industry, had experienced its own bubble in 2007, ${ }^{6}$ experienced much faster than average growth. For example, the wage percent change of 4 of the 5 occupations with the highest wage growth in the construction and extraction group, all linked to working with oil and gas, ranged from 31.3 percent to 49.7 percent. In contrast, carpet installers; paperhangers; floor sanders and finishers; carpenters; carpenters' helpers; plumbers', pipefitters', and steamfitters' helpers; construction and maintenance painters; plumbers, pipefitters, and steamfitters; electricians; construction laborers; and other related occupations all had wage percent changes below the average of 18.9 percent.

Like construction and extraction, production occupations had wage growth that was lower than expected. The group had the 15th-highest average wage in 2002, but the 21 st-highest wage growth. Low growth was prevalent throughout the occupational group, with 91 of the 111 comparable occupations, representing 91 percent of the group's employment, having below-average wage growth.

Eleven occupation groups had higher wage growth than would be expected on the basis of their 2002 wage rank. The 5 groups with the greatest positive difference between their 2002 wage positions and wage growth positions were food preparation and serving; building and grounds cleaning and maintenance; farming, fishing, and forestry occupations; health care support occupations; and community and social services occupations. All 5 groups had below-average wages, and 4 of the 5 had below-average wage growth, resulting in wages in 2008 that were even further from the average than they were in 2002 and contributing to increased wage dispersion. These lower paying groups of occupations had smaller wage increases compared with the groups of occupations that grew less than their wage rank would indicate: the average annual wage increase of the 5 groups that went up in wage percent growth rank was $\$ 4,198$, whereas the average annual wage increase of the 5 groups that went down in rank was $\$ 8,680$, more than double.

Two of the occupational groups with higher growth than would be expected from their 2002 wages were food preparation and serving related occupations and building and grounds cleaning and maintenance occupations. Food preparation and serving related occupations had the
lowest overall wage in 2002 , but the 13 th-highest wage increase. Relatively high wage growth was seen in only 5 of the 16 occupations in this group and was concentrated in just 1 occupation: waiters and waitresses, an occupation making up approximately 21 percent of total employment in the group and having a wage percent change of 24.2 percent. In contrast, combined food preparation and serving workers including fast-food workers, an occupation making up nearly 24 percent of total employment in the group, had a wage percent change of 14.9 percent.

Building and grounds cleaning and maintenance occupations also had a large difference between the group's annual average wage position in 2002, namely, 20th, and its wage growth position, 15 th. The wage percent change was set predominantly by maids and housekeeping cleaners, an occupational component that accounted for approximately 49 percent of the group's total employment and had a wage percent change of 16.6 percent. Wage growth for the building and grounds cleaning and maintenance group was in a narrower range than that of most other groups, with a low of 15.7 percent and a high of 20.2 percent.

## Skills, technology, and wage growth

To measure the impact of the demand for workers of different skill levels on wage growth (under the assumption that occupations in which wages have climbed the most are the most in demand), education data ${ }^{7}$ from the CPS were linked to occupational data from the OES survey. The BLS Employment Projections program has identified the typical educational background of workers in each occupation: high school (HS); high school/some college (HS/SC); high school/some college/college (HS/SC/C); some college (SC); some college/college (SC/C); and college (C). (See note 4.) The 741 matching detailed occupations between 2002 and 2008 were sorted by percent change in wage, and the 50 occupations with the lowest and highest statistically significant percent changes in wages are shown in tables 3 and 4, respectively. Among occupations with the lowest growth, the ones that are most likely affected by the OES wage methodology, such as lawyers, were excluded from the table, because the top wage range might mask higher wage growth. ${ }^{8}$

Chart 2 shows the general relationship between educational clusters and wage growth over the 2002-08 period for all occupations in each educational cluster. In general, higher average wage growth is associated with increasing levels of education. An exception is the "some college"(SC) category, whose average wage growth was lower than that of the "high school/some college/college" (HS/SC/C) cat-

## Wage Inequality

Table 3. Occupations with the lowest percent growth in wages, 2002-08

| $\begin{aligned} & \text { SOC } \\ & \text { code } \end{aligned}$ | Occupational title | $\begin{array}{\|c} \text { Average } \\ \text { annual wage, } \\ 2002 \end{array}$ | Average annual wage, 2008 | CPS education level | Difference (2008 wage minus 2002 wage) | Percent change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53-4013 | Rail yard engineers, dinkey operators, and hostlers ....... | \$40,600 | \$34,850 | High school/ some college | -\$5,750 | -14.2 |
| 33-2022 | Forest fire inspectors and prevention specialists ............. | 40,720 | 36,400 | High school/ some college/ college | -4,320 | -10.6 |
| 41-9091 | Door-to-door salesworkers, news and street vendors, and related workers $\qquad$ | 30,120 | 27,600 | High school/ some college/ college | -2,520 | -8.4 |
| 47-4091 | Segmental pavers ........................................................... | 29,630 | 28,450 | High school/ some college | -1,180 | -4.0 |
| 29-1011 | Chiropractors................................................................... | 83,440 | 81,340 | College | -2,100 | -2.5 |
| 49-9093 | Fabric menders, except garment ..................................... | 28,580 | 27,920 | High school/ some college | -660 | -2.3 |
| 15-2091 | Mathematical technicians ......... | 42,920 | 42,100 | College | -820 | -1.9 |
| 25-1043 | Forestry and conservation science teachers, postsecondary $\qquad$ | 68,030 | 67,400 | College | -630 | -. 9 |
| 39-6011 | Baggage porters and bellhops ........................................ | 22,440 | 23,170 | High school/ some college | 730 | 3.3 |
| 53-7071 | Gas compressor and gas pumping station operators .... | 42,920 | 44,410 | High school/ some college | 1,490 | 3.5 |
| 51-9031 | Cutters and trimmers, hand............................................ | 24,630 | 25,540 | High school | 910 | 3.7 |
| 51-3093 | Food cooking machine operators and tenders ............... | 23,160 | 24,110 | High school/ some college | 950 | 4.1 |
| 27-2022 | Coaches and scouts ........................................................ | 34,170 | 35,580 | Some college/ college | 1,410 | 4.1 |
| 53-2022 | Airfield operations specialists ......................................... | 40,850 | 42,550 | Some college/ college | 1,700 | 4.2 |
| 53-4011 | Locomotive engineers .................................................... | 51,280 | 53,470 | High school/ some college | 2,190 | 4.3 |
| 27-2023 | Umpires, referees, and other sports officials................... | 27,010 | 28,330 | Some college/ college | 1,320 | 4.9 |
| 53-4041 | Subway and streetcar operators ...................................... | 46,810 | 49,330 | High school/ some college | 2,520 | 5.4 |
| 51-9192 | Cleaning, washing, and metal pickling equipment operators and tenders $\qquad$ | 24,780 | 26,140 | High school/ some college | 1,360 | 5.5 |
| 51-4081 | Multiple machine tool setters, operators, and tenders, metal and plastic. $\qquad$ | 31,050 | 32,780 | High school/ some college | 1,730 | 5.6 |
| 51-9197 | Tire builders ................................................................... | 35,990 | 38,080 | High school/ some college | 2,090 | 5.8 |
| 33-3052 | Transit and railroad police .............................................. | 45,750 | 48,540 | Some college/ college | 2,790 | 6.1 |
| 53-7072 | Pump operators, except wellhead pumpers.................... | 38,640 | 41,020 | High school/ some college | 2,380 | 6.2 |
| 17-3021 | Aerospace engineering and operations technicians ...... | 52,990 | 56,280 | High school/ some college | 3,290 | 6.2 |
| 45-4021 | Fallers .............................................................................. | 32,090 | 34,180 | High school | 2,090 | 6.5 |
| 43-5111 | Weighers, measurers, checkers, and samplers, recordkeeping. $\qquad$ | 26,740 | 28,500 | High school/ some college | 1,760 | 6.6 |

Table 3. Continued-Occupations with the lowest percent growth in wages, 2002-08

| $\begin{aligned} & \text { SOC } \\ & \text { code } \end{aligned}$ | Occupational title | Average annual wage, 2002 | Average annual wage, 2008 | CPS education level | Difference (2008 wage minus 2002 wage) | Percent change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51-4122 | Welding, soldering, and brazing machine setters, operators, and tenders. | 31,620 | 33,700 | High school/ some college | 2,080 | 6.6 |
| 25-9021 | Farm and home management advisors........................... | 41,850 | 44,630 | College | 2,780 | 6.6 |
| 23-1022 | Arbitrators, mediators, and conciliators ........................... | 55,970 | 59,650 | College | 3,680 | 6.6 |
| 39-6032 | Transportation attendants, except flight attendants and baggage porters. $\qquad$ | 20,940 | 22,370 | High school/ some college/ college | 1,430 | 6.8 |
| 41-9011 | Demonstrators and product promoters.......................... | 25,360 | 27,150 | High school/ some college/ college | 1,790 | 7.1 |
| 47-5051 | Rock splitters, quarry ................................................................. | 28,070 | 30,160 | High school/ some college | 2,090 | 7.4 |
| 51-6064 | Textile winding, twisting, and drawing-out machine setters, operators, and tenders. $\qquad$ | 22,810 | 24,600 | High school | 1,790 | 7.8 |
| 51-9132 | Photographic processing machine operators.................. | 21,080 | 22,740 | High school/ some college | 1,660 | 7.9 |
| 49-2096 | Electronic equipment installers and repairers, motor vehicles $\qquad$ | 27,600 | 29,770 | High school/ some college | 2,170 | 7.9 |
| 19-4093 | Forest and conservation technicians.............................. | 32,700 | 35,320 | Some college/ college | 2,620 | 8.0 |
| 53-4021 | Railroad brake, signal, and switch operators ................... | 45,750 | 49,400 | High school/ some college | 3,650 | 8.0 |
| 51-4034 | Lathe and turning machine tool setters, operators, and tenders, metal and plastic $\qquad$ | 31,450 | 34,070 | High school/ some college | 2,620 | 8.3 |
| 49-9063 | Musical instrument repairers and tuners ......................... | 33,210 | 35,950 | High school/ some college | 2,740 | 8.3 |
| 51-9041 | Extruding, forming, pressing, and compacting machine setters, operators, and tenders. $\qquad$ | 28,070 | 30,430 | High school/ some college | 2,360 | 8.4 |
| 51-9022 | Grinding and polishing workers, hand ............................ | 24,940 | 27,100 | High school/ some college | 2,160 | 8.7 |
| 39-4011 | Embalmers ...................................................................... | 36,160 | 39,320 | High school/ some college/ college | 3,160 | 8.7 |
| 43-5081 | Stock clerks and order fillers ........................................... | 21,240 | 23,140 | High school/ some college | 1,900 | 8.9 |
| 49-9098 | Helpers-installation, maintenance, and repair workers | 23,560 | 25,670 | High school | 2,110 | 9.0 |
| 47-3011 | Helpers—brickmasons, blockmasons, stonemasons, and tile and marble setters. $\qquad$ | 27,170 | 29,610 | High school | 2,440 | 9.0 |
| 51-4194 | Tool grinders, filers, and sharpeners ................................ | 31,080 | 33,880 | High school/ some college | 2,800 | 9.0 |
| 31-9095 | Pharmacy aides .............................................................. | 19,700 | 21,500 | High school/ some college | 1,800 | 9.1 |
| 49-2092 | Electric motor, power tool, and related repairers............ | 34,030 | 37,110 | High school/ some college | 3,080 | 9.1 |
| 47-2171 | Reinforcing iron and rebar workers.................................. | 40,640 | 44,380 | High school | 3,740 | 9.2 |
| 47-3014 | Helpers-painters, paperhangers, plasterers, and stucco masons | 22,260 | 24,330 | High school | 2,070 | 9.3 |
| 19-4051 | Nuclear technicians........................................................ | 61,220 | 66,910 | Some college/ college | 5,690 | 9.3 |

## Wage Inequality

Table 4. Occupations with the highest percent growth in wages, 2002-08

| SOC code | Occupational title | $\begin{array}{\|c} \text { Average } \\ \text { annual wage, } \\ 2002 \end{array}$ | Average annual wage, 2008 | CPS education level | Difference (2008 wage minus 2002 wage) | Percent change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47-5012 | Rotary drill operators, oil and gas.................................... | \$36,320 | \$54,370 | High school | \$18,050 | 49.7 |
| 11-2031 | Public relations managers .............................................. | 69,870 | 101,220 | College | 31,350 | 44.9 |
| 11-3061 | Purchasing managers..................................................... | 66,250 | 94,300 | Some college/ college | 28,050 | 42.3 |
| 27-4032 | Film and video editors .................................................... | 44,540 | 62,500 | Some college/ college | 17,960 | 40.3 |
| 25-1071 | Health specialties teachers, postsecondary..................... | 72,820 | 102,000 | College | 29,180 | 40.1 |
| 45-1012 | Farm labor contractors.................................................... | 26,220 | 36,640 | High school/ some college | 10,420 | 39.7 |
| 27-2041 | Music directors and composers....................................... | 39,270 | 54,840 | Some college/ college | 15,570 | 39.6 |
| 17-2171 | Petroleum engineers ....................................................... | 85,540 | 119,140 | College | 33,600 | 39.3 |
| 29-1051 | Pharmacists...................................................................... | 75,140 | 104,260 | College | 29,120 | 38.8 |
| 19-3022 | Survey researchers ........................................................... | 30,360 | 42,060 | College | 11,700 | 38.5 |
| 11-9081 | Lodging managers ........................................................... | 38,110 | 52,550 | High school/ some college college | 14,440 | 37.9 |
| 19-4041 | Geological and petroleum technicians............................ | 41,470 | 57,080 | High school/ some college college | 15,610 | 37.6 |
| 11-2011 | Advertising and promotions managers ............................ | 69,200 | 94,720 | College | 25,520 | 36.9 |
| 53-7033 | Loading machine operators, underground mining ........ | 32,480 | 44,230 | High school | 11,750 | 36.2 |
| 11-9121 | Natural sciences managers ............................................. | 90,400 | 123,140 | College | 32,740 | 36.2 |
| 33-9021 | Private detectives and investigators................................ | 34,250 | 46,480 | Some college/ college | 12,230 | 35.7 |
| 11-2021 | Marketing managers ....................................................... | 87,170 | 118,160 | Some college/ college | 30,990 | 35.6 |
| 47-5071 | Roustabouts, oil and gas ................................................. | 24,160 | 32,660 | High school | 8,500 | 35.2 |
| 19-3091 | Anthropologists and archeologists ................................. | 42,380 | 57,300 | College | 14,920 | 35.2 |
| 27-2012 | Producers and directors ................................................... | 61,500 | 83,030 | College | 21,530 | 35.0 |
| 19-1021 | Biochemists and biophysicists ......................................... | 65,620 | 88,450 | College | 22,830 | 34.8 |
| 19-2021 | Atmospheric and space scientists .................................. | 61,000 | 82,080 | College | 21,080 | 34.6 |
| 11-3011 | Administrative services managers.................................. | 59,350 | 79,500 | High school/ some college/ college | 20,150 | 34.0 |
| 25-1021 | Computer science teachers, postsecondary.................... | 55,330 | 74,050 | College | 18,720 | 33.8 |
| 19-3041 | Sociologists ..................................................................... | 56,520 | 75,460 | College | 18,940 | 33.5 |
| 11-3031 | Financial managers ......................................................... | 83,080 | 110,640 | Some college/ college | 27,560 | 33.2 |
| 29-2034 | Radiologic technologists and technicians....................... | 40,150 | 53,230 | Some college/ college | 13,080 | 32.6 |
| 35-1011 | Chefs and head cooks ..................................................... | 32,000 | 42,410 | High school/ some college | 10,410 | 32.5 |
| 51-6092 | Fabric and apparel patternmakers ................................... | 31,890 | 42,190 | High school | 10,300 | 32.3 |
| 47-5011 | Derrick operators, oil and gas.......................................... | 31,780 | 41,980 | High school | 10,200 | 32.1 |
| 45-2011 | Agricultural inspectors................................................... | 31,380 | 41,330 | High school/ some college college | 9,950 | 31.7 |

Table 4. Continued-Occupations with the highest percent growth in wages, 2002-08

| soc code | Occupational title | $\begin{array}{\|c\|} \hline \text { Average } \\ \text { annual wage, } \\ 2002 \\ \hline \end{array}$ | $\begin{gathered} \text { Average } \\ \text { annual wage, } \\ 2008 \end{gathered}$ | CPS education level | Difference (2008 wage minus 2002 wage) | Percent change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 53-5021 | Captains, mates, and pilots of water vessels................... | 51,430 | 67,730 | High school/ some college college | 16,300 | 31.7 |
| 17-2061 | Computer hardware engineers......... | 76,150 | 100,180 | Some college/ college | 24,030 | 31.6 |
| 53-7031 | Dredge operators................................................................. | 29,740 | 39,040 | High school | 9,300 | 31.3 |
| 47-5013 | Service unit operators, oil, gas, and mining ..................... | 31,480 | 41,320 | High school | 9,840 | 31.3 |
| 17-1022 | Surveyors .................................................................... | 42,630 | 55,980 | College | 13,350 | 31.3 |
| 25-1192 | Home economics teachers, postsecondary .................... | 53,650 | 70,420 | College | 16,770 | 31.3 |
| 11-3021 | Computer and information systems managers............... | 90,440 | 118,710 | Some college/ college | 28,270 | 31.3 |
| 31-2011 | Occupational therapist assistants.................................. | 36,950 | 48,440 | Some college | 11,490 | 31.1 |
| 17-2131 | Materials engineers...................................................... | 64,310 | 84,200 | College | 19,890 | 30.9 |
| 29-1111 | Registered nurses ....................................................... | 49,840 | 65,130 | Some college/ college | 15,290 | 30.7 |
| 17-2021 | Agricultural engineers .............. | 55,730 | 72,850 | College | 17,120 | 30.7 |
| 27-1027 | Set and exhibit designers ........................................... | 37,250 | 48,660 | Some college/ college | 11,410 | 30.6 |
| 29-1126 | Respiratory therapists ................................................. | 40,700 | 53,150 | Some college/ college | 12,450 | 30.6 |
| 25-1193 | Recreation and fitness studies teachers, postsecondary..... | 46,480 | 60,700 | College | 14,220 | 30.6 |
| 13-2041 | Credit analysts.......................................................... | 49,530 | 64,580 | Some college/ college | 15,050 | 30.4 |
| 53-2012 | Commercial pilots........................................................................ | 58,000 | 75,500 | Some college/ college | 17,500 | 30.2 |
| 11-3071 | Transportation, storage, and distribution managers...... | 65,070 | 84,520 | High school/ some college/ college | 19,450 | 29.9 |
| 41-9031 | Sales engineers......................................................................... | 69,200 | 89,770 | College | 20,570 | 29.7 |
| 11-9033 | Education administrators, postsecondary...................... | 71,630 | 92,920 | College | 21,290 | 29.7 |

egory. This relatively low growth was due to changes in the occupational employment composition of the group. The SC category has only four occupations in it, each of which grew between 20.4 percent and 31.1 percent; however, employment increases in the lowest paid occupation-emergency medical technicians and paramedics-lowered the wage growth for the group. Another exception is the "college" (C) category, whose average wage growth was lower than that of both the "high school/some college/college" (HS/SC/C) and "some college/college" (SC/C) categories. The college category is dominated by the employment of elementary, middle, and secondary school teachers, who make up nearly 25 percent of total employment in the
category. Teachers had wage growth rates ranging from 18.2 percent to 19.2 percent. In addition, the wage percent change of the "some college/college" (SC/C) category was higher than that of the "college" (C) category, largely because of both registered nurses, who made up 14.1 percent of employment with a wage percent change of 30.7 percent, and business managers, accounting for approximately 20.8 percent of employment with wage percent changes from 21.8 percent to 33.2 percent.

Table 3, which lists the 50 occupations with the lowest wage growth during 2002-08, provides evidence of the link between skills or education and wage dispersion. Most of the occupations in this table require relatively

Chart 2. Wage growth, by education level, 2002-08

low levels of skill. Twelve of the 50 occupations listed are production occupations, 7 are from the transportation and material-moving group, and there are 5 occupations each from the construction and extraction group and the installation, maintenance, and repair group. Thirty-nine of the occupations with the lowest wage growth have educational levels ranging from high school through high school/some college/college. Only 11 of the occupations have high educational levels of some college or college.

Table 4 offers further evidence of the connection between skills or education and wage dispersion. The table lists the 50 occupations with the highest wage growth from 2002 to 2008, most of which require relatively high levels of skill. Eleven of the occupations are from the management group; 6 are in the life, physical, and social science group; and 5 are in the architecture and engineering group. In contrast to the occupations listed in table 3, only 15 occupations in table 4 have educational levels ranging from high school through high school/some college/college. Thirty-five of the 50 occupations have an educational level of either some college or college.

In comparing Tables 3 and 4, a few generalizations may be made in support of the skill- or education-biased wage-change hypothesis. According to this hypothesis, occupations that work with computers and new technol-
ogy should have the highest wage growth and college-educated workers are in the best position to take advantage of such productivity-increasing technology. In fact, table 4 does have a preponderance of college-educated occupations, compared with table 3.

Although the broad group of computer and mathematical science occupations, which are the most directly related to many types of technology, did not show the highest wage growth, there is support for the hypothesis within the occupational group. In this regard, the detailed occupation consisting of computer and information research scientists had the highest percent change in wages in the group. This is an occupation that requires high levels of education or talent to invent or design solutions to problems in the field of computer hardware and software. In comparison, the occupation consisting of computer support specialists had the lowest percent change in wages of all detailed occupations in the group and may indeed be suffering stagnating wages because technology has allowed workers in the occupation to be replaced by automated assistants, online help, and technical support workers located overseas. This is the downside of advancing technology: workers are finding that their skills are being replaced by that very technology, in one way or another. Simply put, one of the occupations in the computer and mathematical science occupational
group is taking advantage of higher education while the other is losing ground because of automation.

Technology may enhance the productivity of workers in fields other than computer science. For example, the collection, processing, and analysis of medical information is more efficient with advanced technology, allowing medical workers to serve more individuals. Also, pharmacists filling prescriptions for new drugs use technology to help screen customers for adverse drug interactions. In another application of technology, nurses may enter notes concerning a patient's progress on a wireless portable memory device that instantly becomes available to the doctor. Finally, the nuclear medical technologist using a new magnetic resonance imaging (MRI) device to scan a patient for disease can improve productivity by having the results of the scan uploaded almost instantaneously to the patient's electronic file for diagnosis. Again, workers with high levels of education and skill are in the best position to take advantage of productivity-increasing technology.

More support for this hypothesis is found in table 3, which lists lesser skilled occupations that are more likely to suffer from the other side of the increased use of technology: labor replacement. For instance, workers in manufacturing occupations may be replaced by robots or computerized manufacturing. Similarly, demonstrators and product promoters may be replaced with virtual online demonstrators and product promoters. Finally, door-
to-door salesworkers, news and street vendors, and related workers may suffer from the availability of Internet news and targeted e-mail and phone advertising.

OES DATA SUPPORT THE HYPOTHESIS that wage dispersion continued from 2002 to 2008. National wage distribution data show a clear positive correlation between percentile levels and wage increases: the higher the percentile, the higher is the percent change in wages. In addition, occupational groups with higher average wages in 2002 tended to have the highest subsequent wage growth.

Examining wage growth by occupational group provides insight into the types of jobs that have experienced the largest wage increases. The five occupational groups with the highest wage growth are management occupations; health care practitioners and technical occupations; architecture and engineering occupations; life, physical, and social science occupations; and education, training, and library occupations. In contrast, the occupational groups with the lowest wage growth were personal care and service occupations; food preparation and serving related occupations; farming, fishing, and forestry occupations; construction and extraction occupations; and production occupations. In sum, occupations usually associated with higher education and higher technical skills have had higher wage growth than occupations with lower education and skill requirements.

## Notes

[^5][^6]
# Productivity trends in business cycles: a visual essay 

Michael Chernousov, Susan E. Fleck, and John Glaser

Productivity measures are used to assess the state of the economy. The series of charts in this visual essay provides an overview of labor productivity and related measures in the U.S. nonfarm business and manufacturing sectors. The nonfarm business sector accounts for three-fourths of output and employment in the total economy; manufacturing-a subsector of nonfarm business-es-produces about a quarter of U.S. output and accounts for just under 10 percent of its employment.

Capital-intensive investment, improvements in technology, and better skilled workers, among other factors, translate into labor productivity growth in the long term. More than 60 years of data-spanning 11 cycles of recessions and expansions-highlight long-term trends in productivity, output, and hours worked. Productivity data are cyclical. In a recession, output and hours worked decline, although usually not in tandem. Thus, productivity, which is the measure of output per hour worked, provides a window through which to analyze business cycles.

The National Bureau of Economic Research (NBER) is responsible for identifying the month in which changes in economic activity signal the end of a business-cycle expansion, as well as the month in which the ensuing recession ends. The last month of expansion is called the peak; the last month of a business-cycle contraction, or recession, is called the trough. Recessions are measured by the time between the peak and the trough, and expansions are measured by the time between the trough and the peak.

The productivity measures in this visual essay are quarterly data. In order to represent quarterly data in the context of business cycles that NBER defines using months, the quarter that contains the month designated by NBER as the peak or trough of economic activity is identified in this visual essay as the peak quarter or trough quarter. For example, the peak marking the onset of the present recession is considered for the purpose of this essay to be the fourth quarter of 2007, because NBER designated December 2007 as the most recent peak month of the business cycle.

Since 1947, the first year for which nonfarm productivity data are available, there have been 11 recessions, including the one beginning in December 2007. The dates below are the years and quarters that mark these recessions and expansions; no trough has been designated for the present recession.

| Yearlquarter of the peak | Year/quarter of the trough |
| :---: | :---: |
| 1948:4 | $1949: 4$ |
| $1953: 2$ | $1954: 2$ |
| $1957: 3$ | $1958: 2$ |
| $1960: 2$ | $1961: 1$ |
| $1969: 4$ | $1970: 4$ |
| $1973: 4$ | $1975: 1$ |
| $1980: 1$ | $1980: 3$ |
| $1981: 3$ | $1982: 4$ |
| $1990: 3$ | $1991: 1$ |
| $2001: 1$ | $2001: 4$ |
| $2007: 4$ | Not yet designated |

The current recession continues to show declining output and hours worked through the first quarter
of 2009. Two other post-WWII recessions, from the fourth quarter of 1973 to the first quarter of 1975 and from the third quarter of 1981 to the fourth quarter of 1982, also lasted through five quarters; the rest were shorter. Manufacturing data are available from 1949 onward.

The charts in this visual essay highlight output and hours worked as well as output per hour worked, or labor productivity; data on labor costs are also included. Data are presented as indexes and growth rates. Index measures are derived from data on output, hours worked, and compensation. Comparing data based on different units and levels-such as billions of dollars or thousands of hours-can skew the analysis. To improve comparative analysis, the long-term trends are based on the natural logarithm of the index measures. The natural logarithm creates a straighter line of data when comparing different data series based on widely different levels over long periods of time. Growth rates are based on percent changes in indexes and are compounded to create an-
nual rates. Averages of productivity measures across recessions and expansions are weighted averages of compound annual rates, in which the weights are based on the number of quarters that compose the various time periods, excluding the current recession. All data are seasonally adjusted.

The data in these charts are updated eight times a year in the Productivity and Costs news release prepared by BLS. The charts prepared for this visual essay are based on the June 4, 2009, Productivity and Costs news release. All data are quarterly, unless otherwise noted. Data are available at the BLS website, www.bls.gov/data/home.htm, or by contacting the BLS Division of Major Sector Productivity by telephone at (202) 691-5606 or by email at DPRWEB@bls.gov. This essay was prepared by Michael Chernousov, economist; Susan E. Fleck, division chief; and John Glaser, supervisory economist; in the Division of Major Sector Productivity in the Office of Productivity and Technology, Bureau of Labor Statistics.

## 1. Productivity in the nonfarm business sector, 1947-2009



Note: The shaded bars denote recessions. Because the data in the chart are quarterly, peaks and troughs of economic activity are assigned to quarters instead of months. An endpoint for the most recent recession has yet to be designated.

- Labor productivity is defined as total output divided by total hours worked by all people: employees, the self-employed, and unpaid family workers. Productivity in the nonfarm business sector often dips during recessions.
- Overall, productivity growth has been positive since the series began in 1947.


## 2. Productivity growth in the nonfarm business sector, 1947-2008



- Though productivity growth has trended upwards over the last 60 years, a slowdown in productivity growth in nonfarm businesses took place from the early 1970s through 1995.
- After 1995 productivity growth shifted upwards, until recently. This productivity boost is often attributed to capitalintensive investments and improvements in technology.


## 3. Productivity, output, and hours worked, nonfarm business sector, 1947-2009



Note: The shaded bars denote recessions. Because the data in the chart are quarterly, peaks and troughs of economic activity are assigned to quarters instead of months. An endpoint for the most recent recession has yet to be designated.

- In recessions both output and hours worked contract. Output usually slows earlier than hours worked in a recession and recovers sooner during an expansion.
- Over the long term, output has outpaced hours worked. Hours worked have taken longer to return to prerecession levels, especially in the most recent recessions.


## 4. Productivity growth, nonfarm business sector, first quarter 1947-first quarter 2009



Nоте: The shaded bars denote recessions. Because the data in the chart are quarterly, peaks and troughs of economic activity are assigned to quarters instead of months. An endpoint for the most recent recession has yet to be designated.

- Quarterly movement in the growth of nonfarm business output per hour is highly volatile. The percent change from a given quarter of one year to the same quarter of the following year provides a longer term perspective.
- Recessions generally end with high productivity growth that carries on into the initial few quarters of the recovery, illustrated by spikes in the blue line just beyond the shaded areas.

5. Growth in productivity, output, and hours worked during recessions, nonfarm business sector, fourth quarter 1948-first quarter 2009


- Negative productivity growth is more likely during recessions than expansions. Three of the 10 recessions prior to the current one involved a contraction in output that surpassed the decline in hours in the nonfarm business sector.
- Productivity growth in recessions may also be positive, albeit weak, when the change in hours worked is less positive or more negative than the change in output. In 4 of the last 10 recessions before the current one, nonfarm business productivity experienced more than 1.0 percent growth. For the 10 recessions combined, productivity growth averaged 1.1 percent.


## 6. Growth in productivity, output, and hours worked during expansions, nonfarm business sector, fourth quarter 1949-fourth quarter 2007



- Expansions are marked by growth in total hours worked and even higher growth in output. This combination results in higher productivity growth during the upturn in the business cycle.
- Expansions typically last much longer than recessionary periods and exhibit greater productivity growth, which has averaged 2.4 percent.


## 7. Productivity, output, and hours worked, manufacturing sector, first quarter 1949-first quarter 2009



Nоте: The shaded bars denote recessions. Because the data in the chart are quarterly, peaks and troughs of economic activity are assigned to quarters instead of months. An endpoint for the most recent recession has yet to be designated.

- Manufacturing-sector data from 1949 onward highlight how labor productivity has improved steadily over the last six decades. Over the last three decades, this is due partly to a fall-off in hours worked.
- Recessions are clearly marked in historical manufacturing-sector data by downward shifts in output and hours worked.
- The 2001 recession saw a large dip in manufacturing output, as well as a decline in hours worked that continued throughout the subsequent expansion.

8. Growth in productivity, output, and hours worked during recessions, manufacturing sector, second quarter 1953-first quarter 2009


- In the manufacturing sector, recessions are consistently characterized by reductions in output and hours worked that are deeper than in the nonfarm business sector as a whole. (See chart 5.)
- Half of the recessions showed positive productivity growth because the decline in hours worked outpaced the contraction of output. On average, productivity has grown 1.8 percent in the manufacturing sector in the nine recessionary periods beginning with the recession that started in 1953.


## 9. Growth in productivity, output, and hours worked during expansions, manufacturing sector, second quarter 1954-fourth quarter 2007



- In the manufacturing sector, expansions-in contrast to recessions-consistently show positive productivity growth because output advances faster than hours worked. The average rate of manufacturing-sector productivity growth during recoveries since 1949 is 3.2 percent.
- Beginning with the economic recovery in 1970, hours worked in manufacturing grew more slowly with each successive expansion and fell outright from 2001 to 2007.


## 10. Productivity and real hourly compensation, nonfarm business sector, 1947-2009



Note: The shaded bars denote recessions. Because the data in the chart are quarterly, peaks and troughs of economic activity are assigned to quarters instead of months. An endpoint for the most recent recession has yet to be designated.

- Real hourly compensation, which measures wages plus benefits adjusted for consumer prices, does not typically experience dips during recessions. This trend implies that workers who maintain jobs during a recession do not see a loss in their purchasing power.
- Output per hour closely tracked real hourly compensation through the 1970s. After 1982 productivity began growing faster than real hourly compensation.


## 11. Productivity, hourly compensation, and unit labor costs, nonfarm business sector, 1947-2009



- Unit labor costs are the ratio of hourly compensation to productivity. Because productivity has steadily improved, unit labor costs have not increased as fast as hourly compensation.
- Unit labor costs tend to rise in the beginning of recessions, as output falls faster than hours worked and productivity stagnates.


## 12. Growth in productivity, hourly compensation, and unit labor costs during recessions, nonfarm business sector, fourth quarter 1948-first quarter 2009



- During the recessions of the 1970s and early 1980s, unit labor costs soared as productivity gains failed to keep up with hourly compensation increases. High inflation was characteristic of the 1970s and early 1980s.


## The prominence of Boston area colleges and universities

Denis M. McSweeney

and
Walter J. Marshall

The Boston metropolitan area ${ }^{1}$ is recognized by many for its concentration of prestigious private colleges and universities. The metropolitan area is home to 85 private colleges and universities employing 70,000 people and attracting more than 360,000 students from all over the world. This report uses employment and wage data from the Bureau of Labor Statistics (BLS) Quarterly Census of Employment and Wages (QCEW) program for the years 1990 and $2007^{2}$ to analyze the labor market impact and contribution of these institutions of higher education to the Boston area economy.

The analysis indicates a strong and steady growth in both wages and employment, with job creation in colleges and universities almost double the rate for total private employment. Wage gains also were higher for those working in colleges and universities than for those in overall private industry. The continuing growth of colleges and universities enhances the quality of the labor force and fuels knowledge-based industries, which are attracted by that quality.

## Higher education employment

In 1990, there were almost 2,000 private colleges and universities in the

[^7]United States, employing a total of almost 725,000 workers. (See table 1.) Massachusetts had 82 private colleges and universities, employing more than 69,000. Fifty-eight of those institutions ( 70.7 percent) were located in the Boston area, employing almost 58,000 workers.

By 2007, there were dramatic increases in the number of colleges and universities, as well as in their employment. In the United States, there were almost 4,400 private colleges and universities, employing an estimated 1,060,000 workers. Massachusetts colleges and universities had grown to 124 , employing almost 85,000. Eighty-five ( 68.5 percent) of those institutions were in the Boston area, employing more than 70,000 workers.

## Higher education job growth

In the Nation over the 17 -year period from 1990 to 2007, overall job growth increased by 25.5 percent while the growth in college and university employment was 46.7 percent. Massachusetts employment gains in colleges and universities were almost double the overall percentage of growth in the private sector (22.2 percent, compared with 11.3 percent). While the Massachusetts economy added 288,000 jobs over the period, 5.4 percent of the total growth, or 15,400 jobs, were attributable to gains in higher education employment. The Boston area accounted for approximately 80 percent of the overall job gains in colleges and universities, with 12,000 jobs added over the 17 -year period, for a growth rate of 20.9 percent, well above the overall increase of 12.9 percent for the metropolitan area.

## Metropolitan area comparisons

Using a location quotient ${ }^{3}$ comparison among the largest metropolitan areas in the Nation confirms the dominance and importance that higher education employment had in the Boston area over the 17 -year period. In 1990, Boston ranked first among major metropolitan areas, with a location quotient of 3.92. Seventeen years later, the Boston area still ranked first, with a location quotient of 3.59. (See chart 1.) The Boston area location quotient indicates that college and university employment was approximately three-and-a-half times more concentrated, compared with the U.S. average, and shows that none of the other major metropolitan areas came close to matching the Boston area's concentration of employment in higher education.

## Job generators

The concentration of colleges and universities in both Massachusetts and the Boston metropolitan area has a positive impact on the quality of the labor force. The highly educated workforce attracts knowledge-based industries such as professional and business services, financial activities, and navigational, measuring, electromedical, and control instruments manufacturing.

Colleges and universities themselves are a knowledge-based industry that requires a highly skilled labor force to educate students, and the results benefit the Boston area by increasing the percentage of the workforce with college degrees. Nationally in 2007, 27.5 percent of adults 25 years and older had bachelor's degrees and 10.1 percent had more advanced degrees. Among the 50 States, Massachu-

Table 1. Total private employment and employment in colleges and universities, United States, Massachusetts, and Boston metropolitan area, 1990 and 2007 annual averages

| Employment and wages | Number |  | Change, 1990-2007 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1990 | 2007 | Number | Percent |
| United States |  |  |  |  |
| Employment: |  |  |  |  |
| Total private establishments ......................... | 5,860,445 | 8,681,001 | 2,820,556 | 48.1 |
| Total private employment........................................................ | 90,855,141 | 114,012,221 | 23,157,080 | 25.5 |
| Colleges and universities'establishments.................................... | 1,985 | 4,389 | 2,404 | 121.1 |
| Colleges and universities'employment ..................................... | 723,107 | 1,060,666 | 337,559 | 46.7 |
| Colleges and universities' share of total private employment..... | . 80 | . 93 | - | - |
| Location quotient.................................................................. | 1.00 | 1.00 | - | - |
| Wages: |  |  |  |  |
| Total private average weekly wage ............................................ | \$447 | \$853 | \$406 | 90.8 |
| Total private average annual wage........................................ | 23,262 | 44,362 | 21,100 | 90.7 |
| Colleges and universities' average weekly wage .......................... | 458 | 925 | 467 | 102.0 |
| Colleges and universities' average annual wage .......................... | 23,835 | 48,098 | 24,263 | 101.8 |
| Massachusetts |  |  |  |  |
| Employment: |  |  |  |  |
| Total private establishments ................................................ | 164,346 | 204,301 | 39,955 | 24.3 |
| Total private employment...................................................... | 2,537,238 | 2,824,834 | 287,596 | 11.3 |
| Colleges and universities'establishments..................................... | 82 | 124 | 42 | 51.2 |
| Colleges and universities' employment ...................................... | 69,423 | 84,847 | 15,424 | 22.2 |
| Colleges and universities' share of total private employment..... | 2.74 | 3.00 | - | - |
| Location quotient..................................................................... | 3.44 | 3.23 | - | - |
| Employment: |  |  |  |  |
| Total private average weekly wage ....................................... | \$510 | \$1,073 | \$563 | 110.4 |
| Total private average annual wage............................................ | 26,497 | 55,798 | 29,301 | 110.6 |
| Colleges and universities' average weekly wage .......................... | 521 | 1,095 | 574 | 110.2 |
| Colleges and universities' average annual wage ......................... | 27,080 | 56,927 | 29,847 | 110.2 |
| Boston metropolitan area |  |  |  |  |
| Employment: |  |  |  |  |
| Total private establishments ................................................. | 113,165 | 135,840 | 22,675 | 20.0 |
| Total private employment................................................. | 1,859,951 | 2,099,976 | 240,025 | 12.9 |
| Colleges and universities'establishments............................... | 58 | 85 | 27 | 46.6 |
| Colleges and universities' employment ................................... | 57,960 | 70,089 | 12,129 | 20.9 |
| Colleges and universities'share of total private employment..... | 3.12 | 3.34 | - | - |
| Location quotient.................................................................. | 3.92 | 3.59 | - | - |
| Wages: |  |  |  |  |
| Total private average weekly wage .......................................... | \$538 | \$1,168 | \$630 | 117.1 |
| Total private average annual wage............................................ | 27,988 | 60,725 | 32,737 | 117.0 |
| Colleges and universities' average weekly wage...................... | 527 | 1,136 | 609 | 115.6 |
| Colleges and universities' average annual wage ......................... | 27,387 | 59,058 | 31,671 | 115.6 |
| Note: Dash indicates not applicable. |  | Quarterly Cen | ployment and | EW) progr |

## Chart 1. Location quotients for colleges and universities in 12 of the largest metropolitan areas, 2007 annual averages


setts ranked first in the percentage of adults with both bachelor's degrees and advanced degrees. In 2007, 37.9 percent of Massachusetts adults had completed a bachelor's degree and 16 percent had completed an advanced degree. In the Boston area, an even greater percentage of the popula-tion-more than 40 percent-had bachelor's degrees. ${ }^{4}$

Massachusetts has consistently attracted venture capital funds for biotechnology-related investments. In 2007, Massachusetts attracted almost $\$ 1.5$ billion in investment funds for biotechnology firms, up from $\$ 1.3$ billion in 2006. ${ }^{5}$ To further highlight local prominence in knowledge-based industries, despite being ranked 13th in population, Massachusetts had the fifth-highest number of patents granted in 2007. ${ }^{6}$ Boston's reputation and prominence have been strengthened by the fact that 56 Nobel laureates have taught and do research in
the area's colleges and universities.

## Industry concentration

Using location quotient analysis at the supersector ${ }^{7}$ industry level highlights those industries which are prominently concentrated in the Boston area. An examination of the 10 supersector industries in 2007 indicates that the highest concentrated industry in Boston was education and health services (location quotient $=1.34$ ), an industry that includes not only colleges and universities, but nursing homes, hospitals, and elementary and secondary schools. (See chart 2.) In Boston, employment in this supersector was 34 percent higher than the national average.

The Boston area also had a high concentration of other knowledgebased industries, including information (location quotient = 1.31); financial activities (1.25); and pro-
fessional and business services (1.22). These industries are generally regarded as knowledge-based industries with high wages. In contrast, Boston had lower-than-average concentrations in such industries as manufacturing, construction, and natural resources and mining.

## Higher education wages

In 1990, total U.S. private average weekly wages were $\$ 447$. (See table 1.) Massachusetts and Boston, with average weekly wages of $\$ 510$ and $\$ 538$, respectively, were 14 percent and 20 percent above the national average weekly wage. Massachusetts ranked fifth highest in average weekly wages among the 50 States in 1990. The average weekly wage in colleges and universities in 1990 was $\$ 458$ nationally, $\$ 521$ in Massachusetts, and $\$ 527$ in the Boston area.

Chart 2. Location quotients in the Boston metropolitan area, by industry supersector, 2007 annual averages


Seventeen years later, in 2007, Massachusetts ranked third highest among the 50 States in the average weekly wage for private-industry workers, at $\$ 1,073$. Wages for colleges and universities in Massachusetts were $\$ 1,095$, slightly above the average for all private industry.

In the Boston area, where high-paying industries such as high technology, finance, and biotechnology are more concentrated, college and university wages were $\$ 1,136$, llightly lower than the $\$ 1,168$ average for private industry. From 1990 to 2007, private-industry wage gains were 91 percent nationally, but 110 percent in Massachusetts and 117 percent in Boston. Those working in colleges and universities saw a national average weekly pay increase of 102 percent, a gain of 110 percent in Massachusetts, and an increase of 116 percent in Boston.

In 2007, total private wages in the

United States were $\$ 5.0$ trillion, of which $\$ 51$ billion was generated by colleges and universities. Thus, roughly 1.0 percent of all national wages was earned in colleges and universities. In contrast, total private wages in Boston were $\$ 127.5$ billion, of which $\$ 4.1$ billion, or 3.2 percent, were earned in higher education.

## Summary

In Massachusetts and, more specifically, the Boston metropolitan area, colleges and universities have exerted an important positive influence on the local and regional labor market economies. Compared with the Nation and the largest metropolitan areas in the country, Boston has the highest industry concentration, or location quotient, for colleges and universities, both in 2007 and historically back to 1990.

Colleges and universities have a
measurable economic impact in Boston. Over the 17-year period examined, they acted as a powerful job generator, with job growth roughly twice the rate for total private industry. Boston area colleges and universities' total wages as a proportion of total private wages were 3.2 percent, compared with 1.0 percent nationally. In addition, colleges and universities have a powerful economic impact by improving the quality of the labor force. As a result, the Boston area's highly educated labor force continues to attract knowledge-based industries such as high technology, biotechnology, and financial services. These industries have high wages, generate jobs faster than overall job growth does, and attract much-needed venture capital funds required to sustain the area's prominence as a center for higher education and research.

## Regional Report

## Notes

${ }^{1}$ According to the BLS Quarterly Census of Employment and Wages (QCEW), the Boston metropolitan area is defined as all cities and towns in the Boston-Cambridge-Quincy, MA-NH, Metropolitan Statistical Area, which includes the Boston-Quincy, MA, Metropolitan Division-Norfolk, Plymouth, and Suffolk Counties; Cambridge-Newton-Framingham, MA, Metropolitan Division-Middlesex County; Essex County, MA, Metropolitan Divi-sion-Essex County; and Rockingham CountyStrafford County, NH, Metropolitan DivisionRockingham and Strafford Counties.
${ }^{2} 1990$ was chosen because it was the earliest year that the QCEW used the North American Industry Classification System (NAICS) code 611310, which includes all private 4 -year colleges, universi-
ties, and professional schools (for example, business administration, dental, law, and medical schools), as well as theological seminaries, that grant baccalaureate or graduate degrees.
${ }^{3}$ A location quotient is the ratio of the concentration of a resource or activity, such as employment, in a defined area, such as a State, to the concentration of the same resource or activity in a larger area, such as the Nation. The national location quotient for each industry is always 1.0. (For more on location quotients, see "Quarterly Census of Employment and Wages: Location Quotient Calculator," on the Interntet at www.bls.gov/cew/ cewlq.htm, visited June 19, 2009.)
${ }^{4}$ Educational attainment data are from the U.S.

Census Bureau's American Community Survey, 2007.
${ }^{5}$ According to Dow Jones VentureSource.
${ }^{6}$ According to the U.S. Patent Trademark Office.
${ }^{7}$ Under NAICS, the industrial composition and organization of industries are defined by the type of activity or sector they are engaged in. The analysis presented in this report uses the BLS standard for sector aggregation at the two-digit level, of which there are 11 "supersectors": natural resources and mining; construction; manufacturing; trade, transportation, and utilities; information; financial activities; professional and business services; educational and health services; leisure and hospitality; other services; and government. This report excludes the government supersector.

## The life of Frances Perkins

The Woman Behind the New Deal: The Life of Frances Perkins, FDR's Secretary of Labor and His Moral Conscience. By Kirstin Downey, New York, NY, Doubleday, 2009, 458 pp., \$35.00/ hardback.

In a captivating style Kirstin Downey has told a tale of moral complexity that transcends fictional drama. A real life experience, it is not limited by the author's imagination. The author chronicles one of the historic struggles that shaped our nation as she demonstrates what these changes owe the individuals who brought them about.

In the first six chapters of the book Downey describes Frances Perkins' struggles in life as an independent woman. The formative years of Perkins' young adult life seemed almost destined to result in her achievements as a cabinet official during the transforming era of the Great Depression. Reminiscent of the John Adams described in James Grant's biography, it is in the interplay between her values and her life experiences that were forged the idealism that led to Perkins' confrontation with inadequate governmental institutions.

After graduating from Mount Holyoke, Perkins had been unable to find work until she received an offer to teach at a woman's college in Lake Forest, Illinois. It provided her an opportunity to leave behind the socially conventional milieu of a merchant's daughter in Worcester, Massachusetts; she reinvented herself by changing her first name (to Frances) and her faith (to Episcopalian). Whatever worldly advantage this move to a new faith gave her, for she was also a bit of a social climber who did what it took
to advance her agenda, she remained committed to the Episcopalian church until the end of her days. Meanwhile, Perkins escaped the finishing school atmosphere of the school by absorbing nearby Chicago in its notorious turn of the century heyday. She learned from the radical feminist Florence Kelley, who remained her mentor, and Jane Addams, founder of Hull House, a leading "settlement house" which had the implementation of social reform as its goal.

Perkins was ever mindful that she was a direct descendant of Revolutionary War patriot James Otis, who had railed against taxation without representation. The event which transformed her from social reformer to social activist was when she witnessed the Triangle Shirtwaist fire. Her leadership role in investigating its cause led to an appointment as Director of the Committee on Safety that established fire regulations, particularly as they concerned worker safety. A woman of abounding energy, Perkins was fearless in the face of intellectual and physical challenges. She entered into the world of political reality by recognizing in notorious Tammany Hall the ability to make things happen on behalf of its constituency. Consequently, she marched into the cigar chomping all male den of its headquarters and demanded to see the man in charge. She came armed with facts and figures. In addition to her work on fire laws, she championed a fifty-four hour work week for women factory workers. The legislation passed at her instigation by allowing a compromise on an exemption for cannery workers. Her perfectionist social worker colleagues were angry, but she had learned to compromise to get things done and the following year was rewarded by seeing the cannery workers included as well.

Frances Perkins earned her appointment as the first female cabinet member in U.S. history and FDR's only Labor Secretary as a result of these successes. Perkins became the impetus while FDR understood the need, and together they had the political skill to propose and shepherd legislation to successful outcomes. Their close collaboration was instrumental in the passage of landmark Social Security, Fair Labor Standards, and other safety net legislation. FDR had first learned of her extraordinary competence when she served him as Industrial Commissioner of New York State. Her brilliance as a government official centered on her unusual effectiveness in persuading others of the merits of her well conceived and rehearsed agenda. This quality was one Perkins also sought in her appointments, notably that of Isador Lubin (whom she named Commissioner of Labor Statistics in 1933 shortly after she became Labor Secretary).

Family considerations were another important factor that shaped Frances Perkins' life. At age thirty three she married a socially prominent, urbane man four years her senior. Chapters seven through nine in the book detail the heartbreaks that followed this seemingly 'good match.' Her husband ran through his fortune by increasingly bizarre behavior that was clinically diagnosed as manic depression. Their daughter was later to suffer the same illness. Isolated emotionally from family ties, Perkins was forced by necessity to become decision maker and breadwinner for her husband and daughter.

Mary Rumsey and Frances Perkins shared a home in Washington D.C. when Mary became a widow and Frances' husband needed hospital care.

They entertained extensively, a life style that suited the Franklin Delano Roosevelt administration. A good deal of legislative business was handled in these entertainments. Downey cites an instance in which a Supreme Court justice guest tipped off Perkins that the taxing power of the Federal Government could be used to ensure that State unemployment compensation met national standards. In a 5-4 decision the court upheld the constitutionality of this provision of the Social Security Act.

In her closing chapters Downey recounts Perkins' work on the U.S. Civil

Service Commission from 1946 to 1952 and the offer Perkins accepted to join Cornell University's fledgling Industrial and Labor Relations School. While the Cornell position appeared to be to her liking, the Civil Service Commission job was not commensurate with her experience as Labor Secretary; Perkins had hoped to be appointed head of the Social Security Administration. She was clearly disheartened by both the lack of recognition and by being told that the other cabinet members did not wish to work with her because she was a woman... that her mere presence made them
uncomfortable.
Kirstin Downey has written an excellent book about a page turning political history which needs to be read. Frances Perkins was a pioneer in shaping the world we know. Her personal life was full of sorrow. Her professional life was a constant struggle whose triumphs were often rewarded with hostility. Downey shows us what it costs to be the catalyst that recasts societal values in a resistant world.
-Solidelle Wasser
New York Region
Bureau of Labor Statistics

## Wanted: Book Reviewers

Interested in reviewing a book for the Monthly Labor Review? We have a number of books by distinguished authors on economics, industrial relations, other social sciences, and related issues waiting to be reviewed. If you have good writing skills and/or experience, then please contact us via E-mail at mlr@bls.gov

## Immigrants' occupations and earnings

Numerous studies have analyzed the effects that education and work experience have on the earnings of immigrants in the United States. However, most of these studies do not include variables for occupations in their equations. The article "Earnings and Occupational Attainment among Immigrants" (Industrial Relations, July 2009), by Barry R. Chiswick and Paul W. Miller, in contrast, is one that views earnings and occupation as two imperfect measures of labor-market outcome. The authors believe that education has not only a direct effect on earnings, but also an indirect effect that operates through the occupation in which a given immigrant works. Their article uses data from the 2000 U.S. Census on foreign-born males
aged $25-64$. The data include information on 23 major occupational groups and 509 occupations.
Controlling for major occupational group, Chiswick and Miller find that about 40 percent of the rise in earnings associated with additional schooling stems from entrance into a better paying major occupational group; the rest stems from attaining higher earnings within the group. Controlling separately for both major occupational group and for occupation, the authors also discover that a larger amount of work experience prior to immigration is associated with immigrants working in lower paying jobs in the United States. This appears to result from the difficulty in transferring job skills from one country to another. This explanation is consistent with the fact that the negative effect of experience in a foreign labor market is relatively stron-
ger among higher paying occupations. Most growth in earnings achieved by immigrants comes from increases in earnings within an occupation.
A greater number of years spent in the United States is associated with higher earnings, but only when not controlling for English-language ability-a finding which highlights the importance of English skills in obtaining a job that pays well. In fact, the association between better English skills and greater pay is found to be highly statistically significant. It also appears that access to higher paying occupations is based primarily on educational attainment as opposed to work experience. On the whole, an immigrant appears to be most likely to obtain a high salary in a more lucrative occupation if he is highly educated, immigrates as early as possible, and becomes proficient in English as quickly as possible.

We are interested in your feedback on this column. Please let us know what you have found most interesting and what essential reading we may have missed. Write to: Executive Editor, Monthly Labor Review, Bureau of Labor Statistics, Washington, DC. 20212, or e-mail MLR@bls.gov

# NOTE: Many of the statistics in the following pages were subsequently revised. These pages have not been updated to reflect the revisions. 

To obtain BLS data that reflect all revisions, see http://www.bls.gov/data/home.htm

For the latest set of "Current Labor Statistics," see http://www.bls.gov/opub/mir/curlabst.htm
Notes on current labor statistics ..... 73
Comparative indicators

1. Labor market indicators ..... 85
2. Annual and quarterly percent changes in compensation, prices, and productivity ..... 86
3. Alternative measures of wages and compensation changes ..... 86
Labor force data
4. Employment status of the population, seasonally adjusted ..... 87
5. Selected employment indicators, seasonally adjusted ..... 88
6. Selected unemployment indicators, seasonally adjusted.. ..... 89
7. Duration of unemployment, seasonally adjusted ..... 89
8. Unemployed persons by reason for unemployment, seasonally adjusted ..... 90
9. Unemployment rates by sex and age, seasonally adjusted ..... 90
10. Unemployment rates by State, seasonally adjusted ..... 91
11. Employment of workers by State, seasonally adjusted ..... 91
12. Employment of workers by industry, seasonally adjusted ..... 92
13. Average weekly hours by industry, seasonally adjusted. ..... 95
14. Average hourly earnings by industry, seasonally adjusted ..... 96
15. Average hourly earnings by industry ..... 97
16. Average weekly earnings by industry ..... 98
17. Diffusion indexes of employment change, seasonally adjusted ..... 99
18. Job openings levels and rates by industry and region, seasonally adjusted ..... 100
19. Hires levels and rates by industry and region, seasonally adjusted ..... 100
20. Separations levels and rates by industry and region, seasonally adjusted. ..... 101
21. Quits levels and rates by industry and region, seasonally adjusted. ..... 101
22. Quarterly Census of Employment and Wages, 10 largest counties ..... 102
23. Quarterly Census of Employment and Wages, by State ..... 104
24. Annual data: Quarterly Census of Employment and Wages, by ownership ..... 105
25. Annual data: Quarterly Census of Employment and Wages, establishment size and employment, by supersector...... 106
26. Annual data: Quarterly Census of Employment and Wages, by metropolitan area ..... 107
27. Annual data: Employment status of the population. ..... 112
28. Annual data: Employment levels by industry ..... 112
29. Annual data: Average hours and earnings level, by industry ..... 113

## Labor compensation and collective bargaining data

30. Employment Cost Index, compensation ..... 114
31. Employment Cost Index, wages and salaries ..... 115
32. Employment Cost Index, benefits, private industry ..... 118
33. Employment Cost Index, private industry workers, by bargaining status, and region ..... 119
34. National Compensation Survey, retirement benefits, private industry ..... 120
35. National Compensation Survey, health insurance, private industry ..... 123
36. National Compensation Survey, selected benefits, private industry ..... 125
37. Work stoppages involving 1,000 workers or more ..... 125
Price data
38. Consumer Price Index: U.S. city average, by expenditure category and commodity and service groups ..... 126
39. Consumer Price Index: U.S. city average and local data, all items ..... 129
40. Annual data: Consumer Price Index, all items and major groups ..... 130
41. Producer Price Indexes by stage of processing ..... 131
42. Producer Price Indexes for the net output of major industry groups ..... 132
43. Annual data: Producer Price Indexes by stage of processing ..... 133
44. U.S. export price indexes by end-use category ..... 133
45. U.S. import price indexes by end-use category ..... 134
46. U.S. international price indexes for selected categories of services ..... 134
Productivity data
47. Indexes of productivity, hourly compensation, and unit costs, data seasonally adjusted ..... 135
48. Annual indexes of multifactor productivity ..... 136
49. Annual indexes of productivity, hourly compensation, unit costs, and prices ..... 137
50. Annual indexes of output per hour for select industries. ..... 138
International comparisons data
51. Unemployment rates in 10 countries, seasonally adjusted ..... 141
52. Annual data: Employment status of the civilian working-age population, 10 countries ..... 142
53. Annual indexes of productivity and related measures, 17 economies ..... 143
Injury and IIIness data
54. Annual data: Occupational injury and illness ..... 145
55. Fatal occupational injuries by event or exposure ..... 147

This section of the Review presents the principal statistical series collected and calculated by the Bureau of Labor Statistics: series on labor force; employment; unemployment; labor compensation; consumer, producer, and international prices; productivity; international comparisons; and injury and illness statistics. In the notes that follow, the data in each group of tables are briefly described; key definitions are given; notes on the data are set forth; and sources of additional information are cited.

## General notes

The following notes apply to several tables in this section:

Seasonal adjustment. Certain monthly and quarterly data are adjusted to eliminate the effect on the data of such factors as climatic conditions, industry production schedules, opening and closing of schools, holiday buying periods, and vacation practices, which might prevent short-term evaluation of the statistical series. Tables containing data that have been adjusted are identified as "seasonally adjusted." (All other data are not seasonally adjusted.) Seasonal effects are estimated on the basis of current and past experiences. When new seasonal factors are computed each year, revisions may affect seasonally adjusted data for several preceding years.

Seasonally adjusted data appear in tables $1-14,17-21,48$, and 52 . Seasonally adjusted labor force data in tables 1 and 4-9 and seasonally adjusted establishment survey data shown in tables 1,12-14, and 17 are revised in the March 2007 Revierw. A brief explanation of the seasonal adjustment methodology appears in "Notes on the data."

Revisions in the productivity data in table 54 are usually introduced in the September issue. Seasonally adjusted indexes and percent changes from month-to-month and quarter-to-quarter are published for numerous Consumer and Producer Price Index series. However, seasonally adjusted indexes are not published for the U.S. average AllItems CPI. Only seasonally adjusted percent changes are available for this series.

Adjustments for price changes. Some data-such as the "real" earnings shown in table 14-are adjusted to eliminate the effect of changes in price. These adjustments are made by dividing current-dollar values by the Consumer Price Index or the appropriate component of the index, then multiplying by 100 . For example, given a current hourly wage rate of $\$ 3$ and a current price index number of 150 , where $1982=100$, the hourly rate expressed in 1982 dollars is $\$ 2(\$ 3 / 150$ $x 100=\$ 2$ ). The $\$ 2$ (or any other resulting
values) are described as "real," "constant," or "1982" dollars.

## Sources of information

Data that supplement the tables in this section are published by the Bureau in a variety of sources. Definitions of each series and notes on the data are contained in later sections of these Notes describing each set of data. For detailed descriptions of each data series, see BLS Handbook of Methods, Bulletin 2490. Users also may wish to consult Major Programs of the Bureau of Labor Statistics, Report 919. News releases provide the latest statistical information published by the Bureau; the major recurring releases are published according to the schedule appearing on the back cover of this issue.

More information about labor force, employment, and unemployment data and the household and establishment surveys underlying the data are available in the Bureau's monthly publication, Employment and Earnings. Historical unadjusted and seasonally adjusted data from the household survey are available on the Internet:

## www.bls.gov/cps/

Historically comparable unadjusted and seasonally adjusted data from the establishment survey also are available on the Internet:
www.bls.gov/ces/
Additional information on labor force data for areas below the national level are provided in the BLS annual report, Geographic Profile of Employment and Unemployment.

For a comprehensive discussion of the Employment Cost Index, see Employment Cost Indexes and Levels, 1975-95, BLS Bulletin 2466 . The most recent data from the Employee Benefits Survey appear in the following Bureau of Labor Statistics bulletins: Employee Benefits in Medium and Large Firms; Employee Benefits in Small Private Establishments; and Employee Benefits in State and Local Governments.

More detailed data on consumer and producer prices are published in the monthly periodicals, The CPI Detailed Report and Producer Price Indexes. For an overview of the 1998 revision of the CPI, see the December 1996 issue of the Monthly Labor Revier. Additional data on international prices appear in monthly news releases.

Listings of industries for which productivity indexes are available may be found on the Internet:

## www.bls.gov/lpc/

For additional information on international comparisons data, see International Comparisons of Unemployment, Bulletin
1979.

Detailed data on the occupational injury and illness series are published in Occupational Injuries and Illnesses in the United States, by Industry, a BLS annual bulletin.

Finally, the Monthly Labor Review carries analytical articles on annual and longer term developments in labor force, employment, and unemployment; employee compensation and collective bargaining; prices; productivity; international comparisons; and injury and illness data.

## Symbols

$$
\begin{aligned}
\text { n.e.c. }= & \text { not elsewhere classified. } \\
\text { n.e.s. }= & \text { not elsewhere specified. } \\
\mathrm{p}= & \text { preliminary. To increase } \\
& \text { the timeliness of some series, } \\
& \text { preliminary figures are issued } \\
& \text { based on representative but } \\
& \text { incomplete returns. } \\
\mathrm{r}= & \text { revised. Generally, this revision } \\
& \text { reflects the availability of later } \\
& \text { data, but also may reflect other } \\
& \text { adjustments. }
\end{aligned}
$$

## Comparative Indicators

## (Tables 1-3)

Comparative indicators tables provide an overview and comparison of major blS statistical series. Consequently, although many of the included series are available monthly, all measures in these comparative tables are presented quarterly and annually.

Labor market indicators include employment measures from two major surveys and information on rates of change in compensation provided by the Employment Cost Index (ECI) program. The labor force participation rate, the employment-population ratio, and unemployment rates for major demographic groups based on the Current Population ("household") Survey are presented, while measures of employment and average weekly hours by major industry sector are given using nonfarm payroll data. The Employment Cost Index (compensation), by major sector and by bargaining status, is chosen from a variety of BLS compensation and wage measures because it provides a comprehensive measure of employer costs for hiring labor, not just outlays for wages, and it is not affected by employment shifts among occupations and industries.

Data on changes in compensation, prices, and productivity are presented in table 2. Measures of rates of change of compensation and wages from the Employment Cost Index
program are provided for all civilian nonfarm workers (excluding Federal and household workers) and for all private nonfarm workers. Measures of changes in consumer prices for all urban consumers; producer prices by stage of processing; overall prices by stage of processing; and overall export and import price indexes are given. Measures of productivity (output per hour of all persons) are provided for major sectors.

Alternative measures of wage and compensation rates of change, which reflect the overall trend in labor costs, are summarized in table 3. Differences in concepts and scope, related to the specific purposes of the series, contribute to the variation in changes among the individual measures.

## Notes on the data

Definitions of each series and notes on the data are contained in later sections of these notes describing each set of data.

## Employment and Unemployment Data

(Tables 1; 4-29)

## Household survey data

## Description of the series

Employment data in this section are obtained from the Current Population Survey, a program of personal interviews conducted monthly by the Bureau of the Census for the Bureau of Labor Statistics. The sample consists of about 60,000 households selected to represent the U.S. population 16 years of age and older. Households are interviewed on a rotating basis, so that three-fourths of the sample is the same for any 2 consecutive months.

## Definitions

Employed persons include (1) all those who worked for pay any time during the week which includes the 12 th day of the month or who worked unpaid for 15 hours or more in a family-operated enterprise and (2) those who were temporarily absent from their regular jobs because of illness, vacation, industrial dispute, or similar reasons. A person working at more than one job is counted only in the job at which he or she worked the greatest number of hours.

Unemployed persons are those who did not work during the survey week, but were available for work except for temporary illness and had looked for jobs within the preceding 4 weeks. Persons who did not look for work
because they were on layoff are also counted among the unemployed. The unemployment rate represents the number unemployed as a percent of the civilian labor force.

The civilian labor force consists of all employed or unemployed persons in the civilian noninstitutional population. Persons not in the labor force are those not classified as employed or unemployed. This group includes discouraged workers, defined as persons who want and are available for a job and who have looked for work sometime in the past 12 months (or since the end of their last job if they held one within the past 12 months), but are not currently looking, because they believe there are no jobs available or there are none for which they would qualify. The civilian noninstitutional population comprises all persons 16 years of age and older who are not inmates of penal or mental institutions, sanitariums, or homes for the aged, infirm, or needy. The civilian labor force participation rate is the proportion of the civilian noninstitutional population that is in the labor force. The employment-population ratio is employment as a percent of the civilian noninstitutional population.

## Notes on the data

From time to time, and especially after a decennial census, adjustments are made in the Current Population Survey figures to correct for estimating errors during the intercensal years. These adjustments affect the comparability of historical data. A description of these adjustments and their effect on the various data series appears in the Explanatory Notes of Employment and Earnings. For a discussion of changes introduced in January 2003, see "Revisions to the Current Population Survey Effective in January 2003" in the February 2003 issue of Employment and Earnings (available on the BLS Web site at www.bls.gov/cps/rvcps03.pdf).

Effective in January 2003, BLS began using the X-12 ARIMA seasonal adjustment program to seasonally adjust national labor force data. This program replaced the X-11 ARIMA program which had been used since January 1980. See "Revision of Seasonally Adjusted Labor Force Series in 2003," in the February 2003 issue of Employment and Earnings (available on the BLS Web site at www.bls.gov/cps/cpsrs.pdf) for a discussion of the introduction of the use of X-12 ARIMA for seasonal adjustment of the labor force data and the effects that it had on the data.

At the beginning of each calendar year, historical seasonally adjusted data usually are revised, and projected seasonal adjustment factors are calculated for use during the January-June period. The historical season-
ally adjusted data usually are revised for only the most recent 5 years. In July, new seasonal adjustment factors, which incorporate the experience through June, are produced for the July-December period, but no revisions are made in the historical data.

FOR ADDITIONAL INFORMATION on national household survey data, contact the Division of Labor Force Statistics: (202) 691-6378.

## Establishment survey data

## Description of the series

Employment, hours, and earnings data in this section are compiled from payroll records reported monthly on a voluntary basis to the Bureau of Labor Statistics and its cooperating State agencies by about 160,000 businesses and government agencies, which represent approximately 400,000 individual worksites and represent all industries except agriculture. The active CES sample covers approximately one-third of all nonfarm payroll workers. Industries are classified in accordance with the 2002 North American Industry Classification System. In most industries, the sampling probabilities are based on the size of the establishment; most large establishments are therefore in the sample. (An establishment is not necessarily a firm; it may be a branch plant, for example, or warehouse.) Self-employed persons and others not on a regular civilian payroll are outside the scope of the survey because they are excluded from establishment records. This largely accounts for the difference in employment figures between the household and establishment surveys.

## Definitions

An establishment is an economic unit which produces goods or services (such as a factory or store) at a single location and is engaged in one type of economic activity.

Employed persons are all persons who received pay (including holiday and sick pay) for any part of the payroll period including the 12th day of the month. Persons holding more than one job (about 5 percent of all persons in the labor force) are counted in each establishment which reports them.

Production workers in the goods-producing industries cover employees, up through the level of working supervisors, who engage directly in the manufacture or construction of the establishment's product. In private ser-vice-providing industries, data are collected for nonsupervisory workers, which include most employees except those in executive, managerial, and supervisory positions. Those
workers mentioned in tables 11-16 include production workers in manufacturing and natural resources and mining; construction workers in construction; and nonsupervisory workers in all private service-providing industries. Production and nonsupervisory workers account for about four-fifths of the total employment on private nonagricultural payrolls.

Earnings are the payments production or nonsupervisory workers receive during the survey period, including premium pay for overtime or late-shift work but excluding irregular bonuses and other special payments. Real earnings are earnings adjusted to reflect the effects of changes in consumer prices. The deflator for this series is derived from the Consumer Price Index for Urban Wage Earners and Clerical Workers (CPI-W).

Hours represent the average weekly hours of production or nonsupervisory workers for which pay was received, and are different from standard or scheduled hours. Overtime hours represent the portion of average weekly hours which was in excess of regular hours and for which overtime premiums were paid.

The Diffusion Index represents the percent of industries in which employment was rising over the indicated period, plus one-half of the industries with unchanged employment; 50 percent indicates an equal balance between industries with increasing and decreasing employment. In line with Bureau practice, data for the 1-, 3-, and 6month spans are seasonally adjusted, while those for the 12 -month span are unadjusted. Table 17 provides an index on private nonfarm employment based on 278 industries, and a manufacturing index based on 84 industries. These indexes are useful for measuring the dispersion of economic gains or losses and are also economic indicators.

## Notes on the data

Establishment survey data are annually adjusted to comprehensive counts of employment (called "benchmarks"). The March 2003 benchmark was introduced in February 2004 with the release of data for January 2004, published in the March 2004 issue of the Review. With the release in June 2003, CES completed a conversion from the Standard Industrial Classification (SIC) system to the North American Industry Classification System (NAICS) and completed the transition from its original quota sample design to a probability-based sample design. The indus-try-coding update included reconstruction of historical estimates in order to preserve
time series for data users. Normally 5 years of seasonally adjusted data are revised with each benchmark revision. However, with this release, the entire new time series history for all CES data series were re-seasonally adjusted due to the NAICS conversion, which resulted in the revision of all CES time series.

Also in June 2003, the CES program introduced concurrent seasonal adjustment for the national establishment data. Under this methodology, the first preliminary estimates for the current reference month and the revised estimates for the 2 prior months will be updated with concurrent factors with each new release of data. Concurrent seasonal adjustment incorporates all available data, including first preliminary estimates for the most current month, in the adjustment process. For additional information on all of the changes introduced in June 2003, see the June 2003 issue of Employment and Earnings and "Recent changes in the national Current Employment Statistics survey," Monthly Labor Review, June 2003, pp. 3-13.

Revisions in State data (table 11) occurred with the publication of January 2003 data. For information on the revisions for the State data, see the March and May 2003 issues of Employment and Earnings, and "Recent changes in the State and Metropolitan Area CES survey," Monthly Labor Review, June 2003, pp. 14-19.

Beginning in June 1996, the BLS uses the X-12-ARIMA methodology to seasonally adjust establishment survey data. This procedure, developed by the Bureau of the Census, controls for the effect of varying survey intervals (also known as the 4 - versus 5 -week effect), thereby providing improved measurement of over-the-month changes and underlying economic trends. Revisions of data, usually for the most recent 5-year period, are made once a year coincident with the benchmark revisions.

In the establishment survey, estimates for the most recent 2 months are based on incomplete returns and are published as preliminary in the tables (12-17 in the Review). When all returns have been received, the estimates are revised and published as "final" (prior to any benchmark revisions) in the third month of their appearance. Thus, December data are published as preliminary in January and February and as final in March. For the same reasons, quarterly establishment data (table 1) are preliminary for the first 2 months of publication and final in the third month. Fourth-quarter data are published as preliminary in January and February and as final in March.

FOR ADDITIONAL INFORMATION on
establishment survey data, contact the Division of Current Employment Statistics: (202) 691-6555.

## Unemployment data by State

## Description of the series

Data presented in this section are obtained from the Local Area Unemployment Statistics (LAUS) program, which is conducted in cooperation with State employment security agencies.

Monthly estimates of the labor force, employment, and unemployment for States and sub-State areas are a key indicator of local economic conditions, and form the basis for determining the eligibility of an area for benefits under Federal economic assistance programs such as the Job Training Partnership Act. Seasonally adjusted unemployment rates are presented in table 10. Insofar as possible, the concepts and definitions underlying these data are those used in the national estimates obtained from the CPS.

## Notes on the data

Data refer to State of residence. Monthly data for all States and the District of Columbia are derived using standardized procedures established by BLS. Once a year, estimates are revised to new population controls, usually with publication of January estimates, and benchmarked to annual average CPS levels.

FOR ADDITIONAL INFORMATION on data in this series, call (202) 691-6392 (table 10) or (202) 691-6559 (table 11).

## Quarterly Census of Employment and Wages

## Description of the series

Employment, wage, and establishment data in this section are derived from the quarterly tax reports submitted to State employment security agencies by private and State and local government employers subject to State unemployment insurance (UI) laws and from Federal, agencies subject to the Unemployment Compensation for Federal Employees (ucfe) program. Each quarter, State agencies edit and process the data and send the information to the Bureau of Labor Statistics.

The Quarterly Census of Employment and Wages (QCEW) data, also referred as ES202 data, are the most complete enumeration of employment and wage information by industry at the national, State, metropolitan area, and county levels. They have broad economic significance in evaluating labor
market trends and major industry developments.

## Definitions

In general, the Quarterly Census of Employment and Wages monthly employment data represent the number of covered workers who worked during, or received pay for, the pay period that included the 12th day of the month. Covered private industry employment includes most corporate officials, executives, supervisory personnel, professionals, clerical workers, wage earners, piece workers, and part-time workers. It excludes proprietors, the unincorporated self-employed, unpaid family members, and certain farm and domestic workers. Certain types of nonprofit employers, such as religious organizations, are given a choice of coverage or exclusion in a number of States. Workers in these organizations are, therefore, reported to a limited degree.

Persons on paid sick leave, paid holiday, paid vacation, and the like, are included. Persons on the payroll of more than one firm during the period are counted by each ui-subject employer if they meet the employment definition noted earlier. The employment count excludes workers who earned no wages during the entire applicable pay period because of work stoppages, temporary layoffs, illness, or unpaid vacations.

Federal employment data are based on reports of monthly employment and quarterly wages submitted each quarter to State agencies for all Federal installations with employees covered by the Unemployment Compensation for Federal Employees (Ucfe) program, except for certain national security agencies, which are omitted for security reasons. Employment for all Federal agencies for any given month is based on the number of persons who worked during or received pay for the pay period that included the 12th of the month.

An establishment is an economic unit, such as a farm, mine, factory, or store, that produces goods or provides services. It is typically at a single physical location and engaged in one, or predominantly one, type of economic activity for which a single industrial classification may be applied. Occasionally, a single physical location encompasses two or more distinct and significant activities. Each activity should be reported as a separate establishment if separate records are kept and the various activities are classified under different NAICS industries.

Most employers have only one establishment; thus, the establishment is the predominant reporting unit or statistical entity for reporting employment and wages
data. Most employers, including State and local governments who operate more than one establishment in a State, file a Multiple Worksite Report each quarter, in addition to their quarterly ur report. The Multiple Worksite Report is used to collect separate employment and wage data for each of the employer's establishments, which are not detailed on the ui report. Some very small multi-establishment employers do not file a Multiple Worksite Report. When the total employment in an employer's secondary establishments (all establishments other than the largest) is 10 or fewer, the employer generally will file a consolidated report for all establishments. Also, some employers either cannot or will not report at the establishment level and thus aggregate establishments into one consolidated unit, or possibly several units, though not at the establishment level.

For the Federal Government, the reporting unit is the installation: a single location at which a department, agency, or other government body has civilian employees. Federal agencies follow slightly different criteria than do private employers when breaking down their reports by installation. They are permitted to combine as a single statewide unit: 1) all installations with 10 or fewer workers, and 2) all installations that have a combined total in the State of fewer than 50 workers. Also, when there are fewer than 25 workers in all secondary installations in a State, the secondary installations may be combined and reported with the major installation. Last, if a Federal agency has fewer than five employees in a State, the agency headquarters office (regional office, district office) serving each State may consolidate the employment and wages data for that State with the data reported to the State in which the headquarters is located. As a result of these reporting rules, the number of reporting units is always larger than the number of employers (or government agencies) but smaller than the number of actual establishments (or installations).

Data reported for the first quarter are tabulated into size categories ranging from worksites of very small size to those with 1,000 employees or more. The size category is determined by the establishment's March employment level.It is important to note that each establishment of a multi-establishment firm is tabulated separately into the appropriate size category. The total employment level of the reporting multi-establishment firm is not used in the size tabulation.

Covered employers in most States report total wages paid during the calendar quarter, regardless of when the services were performed. A few State laws, however, specify that wages be reported for, or based on the period during which services are performed
rather than the period during which compensation is paid. Under most State laws or regulations, wages include bonuses, stock options, the cash value of meals and lodging, tips and other gratuities, and, in some States, employer contributions to certain deferred compensation plans such as $401(\mathrm{k})$ plans.

Covered employer contributions for old-age, survivors, and disability insurance (OASDI), health insurance, unemployment insurance, workers' compensation, and private pension and welfare funds are not reported as wages. Employee contributions for the same purposes, however, as well as money withheld for income taxes, union dues, and so forth, are reported even though they are deducted from the worker's gross pay.

Wages of covered Federal workers represent the gross amount of all payrolls for all pay periods ending within the quarter. This includes cash allowances, the cash equivalent of any type of remuneration, severance pay, withholding taxes, and retirement deductions. Federal employee remuneration generally covers the same types of services as for workers in private industry.

Average annual wage per employee for any given industry are computed by dividing total annual wages by annual average employment. A further division by 52 yields average weekly wages per employee. Annual pay data only approximate annual earnings because an individual may not be employed by the same employer all year or may work for more than one employer at a time.

Average weekly or annual wage is affected by the ratio of full-time to part-time workers as well as the number of individuals in high-paying and low-paying occupations. When average pay levels between States and industries are compared, these factors should be taken into consideration. For example, industries characterized by high proportions of part-time workers will show average wage levels appreciably less than the weekly pay levels of regular full-time employees in these industries. The opposite effect characterizes industries with low proportions of part-time workers, or industries that typically schedule heavy weekend and overtime work. Average wage data also may be influenced by work stoppages, labor turnover rates, retroactive payments, seasonal factors, bonus payments, and so on.

## Notes on the data

Beginning with the release of data for 2001, publications presenting data from the Covered Employment and Wages program have switched to the 2002 version of the North American Industry Classification System
(NAICS) as the basis for the assignment and tabulation of economic data by industry. NAICS is the product of a cooperative effort on the part of the statistical agencies of the United States, Canada, and Mexico. Due to difference in NAICS and Standard Industrial Classification (SIC) structures, industry data for 2001 is not comparable to the SIC-based data for earlier years.

Effective January 2001, the program began assigning Indian Tribal Councils and related establishments to local government ownership. This BLS action was in response to a change in Federal law dealing with the way Indian Tribes are treated under the Federal Unemployment Tax Act. This law requires federally recognized Indian Tribes to be treated similarly to State and local governments. In the past, the Covered Employment and Wage (CEW) program coded Indian Tribal Councils and related establishments in the private sector. As a result of the new law, CEW data reflects significant shifts in employment and wages between the private sector and local government from 2000 to 2001. Data also reflect industry changes. Those accounts previously assigned to civic and social organizations were assigned to tribal governments. There were no required industry changes for related establishments owned by these Tribal Councils. These tribal business establishments continued to be coded according to the economic activity of that entity.

To insure the highest possible quality of data, State employment security agencies verify with employers and update, if necessary, the industry, location, and ownership classification of all establishments on a 3-year cycle. Changes in establishment classification codes resulting from the verification process are introduced with the data reported for the first quarter of the year. Changes resulting from improved employer reporting also are introduced in the first quarter. For these reasons, some data, especially at more detailed geographic levels, may not be strictly comparable with earlier years.

County definitions are assigned according to Federal Information Processing Standards Publications as issued by the National Institute of Standards and Technology. Areas shown as counties include those designated as independent cities in some jurisdictions and, in Alaska, those areas designated by the Census Bureau where counties have not been created. County data also are presented for the New England States for comparative purposes, even though townships are the more common designation used in New England (and New Jersey).

The Office of Management and Budget (OMB) defines metropolitan areas for use
in Federal statistical activities and updates these definitions as needed. Data in this table use metropolitan area criteria established by OMB in definitions issued June 30, 1999 (OMB Bulletin No. 99-04). These definitions reflect information obtained from the 1990 Decennial Census and the 1998 U.S. Census Bureau population estimate. A complete list of metropolitan area definitions is available from the National Technical Information Service (NTIS), Document Sales, 5205 Port Royal Road, Springfield, Va. 22161, telephone 1-800-553-6847.

OMB defines metropolitan areas in terms of entire counties, except in the six New England States where they are defined in terms of cities and towns. New England data in this table, however, are based on a county concept defined by OMB as New England County Metropolitan Areas (NECMA) because coun-ty-level data are the most detailed available from the Quarterly Census of Employment and Wages. The NECMA is a county-based alternative to the city- and town-based metropolitan areas in New England. The NECMA for a Metropolitan Statistical Area (MSA) include: (1) the county containing the first-named city in that MSA title (this county may include the first-named cities of other MSA, and (2) each additional county having at least half its population in the MSA in which first-named cities are in the county identified in step 1. The NECMA is officially defined areas that are meant to be used by statistical programs that cannot use the regular metropolitan area definitions in New England.

For additional information on the covered employment and wage data, contact the Division of Administrative Statistics and Labor Turnover at (202) 691-6567.

## Job Openings and Labor Turnover Survey

## Description of the series

Data for the Job Openings and Labor Turnover Survey (JOLTS) are collected and compiled from a sample of 16,000 business establishments. Each month, data are collected for total employment, job openings, hires, quits, layoffs and discharges, and other separations. The JOLTS program covers all private nonfarm establishments such as factories, offices, and stores, as well as Federal, State, and local government entities in the 50 States and the District of Columbia. The JOLTS sample design is a random sample drawn from a universe of more than eight million establishments compiled as part of the operations of the Quarterly Census of Em-
ployment and Wages, or QCEW, program. This program includes all employers subject to State unemployment insurance (UI) laws and Federal agencies subject to Unemployment Compensation for Federal Employees (UCFE).

The sampling frame is stratified by ownership, region, industry sector, and size class. Large firms fall into the sample with virtual certainty. JolTS total employment estimates are controlled to the employment estimates of the Current Employment Statistics (CES) survey. A ratio of CES to JOLTS employment is used to adjust the levels for all other JOLTS data elements. Rates then are computed from the adjusted levels.

The monthly JOLTS data series begin with December 2000. Not seasonally adjusted data on job openings, hires, total separations, quits, layoffs and discharges, and other separations levels and rates are available for the total nonfarm sector, 16 private industry divisions and 2 government divisions based on the North American Industry Classification System (NAICS), and four geographic regions. Seasonally adjusted data on job openings, hires, total separations, and quits levels and rates are available for the total nonfarm sector, selected industry sectors, and four geographic regions.

## Definitions

Establishments submit job openings in-for-mation for the last business day of the reference month. A job opening requires that (1) a specific position exists and there is work available for that position; and (2) work could start within 30 days regardless of whether a suitable candidate is found; and (3) the employer is actively recruiting from outside the establishment to fill the position. Included are full-time, part-time, permanent, short-term, and seasonal openings. Active recruiting means that the establishment is taking steps to fill a position by advertising in newspapers or on the Internet, posting help-wanted signs, accepting applications, or using other similar methods.

Jobs to be filled only by internal transfers, promotions, demotions, or recall from layoffs are excluded. Also excluded are jobs with start dates more than 30 days in the future, jobs for which employees have been hired but have not yet reported for work, and jobs to be filled by employees of temporary help agencies, employee leasing companies, outside contractors, or consultants. The job openings rate is computed by dividing the number of job openings by the sum of employment and job openings, and multiplying that quotient by 100 .

Hires are the total number of additions
to the payroll occurring at any time during the reference month, including both new and rehired employees and full-time and parttime, permanent, short-term and seasonal employees, employees recalled to the location after a layoff lasting more than 7 days, on-call or intermittent employees who returned to work after having been formally separated, and transfers from other locations. The hires count does not include transfers or promotions within the reporting site, employees returning from strike, employees of temporary help agencies or employee leasing companies, outside contractors, or consultants. The hires rate is computed by dividing the number of hires by employment, and multiplying that quotient by 100 .

Separations are the total number of terminations of employment occurring at any time during the reference month, and are reported by type of separation-quits, layoffs and discharges, and other separations. Quits are voluntary separations by employees (except for retirements, which are reported as other separations). Layoffs and discharges are involuntary separations initiated by the employer and include layoffs with no intent to rehire, formal layoffs lasting or expected to last more than 7 days, discharges resulting from mergers, downsizing, or closings, firings or other discharges for cause, terminations of permanent or short-term employees, and terminations of seasonal employees. Other separations include retirements, transfers to other locations, deaths, and separations due to disability. Separations do not include transfers within the same location or employees on strike.

The separations rate is computed by dividing the number of separations by employment, and multiplying that quotient by 100 . The quits, layoffs and discharges, and other separations rates are computed similarly, dividing the number by employment and multiplying by 100 .

## Notes on the data

The JOLTS data series on job openings, hires, and separations are relatively new. The full sample is divided into panels, with one panel enrolled each month. A full complement of panels for the original data series based on the 1987 Standard Industrial Classification (SIC) system was not completely enrolled in the survey until January 2002. The supple-mental panels of establishments needed to create NAICS estimates were not completely enrolled until May 2003. The data collected up until those points are from less than a full sample. Therefore, estimates from earlier months should be used with caution, as fewer sampled
units were reporting data at that time.
In March 2002, BLS procedures for collecting hires and separations data were revised to address possible underreporting. As a result, JOLTS hires and separations estimates for months prior to March 2002 may not be comparable with estimates for March 2002 and later.

The Federal Government reorganization that involved transferring approximately 180,000 employees to the new Department of Homeland Security is not reflected in the JOLTS hires and separations estimates for the Federal Government. The Office of Personnel Management's record shows these transfers were completed in March 2003. The inclusion of transfers in the JOLTS definitions of hires and separations is intended to cover ongoing movements of workers between establishments. The Department of Homeland Security reorganization was a massive one-time event, and the inclusion of these intergovernmental transfers would distort the Federal Government time series.

Data users should note that seasonal adjustment of the JOLTS series is conducted with fewer data observations than is customary. The historical data, therefore, may be subject to larger than normal revisions. Because the seasonal patterns in economic data series typically emerge over time, the standard use of moving averages as seasonal filters to capture these effects requires longer series than are currently available. As a result, the stable seasonal filter option is used in the seasonal adjustment of the JOLTS data. When calculating seasonal factors, this filter takes an average for each calendar month after detrending the series. The stable seasonal filter assumes that the seasonal factors are fixed; a necessary assumption until sufficient data are available. When the stable seasonal filter is no longer needed, other program features also may be introduced, such as outlier adjustment and extended diagnostic testing. Additionally, it is expected that more series, such as layoffs and discharges and additional industries, may be seasonally adjusted when more data are available.

JOLTS hires and separations estimates cannot be used to exactly explain net changes in payroll employment. Some reasons why it is problematic to compare changes in payroll employment with JOLTS hires and separations, especially on a monthly basis, are: (1) the reference period for payroll employment is the pay period including the 12 th of the month, while the reference period for hires and separations is the calendar month; and (2) payroll employment can vary from month to month simply because part-time and oncall workers may not always work during
the pay period that includes the 12 th of the month. Additionally, research has found that some reporters systematically underreport separations relative to hires due to a number of factors, including the nature of their payroll systems and practices. The shortfall appears to be about 2 percent or less over a 12-month period.

FOR ADDITIONAL INFORMATION on the Job Openings and Labor Turnover Survey, contact the Division of Administrative Statistics and Labor Turnover at (202) 961-5870.

## Compensation and Wage Data

(Tables 1-3; 30-37)
The National Compensation Survey (NCS) produces a variety of compensation data. These include: The Employment Cost Index (ECI) and NCS benefit measures of the incidence and provisions of selected employee benefit plans. Selected samples of these measures appear in the following tables. NCS also compiles data on occupational wages and the Employer Costs for Employee Compensation (ECEC).

## Employment Cost Index

## Description of the series

The Employment Cost Index (ECI) is a quarterly measure of the rate of change in compensation per hour worked and includes wages, salaries, and employer costs of employee benefits. It is a Laspeyres Index that uses fixed employment weights to measure change in labor costs free from the influence of employment shifts among occupations and industries.

The ECI provides data for the civilian economy, which includes the total private nonfarm economy excluding private households, and the public sector excluding the Federal government. Data are collected each quarter for the pay period including the 12th day of March, June, September, and December.

Sample establishments are classified by industry categories based on the 2002 North American Classification System (NAICS). Within a sample establishment, specific job categories are selected and classified into about 800 occupations according to the 2000 Standard Occupational Classification (SOC) System. Individual occupations are combined to represent one of ten intermediate aggregations, such as professional and related occupations, or one of five higher level aggre-
gations, such as management, professional, and related occupations.

Fixed employment weights are used each quarter to calculate the most aggregate series-civilian, private, and State and local government. These fixed weights are also used to derive all of the industry and occupational series indexes. Beginning with the March 2006 estimates, 2002 fixed employment weights from the Bureau's Occupational Employment Statistics survey were introduced. From March 1995 to December 2005, 1990 employment counts were used. These fixed weights ensure that changes in these indexes reflect only changes in compensation, not employment shifts among industries or occupations with different levels of wages and compensation. For the series based on bargaining status, census region and division, and metropolitan area status, fixed employment data are not available. The employment weights are reallocated within these series each quarter based on the current ECI sample. The indexes for these series, consequently, are not strictly comparable with those for aggregate, occupational, and industry series.

## Definitions

Total compensation costs include wages, salaries, and the employer's costs for employee benefits.

Wages and salaries consist of earnings before payroll deductions, including production bonuses, incentive earnings, commissions, and cost-of-living adjustments.

Benefits include the cost to employers for paid leave, supplemental pay (including nonproduction bonuses), insurance, retirement and savings plans, and legally required benefits (such as Social Security, workers' compensation, and unemployment insurance).

Excluded from wages and salaries and employee benefits are such items as payment-in-kind, free room and board, and tips.

## Notes on the data

The ECI data in these tables reflect the con-version to the 2002 North American Industry Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes only. ECI series based on NAICS and SOC became the official BLS estimates starting in March 2006.

The ECI for changes in wages and salaries in the private nonfarm economy was published beginning in 1975. Changes in total compensation cost-wages and salaries and
benefits combined-were published beginning in 1980. The series of changes in wages and salaries and for total compensation in the State and local government sector and in the civilian nonfarm economy (excluding Federal employees) were published beginning in 1981. Historical indexes (December $2005=100$ ) are available on the Internet: www.bls.gov/ect/

ADDITIONAL InFORMATION on the Employment Cost Index is available at www. bls.gov/ncs/ect/home.htm or by telephone at (202) 691-6199.

## National Compensation Survey Benefit Measures

## Description of the series

NCS benefit measures of employee benefits are published in two separate reports. The annual summary provides data on the incidence of (access to and participation in) selected benefits and provisions of paid holidays and vacations, life insurance plans, and other selected benefit programs. Data on percentages of establishments offering major employee benefits, and on the employer and employee shares of contributions to medical care premiums also are presented. Selected benefit data appear in the following tables. A second publication, published later, contains more detailed information about health and retirement plans.

## Definitions

Employer-provided benefits are benefits that are financed either wholly or partly by the employer. They may be sponsored by a union or other third party, as long as there is some employer financing. However, some benefits that are fully paid for by the employee also are included. For example, long-term care insurance paid entirely by the employee are included because the guarantee of insurability and availability at group premium rates are considered a benefit.

Employees are considered as having access to a benefit plan if it is available for their use. For example, if an employee is permitted to participate in a medical care plan offered by the employer, but the employee declines to do so, he or she is placed in the category with those having access to medical care.

Employees in contributory plans are considered as participating in an insurance or retirement plan if they have paid required contributions and fulfilled any applicable service requirement. Employees in noncontributory plans are counted as participating
regardless of whether they have fulfilled the service requirements.

Defined benefit pension plans use predetermined formulas to calculate a retirement benefit (if any), and obligate the employer to provide those benefits. Benefits are generally based on salary, years of service, or both.

Defined contribution plans generally specify the level of employer and employee contributions to a plan, but not the formula for determining eventual benefits. Instead, individual accounts are set up for participants, and benefits are based on amounts credited to these accounts.

Tax-deferred savings plans are a type of defined contribution plan that allow participants to contribute a portion of their salary to an employer-sponsored plan and defer income taxes until withdrawal.

Flexible benefit plans allow employees to choose among several benefits, such as life insurance, medical care, and vacation days, and among several levels of coverage within a given benefit.

## Notes on the data

ADDITIONAL INFORMATION ON THE NCS benefit measures is available at www.bls. gov/ncs/ebs/home.htm or by telephone at (202) 691-6199.

## Work stoppages

## Description of the series

Data on work stoppages measure the number and duration of major strikes or lockouts (involving 1,000 workers or more) occurring during the month (or year), the number of workers involved, and the amount of work time lost because of stoppage. These data are presented in table 37.

Data are largely from a variety of published sources and cover only establishments directly involved in a stoppage. They do not measure the indirect or secondary effect of stoppages on other establishments whose employees are idle owing to material shortages or lack of service.

## Definitions

Number of stoppages: The number of strikes and lockouts involving 1,000 workers or more and lasting a full shift or longer.

Workers involved: The number of workers directly involved in the stoppage.

Number of days idle: The aggregate number of workdays lost by workers involved in the stoppages.

Days of idleness as a percent of esti-
mated working time: Aggregate workdays lost as a percent of the aggregate number of standard workdays in the period multiplied by total employment in the period.

## Notes on the data

This series is not comparable with the one terminated in 1981 that covered strikes involving six workers or more.

ADDITIONAL INFORMATION on work stop-pages data is available at www. bls. gov/cba/home.htm or by telephone at (202) 691-6199.

## Price Data

(Tables 2; 38-46)
Price data are gathered by the Bureau of Labor Statistics from retail and primary markets in the United States. Price indexes are given in relation to a base pe-riod-December 2003 = 100 for many Producer Price Indexes (unless otherwise noted), 1982-84 = 100 for many Consumer Price Indexes (unless otherwise noted), and 1990 $=100$ for International Price Indexes.

## Consumer Price Indexes

## Description of the series

The Consumer Price Index (CPI) is a measure of the average change in the prices paid by urban consumers for a fixed market basket of goods and services. The CPI is calculated monthly for two population groups, one consisting only of urban households whose primary source of income is derived from the employment of wage earners and clerical workers, and the other consisting of all urban households. The wage earner index (CPI-W) is a continuation of the historic index that was introduced well over a half-century ago for use in wage negotiations. As new uses were developed for the CPI in recent years, the need for a broader and more representative index became apparent. The all-urban consumer index (CPI-U), introduced in 1978, is representative of the 1993-95 buying habits of about 87 percent of the noninstitutional population of the United States at that time, compared with 32 percent represented in the CPI-W. In addition to wage earners and clerical workers, the CPI-U covers professional, managerial, and technical workers, the self-employed, shortterm workers, the unemployed, retirees, and others not in the labor force.

The CPI is based on prices of food, clothing, shelter, fuel, drugs, transportation fares, doctors'
and dentists' fees, and other goods and services that people buy for day-to-day living. The quantity and quality of these items are kept essentially unchanged between major revisions so that only price changes will be measured. All taxes directly associated with the purchase and use of items are included in the index.

Data collected from more than 23,000 retail establishments and 5,800 housing units in 87 urban areas across the country are used to develop the "U.S.city average." Separate estimates for 14 major urban centers are presented in table 39.The areas listed are as indicated in footnote 1 to the table. The area indexes measure only the average change in prices for each area since the base period, and do not indicate differences in the level of prices among cities.

## Notes on the data

In January 1983, the Bureau changed the way in which homeownership costs are meaured for the CPI-U. A rental equivalence method replaced the asset-price approach to homeownership costs for that series. In January 1985, the same change was made in the CPI-W. The central purpose of the change was to separate shelter costs from the investment component of homeownership so that the index would reflect only the cost of shelter services provided by owner-occupied homes. An updated CPI-U and CPI-W were introduced with release of the January 1987 and January 1998 data.

FOR ADDITIONAL INFORMATION, contact the Division of Prices and Price Indexes: (202) 691-7000.

## Producer Price Indexes

## Description of the series

Producer Price Indexes (PPI) measure average changes in prices received by domestic producers of commodities in all stages of processing. The sample used for calculating these indexes currently contains about 3,200 commodities and about 80,000 quotations per month, selected to represent the movement of prices of all commodities produced in the manufacturing; agriculture, forestry, and fishing; mining; and gas and electricity and public utilities sectors. The stage-of-processing structure of PPI organizes products by class of buyer and degree of fabrication (that is, finished goods, intermediate goods, and crude materials). The traditional commodity structure of PPI organizes products by similarity of end use or material composition. The industry and product structure of PPI organizes data in accordance with the 2002 North American Industry Classification System and product codes developed by the U.S. Census Bureau.

To the extent possible, prices used in calculating Producer Price Indexes apply to the first significant commercial transaction in the United States from the production or central marketing point. Price data are generally collected monthly, primarily by mail questionnaire. Most prices are obtained directly from producing companies on a voluntary and confidential basis. Prices generally are reported for the Tuesday of the week containing the 13th day of the month.

Since January 1992, price changes for the various commodities have been averaged together with implicit quantity weights representing their importance in the total net selling value of all commodities as of 1987. The detailed data are aggregated to obtain indexes for stage-of-processing groupings, commodity groupings, durability-of-product groupings, and a number of special composite groups. All Producer Price Index data are subject to revision 4 months after original publication.

FOR ADDITIONAL INFORMATION, contact the Division of Industrial Prices and Price Indexes: (202) 691-7705.

## International Price Indexes

## Description of the series

The International Price Program produces monthly and quarterly export and import price indexes for nonmilitary goods and services traded between the United States and the rest of the world. The export price index provides a measure of price change for all products sold by U.S. residents to foreign buyers. ("Residents" is defined as in the national income accounts; it includes corporations, businesses, and individuals, but does not require the organizations to be U.S. owned nor the individuals to have U.S. citizenship.) The import price index provides a measure of price change for goods purchased from other countries by U.S. residents.

The product universe for both the import and export indexes includes raw materials, agricultural products, semifinished manufactures, and finished manufactures, including both capital and consumer goods. Price data for these items are collected primarily by mail questionnaire. In nearly all cases, the data are collected directly from the exporter or importer, although in a few cases, prices are obtained from other sources.

To the extent possible, the data gathered refer to prices at the U.S. border for exports and at either the foreign border or the U.S. border for imports. For nearly all products, the prices refer to transactions completed during the first week of the month. Survey respondents are asked to indicate all discounts, allow-
ances, and rebates applicable to the reported prices, so that the price used in the calculation of the indexes is the actual price for which the product was bought or sold.

In addition to general indexes of prices for U.S. exports and imports, indexes are also published for detailed product categories of exports and imports. These categories are defined according to the five-digit level of detail for the Bureau of Economic Analysis End-use Classification, the three-digit level for the Standard International Trade Classification (SITC), and the four-digit level of detail for the Harmonized System. Aggregate import indexes by country or region of origin are also available.

BLS publishes indexes for selected categories of internationally traded services, calculated on an international basis and on a balance-of-payments basis.

## Notes on the data

The export and import price indexes are weighted indexes of the Laspeyres type. The trade weights currently used to compute both indexes relate to 2000 .

Because a price index depends on the same items being priced from period to period, it is necessary to recognize when a product's specifications or terms of transaction have been modified. For this reason, the Bureau's questionnaire requests detailed descriptions of the physical and functional characteristics of the products being priced, as well as information on the number of units bought or sold, discounts, credit terms, packaging, class of buyer or seller, and so forth. When there are changes in either the specifications or terms of transaction of a product, the dollar value of each change is deleted from the total price change to obtain the "pure" change. Once this value is determined, a linking procedure is employed which allows for the continued repricing of the item.

FOR ADDITIONAL INFORMATION, contact the Division of International Prices: (202) 691-7155.

## Productivity Data

(Tables 2; 47-50)

## Business and major sectors

## Description of the series

The productivity measures relate real output to real input. As such, they encompass a family of measures which include single-factor input measures, such as output per hour, output per unit of labor input, or output per unit of capital input, as well as measures of
multifactor productivity (output per unit of combined labor and capital inputs). The Bureau indexes show the change in output relative to changes in the various inputs. The measures cover the business, nonfarm business, manufacturing, and nonfinancial corporate sectors.

Corresponding indexes of hourly compensation, unit labor costs, unit nonlabor payments, and prices are also provided.

## Definitions

Output per hour of all persons (labor productivity) is the quantity of goods and services produced per hour of labor input. Output per unit of capital services (capital productivity) is the quantity of goods and services produced per unit of capital services input. Multifactor productivity is the quantity of goods and services produced per combined inputs. For private business and private nonfarm business, inputs include labor and capital units. For manufacturing, inputs include labor, capital, energy, nonenergy materials, and purchased business services.

Compensation per hour is total compensation divided by hours at work. Total compensation equals the wages and salaries of employees plus employers' contributions for social insurance and private benefit plans, plus an estimate of these payments for the self-employed (except for nonfinancial corporations in which there are no self-employed). Real compensation per hour is compensation per hour deflated by the change in the Consumer Price Index for All Urban Consumers.

Unit labor costs are the labor compensation costs expended in the production of a unit of output and are derived by dividing compensation by output. Unit nonlabor payments include profits, depreciation, interest, and indirect taxes per unit of output. They are computed by subtracting compensation of all persons from current-dollar value of output and dividing by output.

Unit nonlabor costs contain all the components of unit nonlabor payments except unit profits.

Unit profits include corporate profits with inventory valuation and capital consumption adjustments per unit of output.

Hours of all persons are the total hours at work of payroll workers, self-employed persons, and unpaid family workers.

Labor inputs are hours of all persons adjusted for the effects of changes in the education and experience of the labor force.

Capital services are the flow of services from the capital stock used in production. It is developed from measures of the net stock of physical assets-equipment, structures,
land, and inventories-weighted by rental prices for each type of asset.

## Combined units of labor and capital

 inputs are derived by combining changes in labor and capital input with weights which represent each component's share of total cost. Combined units of labor, capital, energy, materials, and purchased business services are similarly derived by combining changes in each input with weights that represent each input's share of total costs. The indexes for each input and for combined units are based on changing weights which are averages of the shares in the current and preceding year (the Tornquist index-number formula).
## Notes on the data

Business sector output is an annually-weighted index constructed by excluding from real gross domestic product (GDP) the following outputs: general government, nonprofit institutions, paid employees of private households, and the rental value of owner-occupied dwellings. Nonfarm business also excludes farming. Private business and private nonfarm business further exclude government enterprises. The measures are supplied by the U.S. Department of Commerce's Bureau of Economic Analysis. Annual estimates of manufacturing sectoral output are produced by the Bureau of Labor Statistics. Quarterly manufacturing output indexes from the Federal Reserve Board are adjusted to these annual output measures by the BLS. Compensation data are developed from data of the Bureau of Economic Analysis and the Bureau of Labor Statistics. Hours data are developed from data of the Bureau of Labor Statistics.

The productivity and associated cost measures in tables 47-50 describe the relationship between output in real terms and the labor and capital inputs involved in its production. They show the changes from period to period in the amount of goods and services produced per unit of input.

Although these measures relate output to hours and capital services, they do not measure the contributions of labor, capital, or any other specific factor of production. Rather, they reflect the joint effect of many influences, including changes in technology; shifts in the composition of the labor force; capital investment; level of output; changes in the utilization of capacity, energy, material, and research and development; the organization of production; managerial skill; and characteristics and efforts of the work force.

FOR ADDITIONAL INFORMATION on this productivity series, contact the Division of Productivity Research: (202) 691-5606.

## Industry productivity measures

## Description of the series

The BLS industry productivity indexes measure the relationship between output and inputs for selected industries and industry groups, and thus reflect trends in industry efficiency over time. Industry measures include labor productivity, multifactor productivity, compensation, and unit labor costs.

The industry measures differ in methodology and data sources from the productivity measures for the major sectors because the industry measures are developed independently of the National Income and Product Accounts framework used for the major sector measures.

## Definitions

Output per hour is derived by dividing an index of industry output by an index of labor input. For most industries, output indexes are derived from data on the value of industry output adjusted for price change. For the remaining industries, output indexes are derived from data on the physical quantity of production.

The labor input series is based on the hours of all workers or, in the case of some transportation industries, on the number of employees. For most industries, the series consists of the hours of all employees. For some trade and services industries, the series also includes the hours of partners, proprietors, and unpaid family workers.

Unit labor costs represent the labor compensation costs per unit of output produced, and are derived by dividing an index of labor compensation by an index of output. Labor compensation includes payroll as well as supplemental payments, including both legally required expenditures and payments for voluntary programs.

Multifactor productivity is derived by dividing an index of industry output by an index of combined inputs consumed in producing that output. Combined inputs include capital, labor, and intermediate purchases. The measure of capital input represents the flow of services from the capital stock used in production. It is developed from measures of the net stock of physical assets-equipment, structures, land, and inventories. The measure of intermediate purchases is a combination of purchased materials, services, fuels, and electricity.

## Notes on the data

The industry measures are compiled from
data produced by the Bureau of Labor Statistics and the Census Bureau, with additional data supplied by other government agencies, trade associations, and other sources.

FOR ADDITIONAL INFORMATION on this series, contact the Division of Industry Productivity Studies: (202) 691-5618, or visit the Web site at: www.bls.gov/lpc/home.htm

## International Comparisons

(Tables 51-53)

## Labor force and unemployment

## Description of the series

Tables 51 and 52 present comparative measures of the labor force, employment, and unemployment approximating U.S. concepts for the United States, Canada, Australia, Japan, and six European countries. The Bureau adjusts the figures for these selected countries, for all known major definitional differences, to the extent that data to prepare adjustments are available. Although precise comparability may not be achieved, these adjusted figures provide a better basis for international comparisons than the figures regularly published by each country. For further information on adjustments and comparability issues, see Constance Sorrentino, "International unemployment rates: how comparable are they?" Monthly Labor Review, June 2000, pp. 3-20, available on the Internet at www. bls.gov/opub/mlr/2000/06/art1full.pdf.

## Definitions

For the principal U.S. definitions of the labor force, employment, and unemployment, see the Notes section on Employment and Unemployment Data: Household survey data.

## Notes on the data

Foreign country data are adjusted as closely as possible to the U.S. definitions. Primary areas of adjustment address conceptual differences in upper age limits and definitions of employment and unemployment, provided that reliable data are available to make these adjustments. Adjustments are made where applicable to include employed and unemployed persons above upper age limits; some European countries do not include persons older than age 64 in their labor force measures, because a large portion of this population has retired. Adjustments are made to exclude active duty military from employment figures, although a small
number of career military may be included in some European countries. Adjustments are made to exclude unpaid family workers who worked fewer than 15 hours per week from employment figures; U.S. concepts do not include them in employment, whereas most foreign countries include all unpaid family workers regardless of the number of hours worked. Adjustments are made to include full-time students seeking work and available for work as unemployed when they are classified as not in the labor force.

Where possible, lower age limits are based on the age at which compulsory schooling ends in each country, rather than based on the U.S. standard of 16 . Lower age limits have ranged between 13 and 16 over the years covered; currently, the lower age limits are either 15 or 16 in all 10 countries.

Some adjustments for comparability are not made because data are unavailable for adjustment purposes. For example, no adjustments to unemployment are usually made for deviations from U.S. concepts in the treatment of persons waiting to start a new job or passive job seekers. These conceptual differences have little impact on the measures. Furthermore, BLS studies have concluded that no adjustments should be made for persons on layoff who are counted as employed in some countries because of their strong job attachment as evidenced by, for example, payment of salary or the existence of a recall date. In the United States, persons on layoff have weaker job attachment and are classified as unemployed.

The annual labor force measures are obtained from monthly, quarterly, or continuous household surveys and may be calculated as averages of monthly or quarterly data. Quarterly and monthly unemployment rates are based on household surveys. For some countries, they are calculated by applying annual adjustment factors to current published data and, therefore, are less precise indicators of unemployment under U.S. concepts than the annual figures. The labor force measures may have breaks in series over time due to changes in surveys, sources, or estimation methods. Breaks are noted in data tables.

For up-to-date information on adjustments and breaks in series, see the Technical Notes of Comparative Civilian Labor Force Statistics, 10 Countries, on the Internet at www.bls.gov/fls/flscomparelf.htm, and the Notes of Unemployment rates in 10 countries, civilian labor force basis, approximating U.S. concepts, seasonally adjusted, on the Internet at www.bls.gov/fls/flsjec.pdf.

FOR ADDITIONAL INFORMATION on this series, contact the Division of Foreign Labor Statistics: (202) 691-5654 or flshelp@ bls.gov.

## Manufacturing productivity and labor costs

## Description of the series

Table 53 presents comparative indexes of manufacturing output per hour (labor productivity),output, total hours, compensation per hour, and unit labor costs for the United States, Australia, Canada, Japan, the Republic of Korea, Singapore, Taiwan, and 10 European countries. These measures are trend compari-sons-that is, series that measure changes over time-rather than level comparisons. BLS does not recommend using these series for level comparisons because of technical problems.

BLS constructs the comparative indexes from three basic aggregate measures-output, total labor hours, and total compensation. The hours and compensation measures refer to employees (wage and salary earners) in Belgium and Taiwan. For all other economies, the measures refer to all employed persons, including employees, self-employed persons, and unpaid family workers.

The data for recent years are based on the United Nations System of National Accounts 1993 (SNA 93). Manufacturing is generally defined according to the International Standard Industrial Classification (ISIC). However, the measures for France include parts of mining as well. For the United States and Canada, manufacturing is defined according to the North American Industry Classification System (NAICS 97).

## Definitions

Output. For most economies, the output measures are real value added in manufacturing from national accounts. However, output for Japan prior to 1970 and for the Netherlands prior to 1960 are indexes of industrial production. The manufacturing value added measures for the United Kingdom are essentially identical to their indexes of industrial production.

For United States, the output measure for the manufacturing sector is a chain-weighted index of real gross product originating (deflated value added) produced by the Bureau of Economic Analysis of the U.S. Department of Commerce. Most of the other economies now also use chain-weighted as opposed to fixed-year weights that are periodically updated.

To preserve the comparability of the U.S. measures with those of other economies, BLS uses gross product originating in manufacturing for the United States. The gross product originating series differs from the manufacturing output series that BLS pub-
lishes in its quarterly news releases on U.S. productivity and costs (and that underlies the measures that appear in tables 48 and 50 in this section). The quarterly measures are on a "sectoral output" basis, rather than a valueadded basis. Sectoral output is gross output less intrasector transactions.

Total hours refer to hours worked in all economies. The measures are developed from statistics of manufacturing employment and average hours. For most other economies, recent years' aggregate hours series are obtained from national statistical offices, usually from national accounts. However, for some economies and for earlier years, BLS calculates the aggregate hours series using employment figures published with the national accounts, or other comprehensive employment series, and data on average hours worked.

Hourly compensation is total compensation divided by total hours. Total compensation includes all payments in cash or in-kind made directly to employees plus employer expenditures for legally required insurance programs and contractual and private benefit plans. For Australia, Canada, France, Singapore, and Sweden, compensation is increased to account for important taxes on payroll or employment. For the United Kingdom, compensation is reduced between 1967 and 1991 to account for subsidies.

Labor productivity is defined as real output per hour worked. Although the labor productivity measure presented in this release relates output to the hours worked of persons employed in manufacturing, it does not measure the specific contributions of labor as a single factor of production. Rather, it reflects the joint effects of many influences, including new technology, capital investment, capacity utilization, energy use, and managerial skills, as well as the skills and efforts of the workforce.

Unit labor costs are defined as the cost of labor input required to produce one unit of output. They are computed as compensation in nominal terms divided by real output. Unit labor costs can also be computed by dividing hourly compensation by output per hour, that is, by labor productivity.

## Notes on the data

The measures for recent years may be based on current indicators of manufacturing output (such as industrial production indexes), employment, average hours, and hourly compensation until national accounts and other statistics used for the long-term measures become available.

FOR ADDITIONAL INFORMATION on this series, go to http://www.bls.gov/news. release/prod4.toc.htm or contact the Divi-
sion of International Labor Comparison at (202) 691-5654.

## Occupational Injury and IIIness Data

(Tables 54-55)

## Survey of Occupational Injuries and IIInesses

## Description of the series

The Survey of Occupational Injuries and Illnesses collects data from employers about their workers' job-related nonfatal injuries and illnesses. The information that employers provide is based on records that they maintain under the Occupational Safety and Health Act of 1970. Self-employed individuals, farms with fewer than 11 employees, employers regulated by other Federal safety and health laws, and Federal, State, and local government agencies are excluded from the survey.

The survey is a Federal-State cooperative program with an independent sample selected for each participating State. A stratified random sample with a Neyman allocation is selected to represent all private industries in the State. The survey is stratified by Standard Industrial Classification and size of employment.

## Definitions

Under the Occupational Safety and Health Act, employers maintain records of nonfatal work-related injuries and illnesses that involve one or more of the following: loss of consciousness, restriction of work or motion, transfer to another job, or medical treatment other than first aid.

Occupational injury is any injury such as a cut, fracture, sprain, or amputation that results from a work-related event or a single, instantaneous exposure in the work environment.

Occupational illness is an abnormal condition or disorder, other than one resulting from an occupational injury, caused by exposure to factors associated with employment. It includes acute and chronic illnesses or disease which may be caused by inhalation, absorption, ingestion, or direct contact.

Lost workday injuries and illnesses are cases that involve days away from work, or days of restricted work activity, or both.

Lost workdays include the number of workdays (consecutive or not) on which the employee was either away from work or at work in some restricted capacity, or both,
because of an occupational injury or illness. BLS measures of the number and incidence rate of lost workdays were discontinued beginning with the 1993 survey. The number of days away from work or days of restricted work activity does not include the day of injury or onset of illness or any days on which the employee would not have worked, such as a Federal holiday, even though able to work.

Incidence rates are computed as the number of injuries and/or illnesses or lost work days per 100 full-time workers.

## Notes on the data

The definitions of occupational injuries and illnesses are from Recordkeeping Guidelines for Occupational Injuries and Illnesses (U.S. Department of Labor, Bureau of Labor Statistics, September 1986).

Estimates are made for industries and employment size classes for total recordable cases, lost workday cases, days away from work cases, and nonfatal cases without lost workdays. These data also are shown separately for injuries. Illness data are available for seven categories: occupational skin diseases or disorders, dust diseases of the lungs, respiratory conditions due to toxic agents, poisoning (systemic effects of toxic agents), disorders due to physical agents (other than toxic materials), disorders associated with repeated trauma, and all other occupational illnesses.

The survey continues to measure the number of new work-related illness cases which are recognized, diagnosed, and reported during the year. Some conditions, for example, long-term latent illnesses caused by exposure to carcinogens, often are difficult to relate to the workplace and are not adequately recognized and reported. These long-term latent illnesses are believed to be understated in the survey's illness measure. In contrast, the overwhelming majority of the reported new illnesses are those which are easier to directly relate to workplace activity (for example, contact dermatitis and carpal tunnel syndrome).

Most of the estimates are in the form of incidence rates, defined as the number of injuries and illnesses per 100 equivalent
full-time workers. For this purpose, 200,000 employee hours represent 100 employee years (2,000 hours per employee). Full detail on the available measures is presented in the annual bulletin, Occupational Injuries and Illnesses: Counts, Rates, and Characteristics.

Comparable data for more than 40 States and territories are available from the BLS Office of Safety, Health and Working Conditions. Many of these States publish data on State and local government employees in addition to private industry data.

Mining and railroad data are furnished to bls by the Mine Safety and Health Administration and the Federal Railroad Administration. Data from these organizations are included in both the national and State data published annually.

With the 1992 survey, BLS began publishing details on serious, nonfatal incidents resulting in days away from work. Included are some major characteristics of the injured and ill workers, such as occupation, age, gender, race, and length of service, as well as the circumstances of their injuries and illnesses (nature of the disabling condition, part of body affected, event and exposure, and the source directly producing the condition). In general, these data are available nationwide for detailed industries and for individual States at more aggregated industry levels.

FOR ADDITIONAL INFORMATION on occupational injuries and illnesses, contact the Office of Occupational Safety, Health and Working Conditions at (202) 691-6180, or access the Internet at: www.bls. gov/iif/

## Census of Fatal Occupational Injuries

The Census of Fatal Occupational Injuries compiles a complete roster of fatal job-related injuries, including detailed data about the fatally injured workers and the fatal events. The program collects and cross checks fatality information from multiple sources, including death certificates, State and Federal workers' compensation reports, Occupational Safety and Health Administration and Mine Safety
and Health Administration records, medical examiner and autopsy reports, media accounts, State motor vehicle fatality records, and follow-up questionnaires to employers.

In addition to private wage and salary workers, the self-employed, family members, and Federal, State, and local government workers are covered by the program. To be included in the fatality census, the decedent must have been employed (that is working for pay, compensation, or profit) at the time of the event, engaged in a legal work activity, or present at the site of the incident as a requirement of his or her job.

## Definition

A fatal work injury is any intentional or unintentional wound or damage to the body resulting in death from acute exposure to energy, such as heat or electricity, or kinetic energy from a crash, or from the absence of such essentials as heat or oxygen caused by a specific event or incident or series of events within a single workday or shift. Fatalities that occur during a person's commute to or from work are excluded from the census, as well as work-related illnesses, which can be difficult to identify due to long latency periods.

## Notes on the data

Twenty-eight data elements are collected, coded, and tabulated in the fatality program, including information about the fatally injured worker, the fatal incident, and the machinery or equipment involved. Summary worker demographic data and event characteristics are included in a national news release that is available about 8 months after the end of the reference year. The Census of Fatal Occupational Injuries was initiated in 1992 as a joint Federal-State effort. Most States issue summary information at the time of the national news release.

FOR ADDITIONAL INFORMATION on the Census of Fatal Occupational Injuries contact the BLS Office of Safety, Health, and Working Conditions at (202) 6916175, or the Internet at: www.bls.gov/iif/

## 1. Labor market indicators

| Selected indicators | 2007 | 2008 | 2007 |  |  |  | 2008 |  |  |  | $2009$I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | I | II | III | IV | I | II | III | IV |  |
| Employment data |  |  |  |  |  |  |  |  |  |  |  |
| Employment status of the civilian noninstitutional population (household survey): ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| Labor force participation rate................................................. | 66.0 | 66.0 | 65.9 | 66.6 | 66.0 | 65.9 | 65.7 | 66.6 | 65.9 | 65.7 | 65.4 |
| Employment-population ratio. | 63.0 | 62.2 | 62.9 | 63.4 | 63.0 | 62.8 | 62.3 | 62.8 | 62.0 | 61.0 | 59.5 |
| Unemployment rate.................................................... | 4.6 | 5.8 | 4.5 | 4.5 | 4.7 | 4.8 | 4.9 | 5.4 | 6.0 | 6.9 | 8.1 |
| Men. | 4.7 | 6.1 | 4.6 | 4.6 | 4.8 | 4.9 | 5.1 | 5.6 | 6.5 | 7.5 | 8.8 |
| 16 to 24 years.. | 11.6 | 14.4 | 10.8 | 11.5 | 11.8 | 12.1 | 12.7 | 13.5 | 14.9 | 16.5 | 18.0 |
| 25 years and older.. | 3.6 | 4.8 | 3.6 | 3.5 | 3.6 | 3.7 | 3.9 | 4.2 | 5.1 | 6.0 | 7.4 |
| Women.. | 4.5 | 5.4 | 4.4 | 4.4 | 4.6 | 4.7 | 4.8 | 5.1 | 5.6 | 6.1 | 7.2 |
| 16 to 24 years.. | 9.4 | 11.2 | 9.1 | 9.0 | 9.7 | 9.9 | 10.1 | 11.1 | 11.9 | 11.6 | 12.9 |
| 25 years and older.. | 3.6 | 4.4 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 4.1 | 4.5 | 5.2 | 6.2 |
| Employment, nonfarm (payroll data), in thousands: ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| Total nonfarm. | 137,598 | 137,066 | 137,400 | 137,645 | 137,652 | 138,152 | 137,814 | 137,356 | 136,732 | 135,074 | 133,019 |
| Total private. | 115,380 | 114,566 | 115,250 | 115,400 | 115,389 | 115,783 | 115,373 | 114,834 | 114,197 | 112,542 | 110,481 |
| Goods-producing. | 22,233 | 21,419 | 22,392 | 22,289 | 22,099 | 22,043 | 21,800 | 21,507 | 21,247 | 20,532 | 19,537 |
| Manufacturing. | 13,879 | 13,431 | 13,966 | 13,889 | 13,796 | 13,777 | 13,643 | 13,505 | 13,322 | 12,902 | 12,310 |
| Service-providing. | 115,366 | 115,646 | 115,008 | 115,356 | 115,553 | 116,109 | 116,014 | 115,849 | 115,485 | 114,542 | 113,482 |
| Average hours: |  |  |  |  |  |  |  |  |  |  |  |
| Total private... | 33.9 | 33.6 | 33.9 | 33.9 | 33.8 | 33.8 | 33.8 | 33.6 | 33.6 | 33.3 | 33.2 |
| Manufacturing. | 41.2 | 40.8 | 41.2 | 41.3 | 41.3 | 41.2 | 41.2 | 40.9 | 40.5 | 39.9 | 39.3 |
| Overtime.. | 4.2 | 3.7 | 4.3 | 4.3 | 4.1 | 4.1 | 4.0 | 3.8 | 3.5 | 2.9 | 2.7 |
| Employment Cost Index ${ }^{\text {1, 2, }} 3$ |  |  |  |  |  |  |  |  |  |  |  |
| Total compensation: |  |  |  |  |  |  |  |  |  |  |  |
| Civilian nonfarm ${ }^{4}$. | 3.3 | 2.6 | . 9 | . 8 | 1.0 | . 6 | . 8 | . 7 | . 8 | . 3 | . 4 |
| Private nonfarm. | 3.0 | 2.4 | . 8 | . 9 | . 8 | . 6 | . 9 | . 7 | . 6 | . 2 | . 4 |
| Goods-producing ${ }^{5}$........................................................ | 2.4 | 2.4 | . 4 | 1.0 | . 5 | . 6 | 1.0 | . 7 | . 4 | . 3 | . 4 |
| Service-providing ${ }^{5}$. | 3.2 | 2.5 | . 9 | . 9 | . 9 | . 6 | . 9 | . 7 | . 6 | . 3 | . 4 |
| State and local government ....................................... | 4.1 | 3.0 | 1.0 | . 6 | 1.8 | . 7 | . 5 | . 5 | 1.7 | . 3 | . 6 |
| Workers by bargaining status (private nonfarm): |  |  |  |  |  |  |  |  |  |  |  |
| Union...................................................................... | 2.0 | 2.8 | -. 3 | 1.2 | . 5 | . 7 | . 8 | . 8 | . 7 | . 6 | 1.0 |
| Nonunion............................................................... | 3.2 | 2.4 | 1.0 | . 9 | . 8 | . 6 | . 9 | . 7 | . 6 | . 2 | . 3 |

[^8]Excludes Federal and private household workers.
${ }^{5}$ Goods-producing industries include mining, construction, and manufacturing. Serviceproviding industries include all other private sector industries.

Note: Beginning in January 2003, household survey data reflect revised population controls. Nonfarm data reflect the conversion to the 2002 version of the North American Industry Classification System (NAICS), replacing the Standard Industrial Classification (SIC) system. NaICs-based data by industry are not comparable with sIC based data.
2. Annual and quarterly percent changes in compensation, prices, and productivity

| Selected measures | 2007 | 2008 | 2007 |  |  |  | 2008 |  |  |  | $\begin{gathered} 2009 \\ \hline 1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | I | II | III | IV | I | II | III | IV |  |
| Compensation data ${ }^{1,2,3}$ | 3.33.0 | 2.62.4 | 0.9.8 |  |  | 0.6.6 | 0.8.9 | 0.7.7 | 0.8.6 | 0.3.2 | 0.4.4 |
| Employment Cost Index-compensation: |  |  |  |  |  |  |  |  |  |  |  |
| Civilian nonfarm... |  |  |  |  |  |  |  |  |  |  |  |
| Private nonfarm... |  |  |  |  |  |  |  |  |  |  |  |
| Employment Cost Index-wages and salaries: | $\begin{aligned} & 3.4 \\ & 3.3 \end{aligned}$ | $\begin{aligned} & 2.7 \\ & 2.6 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & .7 \\ & .8 \end{aligned}$ | 1.0.9 | .7.6 | . 8 | . 7 | . 8 | . 3 | .4.4 |
| Civilian nonfarm............ |  |  |  |  |  |  |  |  |  |  |  |
| Private nonfarm..... |  |  |  |  |  |  | . 9 | . 7 | . 6 | . 3 |  |
| Price data ${ }^{1}$ | 2.8 |  |  |  | . 1 | . 7 | 1.7 | 2.5 | 0 | -3.9 |  |
| Consumer Price Index (All Urban Consumers): All Items..... |  | 3.8 | 1.8 | 1.5 |  |  |  |  |  |  | 1.2 |
| Producer Price Index: |  |  |  |  |  |  |  |  |  |  |  |
| Finished goods.... | 3.9 | 6.3 | 2.2 | 1.9 | . 1 | 1.8 | 2.8 | 4.2 | -. 1 | -7.4 | . 1 |
| Finished consumer goods...... | 4.5 | 7.4 | 2.8 | 2.5 | . 2 | 1.9 | 3.4 | 5.2 | -. 4 | -9.9 | . 1 |
| Capital equipment. | 1.8 | 2.8 | . 3 | -. 1 | -. 1 | 1.2 | . 7 | . 6 | 1.0 | 1.6 | . 2 |
| Intermediate materials, supplies, and components..... | 4.1 | 10.5 | 1.5 | 3.2 | . 1 | 2.0 | 5.0 | 6.9 | . 7 | -13.0 | -2.7 |
| Crude materials...... | 12.1 | 21.5 | 5.7 | 3.8 | -2.4 | 11.9 | 14.5 | 14.9 | -15.6 | -32.5 | -6.9 |
| Productivity data ${ }^{4}$ |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons: |  |  |  |  |  |  |  |  |  |  |  |
| Business sector....... | 1.6 | 2.7 | -. 7 | 5.7 | 7.3 | -1.1 | 2.2 | 4.7 | 2.3 | -. 5 | 1.1 |
| Nonfarm business sector.... | 1.4 | 2.8 | -. 6 | 4.8 | 7.0 | -. 5 | 2.6 | 4.7 | 2.2 | -. 6 | . 8 |
| Nonfinancial corporations ${ }^{5}$. | . 7 | - | -. 6 | 3.8 | 3.0 | 1.2 | -. 4 | 8.5 | 6.4 | -3.9 |  |

[^9]only. Series based on NAICS and SOC became the official BLS estimates starting in March 2006.
${ }^{4}$ Annual rates of change are computed by comparing annual averages. Quarterly percent changes reflect annual rates of change in quarterly indexes. The data are seasonally adjusted.
${ }^{5}$ Output per hour of all employees.
3. Alternative measures of wage and compensation changes

| Components | Quarterly change |  |  |  |  | Four quarters ending- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2008 |  |  |  | $\begin{gathered} 2009 \\ \hline 1 \end{gathered}$ | 2008 |  |  |  | $\frac{2009}{1}$ |
|  | I | II | III | IV |  | I | II | III | IV |  |
| Average hourly compensation: ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |
| All persons, business sector... | 3.5 | 1.9 | 5.7 | 4.9 | 4.1 | 3.5 | 3.4 | 3.7 | 4.0 | 4.1 |
| All persons, nonfarm business sector..... | 3.7 | 1.7 | 5.7 | 5.2 | 4.1 | 3.5 | 3.6 | 3.9 | 4.1 | 4.2 |
| Employment Cost Index-compensation: ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |
| Civilian nonfarm ${ }^{3}$.. | . 8 | . 7 | . 8 | . 3 | . 4 | 3.3 | 3.1 | 2.9 | 2.6 | 2.1 |
| Private nonfarm. | . 9 | . 7 | . 6 | . 2 | . 4 | 3.2 | 3.0 | 2.8 | 2.4 | 1.9 |
| Union......... | . 8 | . 8 | . 7 | . 6 | 1.0 | 3.1 | 2.7 | 2.9 | 2.8 | 3.0 |
| Nonunion..... | . 9 | . 7 | . 6 | . 2 | . 3 | 3.2 | 3.0 | 2.8 | 2.4 | 1.8 |
| State and local government. | . 5 | . 5 | 1.7 | . 3 | . 6 | 3.6 | 3.5 | 3.4 | 3.0 | 3.1 |
| Employment Cost Index-wages and salaries: ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |
| Civilian nonfarm ${ }^{3}$...................................... | . 8 | . 7 | . 8 | . 3 | . 4 | 3.2 | 3.2 | 3.1 | 2.7 | 2.2 |
| Private nonfarm. | . 9 | . 7 | . 6 | . 3 | . 4 | 3.2 | 3.1 | 2.9 | 2.6 | 2.0 |
| Union........... | . 8 | 1.1 | . 7 | . 7 | . 6 | 2.6 | 2.9 | 2.9 | 3.2 | 3.1 |
| Nonunion........ | . 9 | . 7 | . 6 | . 2 | . 4 | 3.3 | 3.2 | 3.0 | 2.5 | 1.9 |
| State and local government............................................... | . 6 | . 5 | 1.8 | . 3 | . 5 | 3.5 | 3.4 | 3.5 | 3.1 | 3.0 |

${ }^{1}$ Seasonally adjusted. "Quarterly average" is percent change from a quarter ago, at an annual rate.
${ }^{2}$ The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard

Occupational Classification (SOC) system. The NAICS and soc data shown prior to 2006 are for informational purposes only. Series based on NAICS and SOC became the official BLS estimates starting in March 2006.
${ }^{3}$ Excludes Federal and private household workers.
4. Employment status of the population, by sex, age, race, and Hispanic origin, monthly data seasonally adjusted
[Numbers in thousands]

| Employment status | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| TOTAL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Civilian noninstitutional population ${ }^{1}$. | 231,867 | 233,788 | 233,198 | 233,405 | 233,627 | 233,864 | 234,107 | 234,360 | 234,612 | 234,828 | 235,035 | 234,739 | 234,913 | 235,086 | 235,271 |
| Civilian labor force.... | 153,124 | 154,287 | 153,932 | 154,510 | 154,400 | 154,506 | 154,823 | 154,621 | 154,878 | 154,620 | 154,447 | 153,716 | 154,214 | 154,048 | 154,731 |
| Participation rate. | 66.0 | 66.0 | 66.0 | 66.2 | 66.1 | 66.1 | 66.1 | 66.0 | 66.0 | 65.8 | 65.7 | 65.5 | 65.6 | 65.5 | 65.8 |
| Employed.. | 146,047 | 145,362 | 146,257 | 145,974 | 145,738 | 145,596 | 145,273 | 145,029 | 144,657 | 144,144 | 143,338 | 142,099 | 141,748 | 140,887 | 141,007 |
| Employment-population ratio ${ }^{2}$ | 63.0 | 62.2 | 62.7 | 62.5 | 62.4 | 62.3 | 62.1 | 61.9 | 61.7 | 61.4 | 61.0 | 60.5 | 60.3 | 59.9 | 59.9 |
| Unemployed | 7,078 | 8,924 | 7,675 | 8,536 | 8,662 | 8,910 | 9,550 | 9,592 | 10,221 | 10,476 | 11,108 | 11,616 | 12,467 | 13,161 | 13,724 |
| Unemployment rate. | 4.6 | 5.8 | 5.0 | 5.5 | 5.6 | 5.8 | 6.2 | 6.2 | 6.6 | 6.8 | 7.2 | 7.6 | 8.1 | 8.5 | 8.9 |
| Not in the labor force...... | 78,743 | 79,501 | 79,267 | 78,895 | 79,227 | 79,358 | 79,284 | 79,739 | 79,734 | 80,208 | 80,588 | 81,023 | 80,699 | 81,038 | 80,541 |
| Men, 20 years and over |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Civilian noninstitutional population ${ }^{1}$. $\qquad$ | 103,555 | 104,453 | 104,152 | 104,258 | 104,371 | 104,490 | 104,613 | 104,741 | 104,869 | 104,978 | 105,083 | 104,902 | 104,999 | 105,095 | 105,196 |
| Civilian labor force.... | 78,596 | 79,047 | 78,820 | 78,913 | 79,055 | 79,286 | 79,308 | 79,392 | 79,380 | 79,335 | 78,998 | 78,585 | 78,687 | 78,578 | 79,081 |
| Participation rate.. | 75.9 | 75.7 | 75.7 | 75.7 | 75.7 | 75.9 | 75.8 | 75.8 | 75.7 | 75.6 | 75.2 | 74.9 | 74.9 | 74.8 | 75.2 |
| Employed... | 75,337 | 74,750 | 75,147 | 74,992 | 74,949 | 74,973 | 74,737 | 74,503 | 74,292 | 74,045 | 73,285 | 72,613 | 72,293 | 71,655 | 71,678 |
| Employment-population ratio ${ }^{2}$. | 72.8 | 71.6 | 72.2 | 71.9 | 71.8 | 71.8 | 71.4 | 71.1 | 70.8 | 70.5 | 69.7 | 69.2 | 68.9 | 68.2 | 68.1 |
| Unemployed.. | 3,259 | 4,297 | 3,673 | 3,921 | 4,106 | 4,313 | 4,572 | 4,889 | 5,088 | 5,290 | 5,714 | 5,972 | 6,394 | 6,923 | 7,403 |
| Unemployment rate. | 4.1 | 5.4 | 4.7 | 5.0 | 5.2 | 5.4 | 5.8 | 6.2 | 6.4 | 6.7 | 7.2 | 7.6 | 8.1 | 8.8 | 9.4 |
| Not in the labor force..... | 24,959 | 25,406 | 25,332 | 25,345 | 25,315 | 25,204 | 25,305 | 25,349 | 25,489 | 25,643 | 26,085 | 26,318 | 26,312 | 26,516 | 26,115 |
| Women, 20 years and over |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Civilian noninstitutional population ${ }^{1}$ $\qquad$ | 111,330 | 112,260 | 111,990 | 112,083 | 112,183 | 112,290 | 112,401 | 112,518 | 112,633 | 112,731 | 112,825 | 112,738 | 112,824 | 112,908 | 112,999 |
| Civilian labor force.... | 67,516 | 68,382 | 68,118 | 68,367 | 68,421 | 68,273 | 68,666 | 68,385 | 68,700 | 68,753 | 68,891 | 68,584 | 68,917 | 68,977 | 69,148 |
| Participation rate. | 60.6 | 60.9 | 60.8 | 61.0 | 61.0 | 60.8 | 61.1 | 60.8 | 61.0 | 61.0 | 61.1 | 60.8 | 61.1 | 61.1 | 61.2 |
| Employed... | 64,799 | 65,039 | 65,196 | 65,114 | 65,169 | 65,103 | 65,003 | 65,008 | 64,975 | 64,902 | 64,860 | 64,298 | 64,271 | 64,148 | 64,226 |
| Employment-population ratio ${ }^{2}$ | 58.2 | 57.9 | 58.2 | 58.1 | 58.1 | 58.0 | 57.8 | 57.8 | 57.7 | 57.6 | 57.5 | 57.0 | 57.0 | 56.8 | 56.8 |
| Unemployed. | 2,718 | 3,342 | 2,923 | 3,252 | 3,252 | 3,170 | 3,662 | 3,377 | 3,725 | 3,851 | 4,031 | 4,286 | 4,646 | 4,828 | 4,922 |
| Unemployment rate.. | 4.0 | 4.9 | 4.3 | 4.8 | 4.8 | 4.6 | 5.3 | 4.9 | 5.4 | 5.6 | 5.9 | 6.2 | 6.7 | 7.0 | 7.1 |
| Not in the labor force..... | 43,814 | 43,878 | 43,872 | 43,716 | 43,762 | 44,017 | 43,736 | 44,133 | 43,933 | 43,978 | 43,935 | 44,154 | 43,907 | 43,931 | 43,850 |
| Both sexes, 16 to 19 years |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Civilian noninstitutional population ${ }^{1}$. $\qquad$ | 16,982 | 17,075 | 17,056 | 17,064 | 17,073 | 17,084 | 17,092 | 17,101 | 17,110 | 17,118 | 17,126 | 17,098 | 17,090 | 17,083 | 17,076 |
| Civilian labor force.... | 7,012 | 6,858 | 6,993 | 7,231 | 6,924 | 6,947 | 6,849 | 6,844 | 6,799 | 6,531 | 6,557 | 6,547 | 6,610 | 6,493 | 6,501 |
| Participation rate. | 41.3 | 40.2 | 41.0 | 42.4 | 40.6 | 40.7 | 40.1 | 40.0 | 39.7 | 38.2 | 38.3 | 38.3 | 38.7 | 38.0 | 38.1 |
| Employed... | 5,911 | 5,573 | 5,914 | 5,868 | 5,620 | 5,520 | 5,533 | 5,518 | 5,390 | 5,196 | 5,194 | 5,188 | 5,184 | 5,083 | 5,103 |
| Employment-population ratio ${ }^{2}$. | 34.8 | 32.6 | 34.7 | 34.4 | 32.9 | 32.3 | 32.4 | 32.3 | 31.5 | 30.4 | 30.3 | 30.3 | 30.3 | 29.8 | 29.9 |
| Unemployed. | 1,101 | 1,285 | 1,079 | 1,363 | 1,304 | 1,427 | 1,316 | 1,326 | 1,408 | 1,335 | 1,363 | 1,359 | 1,427 | 1,410 | 1,398 |
| Unemployment rate. | 15.7 | 18.7 | 15.4 | 18.9 | 18.8 | 20.5 | 19.2 | 19.4 | 20.7 | 20.4 | 20.8 | 20.8 | 21.6 | 21.7 | 21.5 |
| Not in the labor force. | 9,970 | 10,218 | 10,063 | 9,834 | 10,149 | 10,137 | 10,243 | 10,257 | 10,311 | 10,587 | 10,568 | 10,551 | 10,480 | 10,590 | 10,575 |
| White ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Civilian noninstitutional population ${ }^{1}$. | 188,253 | 189,540 | 189,147 | 189,281 | 189,428 | 189,587 | 189,747 | 189,916 | 190,085 | 190,221 | 190,351 | 190,225 | 190,331 | 90,436 | 90,552 |
| Civilian labor force.... | 124,935 | 125,635 | 125,198 | 125,759 | 125,712 | 125,979 | 125,987 | 125,844 | 126,298 | 126,029 | 125,634 | 125,312 | 125,703 | 125,599 | 126,110 |
| Participation rate.. | 66.4 | 66.3 | 66.2 | 66.4 | 66.4 | 66.4 | 66.4 | 66.3 | 66.4 | 66.3 | 66.0 | 65.9 | 66.0 | 66.0 | 66.2 |
| Employed.... | 119,792 | 119,126 | 119,644 | 119,611 | 119,417 | 119,432 | 119,082 | 118,964 | 118,722 | 118,226 | 117,357 | 116,692 | 116,481 | 115,693 | 115,977 |
| Employment-population ratio ${ }^{2}$ | 63.6 | 62.8 | 63.3 | 63.2 | 63.0 | 63.0 | 62.8 | 62.6 | 62.5 | 62.2 | 61.7 | 61.3 | 61.2 | 60.8 | 60.9 |
| Unemployed.. | 5,143 | 6,509 | 5,554 | 6,148 | 6,295 | 6,547 | 6,904 | 6,880 | 7,577 | 7,803 | 8,277 | 8,621 | 9,222 | 9,906 | 10,133 |
| Unemployment rate.. | 4.1 | 5.2 | 4.4 | 4.9 | 5.0 | 5.2 | 5.5 | 5.5 | 6.0 | 6.2 | 6.6 | 6.9 | 7.3 | 7.9 | 8.0 |
| Not in the labor force.. | 63,319 | 63,905 | 63,949 | 63,523 | 63,716 | 63,608 | 63,761 | 64,072 | 63,787 | 64,193 | 64,718 | 64,913 | 64,628 | 64,837 | 64,441 |
| Black or African American ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Civilian noninstitutional population ${ }^{1}$. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| population .............. Civilian labor force.... | 27,485 | 27,843 17,740 | 27,746 | 27,780 | 27,816 | 27,854 17,744 | 27,896 17,949 | 27,939 17,733 | 27,982 | 28,021 <br> 17,708 | 28,059 17,796 | 28,052 | 28,085 17,703 | 28,118 | 28,153 17,816 |
| Participation rate.. | 63.7 | 63.7 | 64.0 | 63.8 | 63.7 | 63.7 | 64.3 | 63.5 | 63.5 | 63.2 | 63.4 | 63.4 | 63.0 | 62.4 | 63.3 |
| Employed.... | 16,051 | 15,953 | 16,200 | 16,009 | 16,041 | 15,989 | 16,026 | 15,709 | 15,762 | 15,703 | 15,674 | 15,546 | 15,336 | 15,212 | 15,142 |
| Employment-population ratio ${ }^{2}$ | 58.4 | 57.3 | 58.4 | 57.6 | 57.7 | 57.4 | 57.4 | 56.2 | 56.3 | 56.0 | 55.9 | 55.4 | 54.6 | 54.1 | 53.8 |
| Unemployed............... | 1,445 | 1,788 | 1,555 | 1,728 | 1,667 | 1,755 | 1,923 | 2,024 | 2,006 | 2,005 | 2,122 | 2,245 | 2,368 | 2,330 | 2,673 |
| Unemployment rate.. | 8.3 | 10.1 | 8.8 | 9.7 | 9.4 | 9.9 | 10.7 | 11.4 | 11.3 | 11.3 | 11.9 | 12.6 | 13.4 | 13.3 | 15.0 |
| Not in the labor force.. | 9,989 | 10,103 | 9,991 | 10,043 | 10,109 | 10,111 | 9,947 | 10,206 | 10,214 | 10,313 | 10,263 | 10,261 | 10,382 | 10,576 | 10,337 |

See footnotes at end of table.
4. Continued-Employment status of the population, by sex, age, race, and Hispanic origin, monthly data seasonally adjusted [Numbers in thousands]

| Employment status | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| Hispanic or Latino ethnicity <br> Civilian noninstitutional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| population ${ }^{1}$ | 31,383 | 32,141 | 31,911 | 31,998 | 32,087 | 32,179 | 32,273 | 32,369 | 32,465 | 32,558 | 32,649 | 32,417 | 32,501 | 32,585 | 32,671 |
| Civilian labor force.... | 21,602 | 22,024 | 21,920 | 22,125 | 22,100 | 22,062 | 22,201 | 22,259 | 22,187 | 22,074 | 22,134 | 21,931 | 22,100 | 22,175 | 22,376 |
| Participation rate... | 68.8 | 68.5 | 68.7 | 69.1 | 68.9 | 68.6 | 68.8 | 68.8 | 68.3 | 67.8 | 67.8 | 67.7 | 68.0 | 68.1 | 68.5 |
| Employed.. | 20,382 | 20,346 | 20,392 | 20,565 | 20,391 | 20,396 | 20,404 | 20,506 | 20,232 | 20,168 | 20,096 | 19,800 | 19,684 | 19,640 | 19,854 |
| Employment-population ratio ${ }^{2}$. | 64.9 | 63.3 | 63.9 | 64.3 | 63.5 | 63.4 | 63.2 | 63.4 | 62.3 | 61.9 | 61.6 | 61.1 | 60.6 | 60.3 | 60.8 |
| Unemployed.... | 1,220 | 1,678 | 1,528 | 1,560 | 1,709 | 1,665 | 1,797 | 1,752 | 1,955 | 1,906 | 2,038 | 2,132 | 2,416 | 2,536 | 2,521 |
| Unemployment rate. | 5.6 | 7.6 | 7.0 | 7.0 | 7.7 | 7.5 | 8.1 | 7.9 | 8.8 | 8.6 | 9.2 | 9.7 | 10.9 | 11.4 | 11.3 |
| Not in the labor force. | 9,781 | 10,116 | 9,990 | 9,873 | 9,987 | 10,117 | 10,072 | 10,111 | 10,278 | 10,484 | 10,515 | 10,486 | 10,401 | 10,410 | 10,295 |

${ }^{1}$ The population figures are not seasonally adjusted.
${ }^{2}$ Civilian employment as a percent of the civilian noninstitutional population.
${ }^{3}$ Beginning in 2003, persons who selected this race group only; persons who selected more than one race group are not included. Prior to 2003, persons who reported more than one race were included in the group they identified as the main race.

NOTE: Estimates for the above race groups (white and black or African American) do not sum to totals because data are not presented for all races. In addition, persons whose ethnicity is identified as Hispanic or Latino may be of any race and, therefore, are classified by ethnicity as well as by race. Beginning in January 2003, data reflect revised population controls used in the household survey.
5. Selected employment indicators, monthly data seasonally adjusted
[In thousands]

| Selected categories | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| Characteristic |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Employed, 16 years and older.. | 146,047 | 145,362 | 146,257 | 145,974 | 145,738 | 145,596 | 145,273 | 145,029 | 144,657 | 144,144 | 143,338 | 142,099 | 141,748 | 140,887 | 141,007 |
| Men....... | 78,254 | 77,486 | 78,029 | 77,932 | 77,726 | 77,683 | 77,484 | 77,249 | 76,938 | 76,577 | 75,847 | 75,092 | 74,777 | 74,053 | 74,116 |
| Women.. | 67,792 | 67,876 | 68,228 | 68,042 | 68,012 | 67,913 | 67,789 | 67,780 | 67,720 | 67,567 | 67,491 | 67,007 | 66,970 | 66,834 | 66,890 |
| Married men, spouse present. | 46,314 | 45,860 | 45,968 | 45,871 | 45,902 | 46,093 | 45,804 | 45,887 | 45,787 | 45,610 | 45,182 | 44,712 | 44,502 | 44,470 | 44,469 |
| Married women, spouse present. $\qquad$ | 35,832 | 35,869 | 36,144 | 36,122 | 36,189 | 36,110 | 35,994 | 35,864 | 35,590 | 35,649 | 35,632 | 35,375 | 35,563 | 35,481 | 35,444 |
| Persons at work part time ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| All industries: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Part time for economic reasons | 4,401 | 5,875 | 5,240 | 5,290 | 5,495 | 5,813 | 5,879 | 6,292 | 6,848 | 7,323 | 8,038 | 7,839 | 8,626 | 9,049 | 8,910 |
| Slack work or business conditions. $\qquad$ | 2,877 | 4,169 | 3,580 | 3,658 | 3,905 | 4,220 | 4,240 | 4,418 | 4,953 | 5,399 | 6,020 | 5,766 | 6,443 | 6,857 | 6,699 |
| Could only find part-time work. $\qquad$ | 1,210 | 1,389 | 1,325 | 1,305 | 1,359 | 1,300 | 1,412 | 1,514 | 1,514 | 1,585 | 1,617 | 1,667 | 1,764 | 1,839 | 1,810 |
| Part time for noneconomic reasons. $\qquad$ | 19,756 | 19,343 | 19,792 | 19,396 | 19,428 | 19,348 | 19,690 | 19,275 | 19,083 | 18,886 | 18,922 | 18,864 | 18,855 | 18,833 | 19,065 |
| Nonagricultural industries: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Part time for economic reasons $\qquad$ | 4,317 | 5,773 | 5,152 | 5,218 | 5,390 | 5,693 | 5,802 | 6,167 | 6,742 | 7,209 | 7,932 | 7,705 | 8,543 | 8,942 | 8,826 |
| Slack work or business |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| conditions. | 2,827 | 4,097 | 3,537 | 3,599 | 3,839 | 4,160 | 4,171 | 4,279 | 4,889 | 5,304 | 5,938 | 5,660 | 6,390 | 6,773 | 6,650 |
| Could only find part-time work. $\qquad$ | 1,199 | 1,380 | 1,328 | 1,297 | 1,340 | 1,287 | 1,385 | 1,541 | 1,499 | 1,579 | 1,619 | 1,658 | 1,760 | 1,850 | 1,802 |
| Part time for noneconomic reasons $\qquad$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 19,419 | 19,005 | 19,436 | 18,997 | 19,036 | 18,992 | 19,269 | 18,930 | 18,808 | 18,635 | 18,642 | 18,567 | 18,562 | 18,493 | 18,661 |

${ }^{1}$ Excludes persons "with a job but not at work" during the survey period for such reasons as vacation, illness, or industrial disputes.
NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.
6. Selected unemployment indicators, monthly data seasonally adjusted
[Unemployment rates]

| Selected categories | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| Characteristic |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total, 16 years and older. | 4.6 | 5.8 | 5.0 | 5.5 | 5.6 | 5.8 | 6.2 | 6.2 | 6.6 | 6.8 | 7.2 | 7.6 | 8.1 | 8.5 | 8.9 |
| Both sexes, 16 to 19 years. | 15.7 | 18.7 | 15.4 | 18.9 | 18.8 | 20.5 | 19.2 | 19.4 | 20.7 | 20.4 | 20.8 | 20.8 | 21.6 | 21.7 | 21.5 |
| Men, 20 years and older.. | 4.1 | 5.4 | 4.7 | 5.0 | 5.2 | 5.4 | 5.8 | 6.2 | 6.4 | 6.7 | 7.2 | 7.6 | 8.1 | 8.8 | 9.4 |
| Women, 20 years and older.. | 4.0 | 4.9 | 4.3 | 4.8 | 4.8 | 4.6 | 5.3 | 4.9 | 5.4 | 5.6 | 5.9 | 6.2 | 6.7 | 7.0 | 7.1 |
| White, total ${ }^{1}$. | 4.1 | 5.2 | 4.4 | 4.9 | 5.0 | 5.2 | 5.5 | 5.5 | 6.0 | 6.2 | 6.6 | 6.9 | 7.3 | 7.9 | 8.0 |
| Both sexes, 16 to 19 years. | 13.9 | 16.8 | 14.2 | 16.5 | 17.0 | 19.1 | 17.3 | 17.5 | 18.6 | 18.4 | 18.7 | 18.4 | 19.1 | 20.0 | 19.7 |
| Men, 16 to 19 years.. | 15.7 | 19.1 | 15.2 | 18.1 | 18.7 | 22.4 | 19.5 | 19.7 | 22.6 | 21.4 | 21.4 | 21.8 | 22.2 | 23.3 | 22.5 |
| Women, 16 to 19 years.... | 12.1 | 14.4 | 13.1 | 14.8 | 15.3 | 15.6 | 15.0 | 15.2 | 14.4 | 15.3 | 16.0 | 14.8 | 16.0 | 16.7 | 16.9 |
| Men, 20 years and older... | 3.7 | 4.9 | 4.2 | 4.5 | 4.6 | 4.8 | 5.1 | 5.5 | 5.8 | 6.1 | 6.5 | 6.8 | 7.4 | 8.0 | 8.5 |
| Women, 20 years and older.. | 3.6 | 4.4 | 3.7 | 4.1 | 4.2 | 4.2 | 4.7 | 4.2 | 4.9 | 5.1 | 5.5 | 5.8 | 6.1 | 6.5 | 6.4 |
| Black or African American, total ${ }^{1}$ | 8.3 | 10.1 | 8.8 | 9.7 | 9.4 | 9.9 | 10.7 | 11.4 | 11.3 | 11.3 | 11.9 | 12.6 | 13.4 | 13.3 | 15.0 |
| Both sexes, 16 to 19 years.. | 29.4 | 31.2 | 24.6 | 32.3 | 29.8 | 32.0 | 29.3 | 29.8 | 32.9 | 32.2 | 33.7 | 36.5 | 38.8 | 32.5 | 34.7 |
| Men, 16 to 19 years... | 33.8 | 35.9 | 27.8 | 39.9 | 35.4 | 37.7 | 29.8 | 32.9 | 37.2 | 42.0 | 35.2 | 44.0 | 45.6 | 41.2 | 42.1 |
| Women, 16 to 19 years.. | 25.3 | 26.8 | 22.0 | 25.2 | 24.4 | 26.8 | 28.9 | 26.7 | 27.8 | 23.2 | 32.2 | 29.8 | 32.1 | 25.2 | 27.2 |
| Men, 20 years and older... | 7.9 | 10.2 | 8.6 | 9.2 | 9.7 | 10.3 | 10.6 | 11.9 | 11.8 | 12.1 | 13.4 | 14.1 | 14.9 | 15.4 | 17.2 |
| Women, 20 years and older.. | 6.7 | 8.1 | 7.6 | 8.2 | 7.5 | 7.5 | 9.1 | 9.3 | 8.9 | 9.0 | 8.9 | 9.2 | 9.9 | 9.9 | 11.5 |
| Hispanic or Latino ethnicity...... | 5.6 | 7.6 | 7.0 | 7.0 | 7.7 | 7.5 | 8.1 | 7.9 | 8.8 | 8.6 | 9.2 | 9.7 | 10.9 | 11.4 | 11.3 |
| Married men, spouse present... | 2.5 | 3.4 | 2.8 | 3.0 | 3.1 | 3.3 | 3.7 | 3.9 | 4.1 | 4.2 | 4.4 | 5.0 | 5.5 | 5.8 | 6.3 |
| Married women, spouse present. | 2.8 | 3.6 | 3.0 | 3.2 | 3.4 | 3.4 | 3.7 | 3.5 | 4.2 | 4.3 | 4.5 | 4.7 | 5.1 | 5.4 | 5.5 |
| Full-time workers.. | 4.6 | 5.8 | 5.0 | 5.5 | 5.6 | 5.8 | 6.3 | 6.3 | 6.8 | 7.0 | 7.5 | 8.0 | 8.6 | 9.2 | 9.6 |
| Part-time workers.. | 4.9 | 5.5 | 5.0 | 5.5 | 5.4 | 5.6 | 5.7 | 5.9 | 5.7 | 5.8 | 5.9 | 5.9 | 5.8 | 5.9 | 6.1 |
| Educational attainment ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Less than a high school diploma....... | 7.1 | 9.0 | 7.9 | 8.4 | 8.9 | 8.6 | 9.7 | 9.8 | 10.4 | 10.6 | 10.9 | 12.0 | 12.6 | 13.3 | 14.8 |
| High school graduates, no college ${ }^{3}$. | 4.4 | 5.7 | 5.0 | 5.2 | 5.2 | 5.3 | 5.8 | 6.3 | 6.5 | 6.9 | 7.7 | 8.0 | 8.3 | 9.0 | 9.3 |
| Some college or associate degree... | 3.6 | 4.6 | 4.0 | 4.3 | 4.4 | 4.6 | 5.0 | 5.1 | 5.3 | 5.5 | 5.6 | 6.2 | 7.0 | 7.2 | 7.4 |
| Bachelor's degree and higher ${ }^{4}$. | 2.0 | 2.6 | 2.1 | 2.3 | 2.4 | 2.5 | 2.7 | 2.6 | 3.1 | 3.2 | 3.7 | 3.8 | 4.1 | 4.3 | 4.4 |

${ }^{1}$ Beginning in 2003, persons who selected this race group only; persons who selected more than one race group are not included. Prior to 2003, persons who reported more than one race were included in the group they identified as the main race.

2 Data refer to persons 25 years and older.

## 7. Duration of unemployment, monthly data seasonally adjusted

[Numbers in thousands]

| Weeks of unemployment | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| Less than 5 weeks.. | 2,542 | 2,932 | 2,496 | 3,257 | 2,733 | 2,884 | 3,242 | 2,864 | 3,108 | 3,255 | 3,267 | 3,658 | 3,404 | 3,371 | 3,346 |
| 5 to 14 weeks.. | 2,232 | 2,804 | 2,529 | 2,478 | 3,012 | 2,853 | 2,874 | 3,083 | 3,055 | 3,141 | 3,398 | 3,519 | 3,969 | 4,041 | 3,982 |
| 15 weeks and over.. | 2,303 | 3,188 | 2,652 | 2,808 | 2,966 | 3,168 | 3,447 | 3,662 | 4,109 | 3,964 | 4,517 | 4,634 | 5,264 | 5,715 | 6,211 |
| 15 to 26 weeks. | 1,061 | 1,427 | 1,277 | 1,238 | 1,345 | 1,450 | 1,568 | 1,621 | 1,834 | 1,757 | 1,927 | 1,987 | 2,347 | 2,534 | 2,531 |
| 27 weeks and over.. | 1,243 | 1,761 | 1,375 | 1,570 | 1,621 | 1,718 | 1,878 | 2,041 | 2,275 | 2,207 | 2,591 | 2,647 | 2,917 | 3,182 | 3,680 |
| Mean duration, in weeks...... | 16.8 | 17.9 | 17.0 | 16.8 | 17.6 | 17.3 | 17.6 | 18.7 | 19.8 | 18.9 | 19.7 | 19.8 | 19.8 | 20.1 | 21.4 |
| Median duration, in weeks... | 8.5 | 9.4 | 9.3 | 8.3 | 10.1 | 9.8 | 9.3 | 10.3 | 10.6 | 10.0 | 10.6 | 10.3 | 11.0 | 11.2 | 12.5 |

[^10]8. Unemployed persons by reason for unemployment, monthly data seasonally adjusted
[Numbers in thousands]

${ }^{1}$ Includes persons who completed temporary jobs.
NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.

## 9. Unemployment rates by sex and age, monthly data seasonally adjusted

[Civilian workers]

| Sex and age | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| Total, 16 years and older.. | 4.6 | 5.8 | 5.0 | 5.5 | 5.6 | 5.8 | 6.2 | 6.2 | 6.6 | 6.8 | 7.2 | 7.6 | 8.1 | 8.5 | 8.9 |
| 16 to 24 years.. | 10.5 | 12.8 | 11.0 | 13.1 | 12.9 | 13.5 | 13.3 | 13.4 | 13.8 | 13.9 | 14.7 | 14.8 | 15.5 | 16.3 | 16.7 |
| 16 to 19 years. | 15.7 | 18.7 | 15.4 | 18.9 | 18.8 | 20.5 | 19.2 | 19.4 | 20.7 | 20.4 | 20.8 | 20.8 | 21.6 | 21.7 | 21.5 |
| 16 to 17 years. | 17.5 | 22.1 | 20.2 | 21.5 | 23.2 | 24.9 | 22.2 | 21.7 | 23.1 | 24.1 | 24.1 | 21.4 | 22.9 | 23.7 | 23.0 |
| 18 to 19 years. | 14.5 | 16.8 | 13.4 | 17.6 | 15.9 | 17.6 | 17.4 | 17.8 | 18.4 | 18.3 | 19.1 | 20.2 | 21.0 | 20.9 | 21.3 |
| 20 to 24 years. | 8.2 | 10.2 | 9.0 | 10.3 | 10.2 | 10.4 | 10.7 | 10.8 | 10.6 | 11.1 | 12.1 | 12.1 | 12.9 | 14.0 | 14.7 |
| 25 years and older. | 3.6 | 4.6 | 4.0 | 4.2 | 4.4 | 4.5 | 5.0 | 5.0 | 5.3 | 5.6 | 6.0 | 6.4 | 6.9 | 7.2 | 7.5 |
| 25 to 54 years. | 3.7 | 4.8 | 4.2 | 4.5 | 4.6 | 4.7 | 5.2 | 5.3 | 5.5 | 5.8 | 6.3 | 6.7 | 7.2 | 7.6 | 7.8 |
| 55 years and older. | 3.1 | 3.8 | 3.1 | 3.3 | 3.4 | 3.7 | 4.1 | 4.2 | 4.6 | 4.8 | 4.9 | 5.2 | 5.6 | 6.2 | 6.4 |
| Men, 16 years and older. | 4.7 | 6.1 | 5.2 | 5.7 | 5.9 | 6.2 | 6.4 | 6.8 | 7.2 | 7.4 | 7.9 | 8.3 | 8.8 | 9.5 | 10.0 |
| 16 to 24 years. | 11.6 | 14.4 | 12.1 | 14.1 | 14.1 | 15.3 | 14.6 | 14.8 | 16.5 | 16.1 | 16.9 | 17.1 | 17.6 | 19.3 | 19.8 |
| 16 to 19 years. | 17.6 | 21.2 | 17.0 | 20.8 | 20.8 | 23.5 | 21.1 | 21.4 | 24.7 | 24.0 | 23.3 | 24.4 | 24.9 | 25.7 | 25.6 |
| 16 to 17 years. | 19.4 | 25.2 | 22.5 | 23.7 | 26.1 | 29.3 | 24.5 | 23.2 | 27.3 | 28.8 | 27.0 | 26.5 | 26.5 | 28.2 | 26.3 |
| 18 to 19 years. | 16.5 | 19.0 | 14.5 | 19.8 | 17.5 | 20.1 | 19.0 | 20.4 | 21.7 | 21.2 | 21.5 | 22.8 | 24.7 | 24.6 | 25.3 |
| 20 to 24 years. | 8.9 | 11.4 | 10.0 | 11.1 | 11.2 | 11.7 | 11.7 | 11.9 | 12.9 | 12.9 | 14.2 | 14.1 | 14.6 | 16.7 | 17.5 |
| 25 years and older. | 3.6 | 4.8 | 4.0 | 4.3 | 4.5 | 4.8 | 5.1 | 5.5 | 5.6 | 5.9 | 6.4 | 6.9 | 7.5 | 7.9 | 8.3 |
| 25 to 54 years. | 3.7 | 5.0 | 4.3 | 4.5 | 4.7 | 5.0 | 5.3 | 5.8 | 5.8 | 6.1 | 6.7 | 7.3 | 7.9 | 8.3 | 8.8 |
| 55 years and older. | 3.2 | 3.9 | 3.0 | 3.5 | 3.5 | 3.8 | 4.3 | 4.5 | 4.7 | 5.1 | 5.1 | 5.3 | 6.0 | 6.3 | 6.7 |
| Women, 16 years and older. | 4.5 | 5.4 | 4.8 | 5.3 | 5.3 | 5.3 | 5.9 | 5.5 | 5.9 | 6.1 | 6.4 | 6.7 | 7.3 | 7.5 | 7.6 |
| 16 to 24 years.. | 9.4 | 11.2 | 9.8 | 11.9 | 11.5 | 11.6 | 12.0 | 11.9 | 10.7 | 11.5 | 12.4 | 12.2 | 13.3 | 13.1 | 13.3 |
| 16 to 19 years. | 13.8 | 16.2 | 13.9 | 16.7 | 16.8 | 17.4 | 17.3 | 17.3 | 16.5 | 16.7 | 18.2 | 17.1 | 18.3 | 17.8 | 17.4 |
| 16 to 17 years. | 15.7 | 19.1 | 18.1 | 19.2 | 20.4 | 20.5 | 20.1 | 20.3 | 19.2 | 19.7 | 21.2 | 16.2 | 19.8 | 19.4 | 19.9 |
| 18 t0 19 years. | 12.5 | 14.3 | 12.2 | 15.2 | 14.1 | 14.9 | 15.6 | 14.9 | 14.7 | 15.1 | 16.6 | 17.5 | 17.0 | 17.2 | 17.1 |
| 20 to 24 years.. | 7.3 | 8.8 | 7.7 | 9.5 | 8.9 | 8.9 | 9.5 | 9.4 | 8.1 | 9.2 | 9.8 | 10.0 | 10.9 | 11.0 | 11.5 |
| 25 years and older. | 3.6 | 4.4 | 3.9 | 4.1 | 4.2 | 4.2 | 4.9 | 4.4 | 5.1 | 5.2 | 5.4 | 5.8 | 6.2 | 6.5 | 6.6 |
| 25 to 54 years... | 3.8 | 4.6 | 4.1 | 4.4 | 4.5 | 4.4 | 5.1 | 4.6 | 5.2 | 5.4 | 5.7 | 6.0 | 6.4 | 6.7 | 6.7 |
| 55 years and older ${ }^{1}$. | 3.0 | 3.7 | 2.8 | 2.8 | 3.4 | 4.3 | 4.5 | 3.9 | 4.3 | 4.3 | 4.3 | 5.4 | 5.3 | 5.8 | 5.4 |

${ }^{1}$ Data are not seasonally adjusted.
NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.
10. Unemployment rates by State, seasonally adjusted

| State | Mar. <br> 2008 | $\begin{gathered} \text { Feb. } \\ 2009^{p} \end{gathered}$ | Mar. $2009^{p}$ | State | Mar. <br> 2008 | $\begin{aligned} & \text { Feb. } \\ & 2009^{p} \end{aligned}$ | Mar. $2009^{\text {p }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alabama. | 4.3 | 8.4 | 9.0 | Missouri. | 5.6 | 8.3 | 8.7 |
| Alaska. | 6.5 | 7.9 | 8.4 | Montana. | 4.1 | 6.0 | 6.1 |
| Arizona.. | 4.7 | 7.4 | 7.8 | Nebraska. | 3.1 | 4.3 | 4.7 |
| Arkansas. | 4.8 | 6.4 | 6.5 | Nevada. | 5.6 | 10.0 | 10.4 |
| California.. | 6.4 | 10.6 | 11.2 | New Hampshire. | 3.7 | 5.7 | 6.2 |
| Colorado. | 4.6 | 7.2 | 7.5 | New Jersey.. | 4.8 | 8.2 | 8.3 |
| Connecticut. | 5.3 | 7.4 | 7.5 | New Mexico. | 3.9 | 5.4 | 5.9 |
| Delaware. | 4.1 | 7.3 | 7.6 | New York. | 4.8 | 7.8 | 7.8 |
| District of Columbia. | 6.2 | 9.9 | 9.7 | North Carolina. | 5.4 | 10.7 | 10.8 |
| Florida.. | 5.4 | 9.6 | 9.8 | North Dakota. | 3.0 | 4.3 | 4.2 |
| Georgia. | 5.6 | 9.2 | 9.2 | Ohio.. | 6.1 | 9.5 | 9.7 |
| Hawaii. | 3.1 | 6.5 | 7.1 | Oklahoma. | 3.3 | 5.5 | 5.9 |
| Idaho. | 4.1 | 6.7 | 7.0 | Oregon. | 5.5 | 10.7 | 11.9 |
| Illinois.. | 6.0 | 8.6 | 9.0 | Pennsylvania.. | 4.9 | 7.5 | 7.8 |
| Indiana. | 5.3 | 9.4 | 10.0 | Rhode Island. | 6.8 | 10.5 | 10.6 |
| Iowa.. | 3.9 | 4.9 | 5.2 | South Carolina. | 5.9 | 10.9 | 11.4 |
| Kansas.. | 4.1 | 5.9 | 6.1 | South Dakota. | 2.8 | 4.6 | 4.9 |
| Kentucky.. | 5.9 | 9.3 | 9.8 | Tennessee. | 5.7 | 9.0 | 9.6 |
| Louisiana. | 4.2 | 5.7 | 5.8 | Texas. | 4.6 | 6.5 | 6.7 |
| Maine.. | 5.0 | 7.8 | 8.1 | Utah. | 3.3 | 5.1 | 5.2 |
| Maryland.. | 3.8 | 6.8 | 6.9 | Vermont. | 4.6 | 7.1 | 7.2 |
| Massachusetts.. | 4.7 | 7.7 | 7.7 | Virginia............................................... | 3.6 | 6.6 | 6.8 |
| Michigan.. | 7.6 | 12.0 | 12.6 | Washington..................................... | 4.8 | 8.3 | 9.1 |
| Minnesota. | 5.1 | 8.0 | 8.2 | West Virginia........................................ | 4.2 | 6.0 | 6.8 |
| Mississippi.. | 6.1 | 9.1 | 9.4 | Wisconsin....................................... | 4.4 | 7.8 | 8.5 |
|  |  |  |  | Wyoming............................................. | 2.9 | 3.9 | 4.5 |

${ }^{\mathrm{p}}=$ preliminary
11. Employment of workers on nonfarm payrolls by State, seasonally adjusted

| State | Mar. <br> 2008 | $\begin{aligned} & \text { Feb. } \\ & 2009^{p} \end{aligned}$ | $\begin{gathered} \text { Mar. } \\ 2009^{p} \end{gathered}$ | State | Mar. <br> 2008 | $\begin{aligned} & \text { Feb. } \\ & 2009^{p} \end{aligned}$ | $\begin{gathered} \text { Mar. } \\ 2009^{\text {p }} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alabama. | 2,166,366 | 2,145,502 | 2,142,080 | Missouri. | 3,015,046 | 3,019,674 | 3,014,046 |
| Alaska. | 355,551 | 358,704 | 358,322 | Montana. | 504,979 | 501,843 | 501,020 |
| Arizona. | 3,090,448 | 3,157,285 | 3,137,010 | Nebraska. | 993,123 | 992,445 | 990,165 |
| Arkansas. | 1,366,462 | 1,377,064 | 1,359,628 | Nevada. | 1,352,855 | 1,403,105 | 1,394,336 |
| California. | 18,269,099 | 18,580,954 | 18,614,914 | New Hampshire.......................... | 739,633 | 742,425 | 743,788 |
| Colorado. | 2,722,799 | 2,731,554 | 2,725,094 | New Jersey.. | 4,485,501 | 4,514,619 | 4,540,571 |
| Connecticut. | 1,868,105 | 1,890,346 | 1,884,885 | New Mexico. | 954,996 | 957,436 | 954,599 |
| Delaware. | 441,147 | 440,145 | 436,166 | New York. | 9,631,336 | 9,756,388 | 9,762,516 |
| District of Columbia | 332,507 | 331,791 | 328,454 | North Carolina. | 4,520,484 | 4,584,277 | 4,554,471 |
| Florida.. | 9,163,303 | 9,263,707 | 9,218,209 | North Dakota. | 367,937 | 371,315 | 370,123 |
| Georgia. | 4,834,846 | 4,811,586 | 4,783,304 | Ohio. | 5,975,797 | 5,993,089 | 5,953,746 |
| Hawaii. | 651,683 | 650,254 | 644,426 | Oklahoma. | 1,735,230 | 1,757,714 | 1,763,261 |
| Idaho. | 751,498 | 752,227 | 750,049 | Oregon. | 1,944,465 | 1,997,891 | 2,000,064 |
| Illinois. | 6,726,327 | 6,603,239 | 6,577,979 | Pennsylvania. | 6,348,351 | 6,459,235 | 6,433,548 |
| Indiana. | 3,226,776 | 3,241,553 | 3,219,896 | Rhode Island. | 568,978 | 566,039 | 564,449 |
| Iowa. | 1,675,749 | 1,668,976 | 1,674,810 | South Carolina. | 2,131,288 | 2,189,322 | 2,187,149 |
| Kansas. | 1,489,741 | 1,511,388 | 1,509,008 | South Dakota. | 443,986 | 447,025 | 448,089 |
| Kentucky. | 2,031,400 | 2,080,623 | 2,082,311 | Tennessee. | 3,034,931 | 3,051,531 | 3,039,502 |
| Louisiana. | 2,061,140 | 2,085,337 | 2,070,503 | Texas. | 11,610,701 | 11,839,609 | 11,861,161 |
| Maine. | 705,262 | 708,027 | 705,307 | Utah. | 1,378,140 | 1,389,134 | 1,382,215 |
| Maryland. | 2,989,419 | 2,969,663 | 2,961,054 | Vermont. | 354,721 | 358,111 | 359,148 |
| Massachusetts. | 3,418,593 | 3,427,365 | 3,421,053 | Virginia.. | 4,099,518 | 4,160,683 | 4,151,436 |
| Michigan. | 4,960,868 | 4,857,714 | 4,841,297 | Washington. | 3,449,523 | 3,554,065 | 3,541,053 |
| Minnesota. | 2,920,559 | 2,951,001 | 2,954,684 | West Virginia. | 807,812 | 794,137 | 792,686 |
| Mississippi. | 1,310,275 | 1,326,532 | 1,321,098 | Wisconsin. | 3,080,290 | 3,122,806 | 3,104,921 |
|  |  |  |  | Wyoming................................... | 291,140 | 292,605 | 290,250 |

[^11][^12]
## 12. Employment of workers on nonfarm payrolls by industry, monthly data seasonally adjusted

[In thousands]

| Industry | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
| TOTAL NONFARM | 137,598 | 137,066 | 137,654 | 137,517 | 137,356 | 137,228 | 137,053 | 136,732 | 136,352 | 135,755 | 135,074 | 134,333 | 133,652 | 132,953 | 132,414 |
| TOTAL PRIVATE. | 115,380 | 114,566 | 115,203 | 115,029 | 114,834 | 114,691 | 114,497 | 114,197 | 113,813 | 113,212 | 112,542 | 111,793 | 111,105 | 110,412 | 109,801 |
| GOODS-PRODUCING | 22,233 | 21,419 | 21,679 | 21,612 | 21,507 | 21,432 | 21,351 | 21,247 | 21,063 | 20,814 | 20,532 | 20,127 | 19,832 | 19,514 | 19,244 |
| Natural resources and mining $\qquad$ | 724 | 774 | 756 | 763 | 770 | 777 | 787 | 794 | 794 | 793 | 789 | 781 | 771 | 755 | 744 |
| Logging. | 60.1 | 57.0 | 58.6 | 57.3 | 56.0 | 55.8 | 56.1 | 56.5 | 56.6 | 56.6 | 55.7 | 55.2 | 54.5 | 51.0 | 49.6 |
| Mining.. | 663.8 | 717.0 | 697.8 | 705.5 | 713.8 | 721.3 | 730.6 | 737.7 | 737.7 | 736.8 | 733.3 | 725.3 | 716.4 | 703.9 | 694.2 |
| Oil and gas extraction | 146.2 | 161.6 | 155.1 | 158.8 | 160.7 | 162.7 | 164.7 | 166.3 | 166.5 | 167.4 | 169.4 | 167.7 | 167.8 | 167.1 | 167.9 |
| Mining, except oil and g | 223.4 | 227.7 | 222.9 | 226.3 | 226.9 | 227.6 | 230.0 | 230.2 | 230.5 | 230.7 | 229.2 | 227.9 | 225.7 | 222.8 | 220.6 |
| Coal mining. | 77.2 | 80.6 | 78.1 | 79.2 | 79.6 | 79.5 | 81.7 | 82.5 | 83.1 | 84.3 | 84.5 | 84.9 | 84.1 | 83.3 | 81.5 |
| Support activities for mining | 294.3 | 327.7 | 319.8 | 320.4 | 326.2 | 331.0 | 335.9 | 341.2 | 340.7 | 338.7 | 334.7 | 329.7 | 322.9 | 314.0 | 305.7 |
| Construction | 7,630 | 7,215 | 7,337 | 7,293 | 7,232 | 7,201 | 7,177 | 7,131 | 7,066 | 6,939 | 6,841 | 6,706 | 6,593 | 6,458 | 6,348 |
| Construction of buildings. | 1,774.2 | 1,659.3 | 1,693.8 | 1,676.9 | 1,660.6 | 1,655.5 | 1,647.5 | 1,625.0 | 1,609.9 | 1,588.4 | 1,572.9 | 1,536.9 | 1,509.5 | 1,481.4 | 1,459.7 |
| Heavy and civil engineering | 1,005.4 | 970.2 | 980.5 | 982.1 | 972.2 | 970.9 | 966.1 | 960.2 | 952.6 | 942.5 | 933.2 | 926.6 | 919.0 | 906.6 | 889.4 |
| Speciality trade contractors. | 4,850.2 | 4,585.3 | 4,662.3 | 4,633.6 | 4,598.7 | 4,574.6 | 4,563.1 | 4,545.4 | 4,503.9 | 4,408.5 | 4,335.2 | 4,242.2 | 4,164.4 | 4,069.9 | 3,998.9 |
| Manufacturing..................... | 13,879 | 13,431 | 13,586 | 13,556 | 13,505 | 13,454 | 13,387 | 13,322 | 13,203 | 13,082 | 12,902 | 12,640 | 12,468 | 12,301 | 12,152 |
| Production workers. | 9,975 | 9,649 | 9,795 | 9,770 | 9,723 | 9,672 | 9,608 | 9,543 | 9,425 | 9,322 | 9,174 | 8,946 | 8,804 | 8,656 | 8,537 |
| Durable goods. | 8,808 | 8,476 | 8,587 | 8,567 | 8,533 | 8,502 | 8,439 | 8,392 | 8,300 | 8,216 | 8,085 | 7,881 | 7,753 | 7,626 | 7,499 |
| Production workers. | 6,250 | 5,986 | 6,099 | 6,077 | 6,040 | 6,006 | 5,948 | 5,898 | 5,805 | 5,741 | 5,633 | 5,458 | 5,352 | 5,241 | 5,135 |
| Wood products.. | 515.3 | 459.6 | 477.3 | 468.3 | 462.9 | 458.4 | 451.9 | 446.4 | 438.8 | 429.8 | 416.2 | 403.9 | 390.4 | 389.9 | 388.6 |
| Nonmetallic mineral products | 500.5 | 468.1 | 477.2 | 473.0 | 469.7 | 466.4 | 464.5 | 460.2 | 458.2 | 450.1 | 441.2 | 434.3 | 425.8 | 416.0 | 415.0 |
| Primary metals.. | 455.8 | 443.3 | 449.7 | 447.9 | 446.6 | 444.8 | 440.8 | 441.1 | 438.6 | 429.8 | 419.6 | 409.3 | 395.2 | 386.2 | 374.4 |
| Fabricated metal products. | 1,562.8 | 1,528.3 | 1,546.0 | 1,544.8 | 1,534.8 | 1,528.4 | 1,530.6 | 1,519.4 | 1,505.0 | 1,486.3 | 1,461.5 | 1,425.3 | 1,399.0 | 1,369.9 | 1,341.2 |
| Machinery....................... | 1,187.1 | 1,185.6 | 1,193.1 | 1,192.2 | 1,190.8 | 1,191.1 | 1,187.5 | 1,183.1 | 1,179.3 | 1,162.7 | 1,150.2 | 1,126.0 | 1,100.8 | 1,072.7 | 1,051.2 |
| Computer and electronic |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| products ${ }^{1}$. | 1,272.5 | 1,247.6 | 1,255.7 | 1,252.8 | 1,248.5 | 1,247.3 | 1,248.3 | 1,246.5 | 1,239.8 | 1,233.3 | 1,223.7 | 1,212.9 | 1,196.9 | 1,188.6 | 1,176.9 |
| Computer and peripheral |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| equipment.. | 186.2 | 182.8 | 184.0 | 183.6 | 182.1 | 182.5 | 182.6 | 182.8 | 182.4 | 181.8 | 180.0 | 180.3 | 175.5 | 173.8 | 170.9 |
| Communications equipment.. | 128.1 | 129.0 | 129.1 | 129.1 | 130.2 | 129.1 | 129.1 | 129.2 | 128.6 | 129.5 | 129.1 | 129.6 | 129.0 | 128.5 | 128.7 |
| Semiconductors and electronic components. | 447.5 | 432.4 | 437.0 | 434.4 | 431.2 | 431.9 | 432.3 | 431.0 | 428.4 | 423.2 | 417.4 | 10.5 | 403.3 | 397.8 | 390.9 |
| Electronic instruments... | 443.2 | 441.6 | 442.9 | 443.1 | 442.4 | 441.8 | 442.6 | 442.5 | 440.2 | 438.8 | 437.5 | 433.8 | 431.9 | 431.9 | 431.3 |
| Electrical equipment and appliances. | 429.4 | 424.9 | 428.5 | 428.5 | 428.3 | 428.4 | 425.5 | 422.6 | 421.3 | 417.5 | 412.0 | 406.1 | 399.1 | 389.8 | 380.5 |
| Transportation equipment | 1,711.9 | 1,606.5 | 1,632.1 | 1,636.6 | 1,634.3 | 1,625.7 | 1,584.5 | 1,572.6 | 1,531.3 | 1,532.5 | 1,501.8 | 1,423.5 | 1,423.7 | 1,403.3 | 1,369.5 |
| Furniture and related products. | 531.1 | 81.0 | 495.2 | 491.6 | 88.0 | 483.4 | 475.7 | 470.3 | 458.8 | 449.6 | 440.6 | 428.6 | 417.4 | 408.3 | 400.7 |
| Miscellaneous manufacturing | 641.7 | 630.8 | 632.5 | 631.4 | 629.0 | 627.9 | 630.1 | 629.4 | 628.5 | 624.2 | 618.4 | 611.0 | 604.5 | 601.1 | 600.5 |
| Nondurable goods... | 5,071 | 4,955 | 4,999 | 4,989 | 4,972 | 4,952 | 4,948 | 4,930 | 4,903 | 4,866 | 4,817 | 4,759 | 4,715 | 4,675 | 4,653 |
| Production workers. | 3,725 | 3,663 | 3,696 | 3,693 | 3,683 | 3,666 | 3,660 | 3,645 | 3,620 | 3,581 | 3,541 | 3,488 | 3,452 | 3,415 | 3,402 |
| Food manufacturing | 1,484.1 | 1,484.8 | 1,483.2 | 1,483.1 | 1,482.1 | 1,478.1 | 1,482.7 | 1,484.3 | 1,484.7 | 1,489.0 | 1,477.6 | 1,470.7 | 1,467.2 | 1,465.2 | 1,475.2 |
| Beverages and tobacco products. | 198.2 | 199.0 | 201.6 | 201.4 | 200.6 | 200.0 | 199.2 | 199.3 | 197.2 | 196.4 | 195.8 | 194.2 | 191.3 | 191.7 | 190.5 |
| Textile mills. | 169.7 | 151.0 | 155.9 | 154.3 | 150.7 | 149.0 | 149.5 | 147.5 | 145.6 | 140.6 | 136.8 | 133.6 | 130.0 | 128.2 | 127.6 |
| Textile product mills. | 157.7 | 147.5 | 150.1 | 49.1 | 47.1 | 146.2 | 145.2 | 145.5 | 144.5 | 143.5 | 141.2 | 137.4 | 134.2 | 129.4 | 127.2 |
| Apparel. | 214.6 | 198.4 | 202.5 | 200.8 | 200.0 | 199.5 | 200.4 | 197.3 | 192.8 | 187.1 | 183.5 | 178.9 | 176.3 | 173.0 | 169.1 |
| Leather and allied products.. | 33.8 | 33.6 | 33.6 | 33.6 | 34.2 | 33.0 | 34.5 | 34.3 | 33.9 | 32.6 | 32.6 | 32.4 | 31.9 | 31.8 | 32.0 |
| Paper and paper products. | 458.2 | 445.8 | 450.6 | 449.8 | 448.2 | 447.1 | 444.7 | 441.9 | 439.7 | 437.1 | 433.4 | 427.3 | 422.5 | 419.1 | 415.6 |
| Printing and related support activities. | 622.1 | 594.1 | 605.6 | 601.2 | 94.8 | 591.5 | 591.5 | 587.6 | 582.3 | 574.1 | 567.0 | 558.1 | 549.2 | 539.9 | 532.2 |
| Petroleum and coal products. | 114.5 | 117.1 | 115.9 | 117.1 | 117.6 | 118.1 | 118.0 | 117.9 | 117.8 | 117.2 | 116.9 | 114.2 | 114.6 | 114.5 | 114.6 |
| Chemicals. | 860.9 | 849.8 | 854.1 | 854.2 | 852.8 | 850.0 | 847.3 | 844.3 | 843.4 | 842.6 | 837.1 | 832.7 | 828.2 | 823.1 | 818.7 |
| Plastics and rubber products.. | 757.2 | 734.2 | 745.5 | 744.3 | 743.4 | 739.3 | 734.7 | 729.7 | 721.1 | 705.9 | 694.9 | 679.7 | 669.3 | 659.2 | 650.6 |
| SERVICE-PROVIDING.. | 115,366 | 115,646 | 115,975 | 115,905 | 115,849 | 115,796 | 115,702 | 115,485 | 115,289 | 114,941 | 114,542 | 114,206 | 113,820 | 113,439 | 113,170 |
| PRIVATE SERVICEPROVIDING. | 93,147 | 93,146 | 93,524 | 93,417 | 93,327 | 93,259 | 93,146 | 92,950 | 92,750 | 92,398 | 92,010 | 91,666 | 91,273 | 90,898 | 90,557 |
| Trade, transportation, and utilities. $\qquad$ | 26,630 | 26,385 | 26,562 | 26,503 | 26,467 | 26,425 | 26,354 | 26,257 | 26,157 | 26,005 | 25,843 | 25,735 | 25,605 | 25,471 | 25,345 |
| Wholesale trade.. | 6,015.2 | 5,963.7 | 5,995.9 | 5,989.3 | 5,983.1 | 5,966.9 | 5,954.3 | 5,947.2 | 5,920.1 | 5,890.3 | 5,850.7 | 5,819.3 | 5,773.7 | 5,736.9 | 5,696.2 |
| Durable goods. | 3,121.5 | 3,060.7 | 3,087.2 | 3,078.2 | 3,071.7 | 3,062.5 | 3,052.4 | 3,047.2 | 3,026.1 | 3,004.9 | 2,978.6 | 2,959.6 | 2,926.2 | 2,897.3 | 2,868.5 |
| Nondurable goods... | 2,062.2 | 2,053.0 | 2,060.9 | 2,063.7 | 2,061.5 | 2,053.2 | 2,049.0 | 2,044.1 | 2,040.5 | 2,033.6 | 2,025.1 | 2,013.9 | 2,006.6 | 2,000.4 | 1,992.7 |
| Electronic markets and agents and brokers. | 831.5 | 850.1 | 847.8 | 847.4 | 849.9 | 851.2 | 852.9 | 855.9 | 853.5 | 851.8 | 847.0 | 845.8 | 840.9 | 839.2 | 835.0 |
| Retail trade. $\qquad$ Motor vehicles and parts | 15,520.0 | 15,356.3 | 15,457.6 | 15,419.9 | 15,404.4 | 15,380.2 | 15,334.5 | 15,278.2 | 15,216.8 | 15,126.0 | 15,037.9 | 14,991.5 | 14,934.3 | 14,870.4 | 14,823.7 |
| dealers ${ }^{1}$.. | 1,908.3 | 1,844.5 | 1,885.1 | 1,877.4 | 1,866.2 | 1,851.4 | 1,832.6 | 1,818.4 | 1,792.7 | 1,770.5 | 1,745.6 | 1,730.1 | 1,716.8 | 1,701.7 | 1,690.1 |
| Automobile dealers. | 1,242.2 | 1,186.0 | 1,220.9 | 1,214.6 | 1,204.7 | 1,191.5 | 1,176.2 | 1,164.8 | 1,141.7 | 1,121.2 | 1,099.9 | 1,088.6 | 1,078.7 | 1,067.3 | 1,058.0 |
| Furniture and home furnishings stores. | 574.6 | 542.8 | 549.5 | 547.6 | 546.5 | 545.8 | 542.3 | 538.4 | 532.4 | 522.6 | 514.2 | 508.3 | 499.7 | 497.9 | 492.5 |
| Electronics and appliance stores. | 549.4 | 549.6 | 554.5 | 555.0 | 552.9 | 553.0 | 551.0 | 547.1 | 545.1 | 541.5 | 538.6 | 535.5 | 533.7 | 518.7 | 517.1 |

See notes at end of table
12. Continued-Employment of workers on nonfarm payrolls by industry, monthly data seasonally adjusted

12. Continued-Employment of workers on nonfarm payrolls by industry, monthly data seasonally adjusted
[In thousands]

| Industry | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
| Computer systems design and related services. | 1,372.1 | 1,450.3 | 1,441.7 | 1,445.8 | 1,446.2 | 1,456.2 | 1,460.6 | 1,461.6 | 1,466.1 | 1,467.9 | 1,466.8 | 1,462.4 | 1,463.7 | 1,459.0 | 1,457.6 |
| Management and technical consulting services. | 952.7 | 1,008.9 | 999.2 | 1,002.3 | 1,010.1 | 1,011.3 | 1,011.6 | 1,021.0 | 1,022.9 | 1,024.9 | 1,020.5 | 1,025.7 | 1,021.6 | 1,017.3 | 1,018.9 |
| Management of companies and enterprises. | 1,866.4 | 1,894.6 | 1,903.8 | 1,902.1 | 1,900.6 | 1,895.3 | 1,895.2 | 1,887.1 | 1,882.8 | 1,882.0 | 1,872.1 | 1,871.7 | 1,862.1 | 1,854.8 | 1,839.6 |
| Administrative and waste services Administrative and support | 8,416.3 | 8,053.7 | 8,212.0 | 8,163.3 | 8,094.9 | 8,058.6 | 7,998.6 | 7,953.2 | 7,884.8 | 7,778.3 | 7,686.3 | 7,567.5 | 7,437.8 | 7,343.4 | 7,253.5 |
| services ${ }^{1}$. | 8,061.3 | 7,693.5 | 7,853.6 | 7,804.4 | 7,736.4 | 7,699.3 | 7,637.0 | 7,591.9 | 7,522.0 | 7,414.2 | 7,324.4 | 7,203.1 | 7,076.5 | 6,982.6 | 6,892.2 |
| Employment services ${ }^{1}$ | 3,545.9 | 3,144.4 | 3,285.6 | 3,242.7 | 3,184.0 | 3,146.9 | 3,089.5 | 3,049.8 | 2,987.7 | 2,896.7 | 2,829.5 | 2,720.5 | 2,638.7 | 2,551.7 | 2,482.8 |
| Temporary help services | 2,597.4 | 2,342.6 | 2,464.0 | 2,426.7 | 2,383.5 | 2,349.1 | 2,301.1 | 2,264.2 | 2,218.9 | 2,128.5 | 2,055.6 | 1,965.7 | 1,892.7 | 1,821.1 | 1,758.6 |
| Business support services Services to buildings | 817.4 | 823.2 | 828.4 | 822.6 | 818.1 | 817.4 | 814.9 | 818.1 | 820.8 | 823.7 | 816.0 | 817.6 | 805.0 | 801.6 | 793.8 |
| and dwellings | 1,849.5 | 1,847.0 | 1,853.8 | 1,853.5 | 1,851.4 | 1,848.6 | 1,847.0 | 1,843.3 | 1,837.4 | 1,829.4 | 1,818.1 | 1,812.5 | 1,796.8 | 1,787.9 | 1,780.7 |
| Waste management and remediation services.... | 355.0 | 360.2 | 358.4 | 358.9 | 358.5 | 359.3 | 361.6 | 361.3 | 362.8 | 364.1 | 361.9 | 364.4 | 361.3 | 360.8 | 361.3 |
| Educational and health |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| services | 18,322 | 18,855 | 18,752 | 18,798 | 18,843 | 18,888 | 18,950 | 18,957 | 18,981 | 19,044 | 19,080 | 19,119 | 19,138 | 19,148 | 19,163 |
| Educational services. | 2,941.4 | 3,036.6 | 3,017.4 | 3,025.4 | 3,049.2 | 3,062.4 | 3,083.7 | 3,055.1 | 3,047.3 | 3,066.0 | 3,063.1 | 3,088.4 | 3,083.1 | 3,077.2 | 3,075.1 |
| Health care and social assistance. | 15,380.2 | 15,818.5 | 15,734.1 | 15,772.3 | 15,794.1 | 15,825.9 | 15,865.9 | 15,901.9 | 15,934.1 | 15,977.8 | 16,017.0 | 16,030.3 | 16,054.7 | 16,071.1 | 16,087.9 |
| Ambulatory health care |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| services ${ }^{1}$ | 5,473.5 | 5,660.7 | 5,622.6 | 5,634.9 | 5,652.0 | 5,676.3 | 5,683.8 | 5,699.5 | 5,706.1 | 5,727.7 | 5,742.6 | 5,753.3 | 5,770.1 | 5,777.5 | 5,795.2 |
| Offices of physicians | 2,201.6 | 2,265.7 | 2,251.8 | 2,256.8 | 2,264.6 | 2,272.7 | 2,272.7 | 2,279.0 | 2,283.3 | 2,289.8 | 2,294.5 | 2,300.4 | 2,304.4 | 2,307.9 | 2,310.1 |
| Outpatient care centers | 512.0 | 532.5 | 530.4 | 531.5 | 531.2 | 535.4 | 537.2 | 534.8 | 536.6 | 536.9 | 536.7 | 538.0 | 538.5 | 537.5 | 540.5 |
| Home health care service | 913.8 | 958.0 | 948.7 | 951.8 | 955.3 | 961.1 | 963.4 | 966.8 | 968.6 | 975.6 | 980.7 | 981.4 | 991.0 | 994.8 | 1,003.6 |
| Hospitals. | 4,515.0 | 4,641.1 | 4,610.4 | 4,627.2 | 4,634.0 | 4,646.8 | 4,660.7 | 4,668.9 | 4,681.9 | 4,692.4 | 4,703.7 | 4,707.5 | 4,711.3 | 4,711.4 | 4,712.0 |
| Nursing and residential |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| care facilities ${ }^{1}$. | 2,958.3 | 3,008.1 | 3,006.1 | 3,006.2 | 3,005.7 | 3,006.3 | 3,009.9 | 3,007.6 | 3,013.2 | 3,022.3 | 3,029.6 | 3,029.4 | 3,033.6 | 3,040.0 | 3,038.4 |
| Nursing care facilities | 1,602.6 | 1,613.7 | 1,615.0 | 1,615.1 | 1,613.0 | 1,612.3 | 1,612.6 | 1,608.9 | 1,611.0 | 1,614.5 | 1,617.3 | 1,616.6 | 1,617.9 | 1,620.8 | 1,621.9 |
| Social assistance ${ }^{1}$. | 2,433.4 | 2,508.7 | 2,495.0 | 2,504.0 | 2,502.4 | 2,496.5 | 2,511.5 | 2,525.9 | 2,532.9 | 2,535.4 | 2,541.1 | 2,540.1 | 2,539.7 | 2,542.2 | 2,542.3 |
| Child day care services. | 850.4 | 859.2 | 859.9 | 863.3 | 853.8 | 844.6 | 851.6 | 862.5 | 862.3 | 863.2 | 864.3 | 862.7 | 860.4 | 856.4 | 853.5 |
| Leisure and hospitality..... | 13,427 | 13,459 | 13,512 | 13,495 | 13,490 | 13,473 | 13,454 | 13,428 | 13,395 | 13,344 | 13,304 | 13,268 | 13,236 | 13,194 | 13,150 |
| Arts, entertainment, and recreation. | 1,969.2 | 1,969.3 | 1,984.9 | 1,978.3 | 1,975.1 | 1,966.6 | 1,964.7 | 1,955.3 | 1,952.0 | 1,944.0 | 1,947.1 | 1,943.8 | 1,936.2 | 1,925.9 | 1,896.9 |
| Performing arts and spectator sports. | 405.0 | 406.3 | 409.5 | 409.4 | 409.7 | 406.9 | 406.2 | 402.9 | 402.5 | 398.8 | 401.4 | 405.7 | 398.6 | 397.7 | 390.9 |
| Museums, historical sites, zoos, and parks. | 130.3 | 131.8 | 132.9 | 133.9 | 132.2 | 132.1 | 132.1 | 130.6 | 129.6 | 130.6 | 130.8 | 130.3 | 130.9 | 129.9 | 130.0 |
| Amusements, gambling, and recreation $\qquad$ | 1,433.9 | 1,431.2 | 1,442.5 | 1,435.0 | 1,433.2 | 1,427.6 | 1,426.4 | 1,421.8 | 1,419.9 | 1,414.6 | 1,414.9 | 1,407.8 | 1,406.7 | 1,398.3 | 1,376.0 |
| Accommodations and food services. | 11,457.4 | 11,489.3 | 11,527.5 | 11,516.7 | 11,515.3 | 11,506.3 | 11,489.3 | 11,472.4 | 11,442.7 | 11,399.6 | 11,356.5 | 11,323.7 | 11,299.7 | 11,267.6 | 11,253.3 |
| Accommodations. | 1,866.9 | 1,857.3 | 1,881.1 | 1,872.1 | 1,865.0 | 1,854.6 | 1,843.6 | 1,841.3 | 1,827.9 | 1,812.1 | 1,794.3 | 1,768.4 | 1,754.7 | 1,732.8 | 1,724.8 |
| Food services and drinking places. | 9,590.4 | 9,632.0 | 9,646.4 | 9,644.6 | 9,650.3 | 9,651.7 | 9,645.7 | 9,631.1 | 9,614.8 | 9,587.5 | 9,562.2 | 9,555.3 | 9,545.0 | 9,534.8 | 9,528.5 |
| Other services..... | 5,494 | 5,528 | 5,541 | 5,542 | 5,535 | 5,536 | 5,530 | 5,532 | 5,535 | 5,509 | 5,477 | 5,461 | 5,449 | 5,427 | 5,420 |
| Repair and maintenance.. | 1,253.4 | 1,228.2 | 1,242.2 | 1,239.6 | 1,233.6 | 1,230.6 | 1,220.6 | 1,221.2 | 1,216.4 | 1,204.7 | 1,189.9 | 1,184.7 | 1,177.3 | 1,167.6 | 1,165.1 |
| Personal and laundry services | 1,309.7 | 1,326.6 | 1,324.9 | 1,325.3 | 1,327.4 | 1,328.9 | 1,331.7 | 1,333.9 | 1,330.1 | 1,323.2 | 1,320.9 | 1,313.6 | 1,312.5 | 1,303.9 | 1,298.6 |
| Membership associations and organizations. | 2,931.1 | 2,973.3 | 2,973.5 | 2,976.9 | 2,973.8 | 2,976.6 | 2,977.6 | 2,977.1 | 2,988.3 | 2,980.7 | 2,965.7 | 2,963.1 | 2,958.7 | 2,955.2 | 2,956.3 |
| Government. | 22,218 | 22,500 | 22,451 | 22,488 | 22,522 | 22,537 | 22,556 | 22,535 | 22,539 | 22,543 | 22,532 | 22,540 | 22,547 | 22,541 | 22,613 |
| Federal. | 2,734 | 2,764 | 2,758 | 2,763 | 2,765 | 2,776 | 2,768 | 2,771 | 2,775 | 2,783 | 2,778 | 2,793 | 2,796 | 2,806 | 2,872 |
| Federal, except U.S. Postal Service $\qquad$ | 1,964.7 | 2,016.8 | 1,996.4 | 2,007.7 | 2,014.6 | 2,020.2 | 2,027.1 | 2,034.3 | 2,043.5 | 2,052.4 | 2,057.3 | 2,065.8 | 2,071.0 | 2,082.5 | 2,145.0 |
| U.S. Postal Service | 769.1 | 747.5 | 761.3 | 755.7 | 750.5 | 755.8 | 740.6 | 736.5 | 731.9 | 730.1 | 720.9 | 726.9 | 724.9 | 723.5 | 726.7 |
| State..... | 5,122 | 5,178 | 5,159 | 5,167 | 5,175 | 5,184 | 5,204 | 5,192 | 5,194 | 5,197 | 5,196 | 5,192 | 5,192 | 5,190 | 5,192 |
| Education. | 2,317.5 | 2,359.0 | 2,340.0 | 2,348.0 | 2,355.4 | 2,365.1 | 2,379.5 | 2,373.3 | 2,372.8 | 2,380.3 | 2,381.3 | 2,380.2 | 2,382.3 | 2,382.5 | 2,388.1 |
| Other State government. | 2,804.3 | 2,818.9 | 2,819.4 | 2,818.5 | 2,819.4 | 2,819.1 | 2,824.6 | 2,818.9 | 2,820.7 | 2,816.4 | 2,814.8 | 2,811.6 | 2,809.4 | 2,807.6 | 2,803.6 |
| Local.... | 14,362 | 14,557 | 14,534 | 14,558 | 14,582 | 14,577 | 14,584 | 14,572 | 14,570 | 14,563 | 14,558 | 14,555 | 14,559 | 14,545 | 14,549 |
| Education. | 7,986.8 | 8,075.6 | 8,066.2 | 8,085.2 | 8,101.3 | 8,088.3 | 8,084.5 | 8,075.4 | 8,071.6 | 8,067.6 | 8,060.5 | 8,070.7 | 8,076.7 | 8,072.4 | 8,076.2 |
| Other local government.. | 6,375.5 | 6,481.8 | 6,467.6 | 6,472.9 | 6,481.1 | 6,488.2 | 6,499.4 | 6,496.4 | 6,498.3 | 6,495.6 | 6,497.7 | 6,484.7 | 6,482.5 | 6,472.5 | 6,473.2 |

[^13]13. Average weekly hours of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry, monthly data seasonally adjusted

| Industry | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
| TOTAL PRIVATE. | 33.9 | 33.6 | 33.8 | 33.7 | 33.6 | 33.6 | 33.7 | 33.6 | 33.5 | 33.4 | 33.3 | 33.3 | 33.3 | 33.2 | 33.2 |
| GOODS-PRODUCING.. | 40.6 | 40.2 | 40.4 | 40.2 | 40.3 | 40.3 | 40.2 | 39.9 | 39.8 | 39.5 | 39.4 | 39.3 | 39.2 | 39.0 | 39.0 |
| Natural resources and mining.... | 45.9 | 45.1 | 45.0 | 44.6 | 44.9 | 44.8 | 45.3 | 44.5 | 44.7 | 45.3 | 44.3 | 44.2 | 43.9 | 43.4 | 43.0 |
| Construction. | 39.0 | 38.5 | 38.9 | 38.5 | 38.7 | 38.7 | 38.6 | 38.3 | 38.3 | 37.7 | 38.0 | 37.9 | 38.0 | 37.7 | 37.6 |
| Manufacturing.. | 41.2 | 40.8 | 41.0 | 40.9 | 40.9 | 41.0 | 40.8 | 40.5 | 40.4 | 40.2 | 39.9 | 39.8 | 39.5 | 39.4 | 39.6 |
| Overtime hours | 4.2 | 3.7 | 4.0 | 3.9 | 3.8 | 3.7 | 3.7 | 3.5 | 3.5 | 3.2 | 2.9 | 2.9 | 2.7 | 2.6 | 2.7 |
| Durable goods.. | 41.5 | 41.1 | 41.4 | 41.2 | 41.2 | 41.2 | 41.1 | 40.6 | 40.6 | 40.4 | 40.0 | 39.8 | 39.6 | 39.4 | 39.7 |
| Overtime hours. | 4.2 | 3.7 | 4.0 | 3.9 | 3.8 | 3.7 | 3.7 | 3.4 | 3.4 | 3.1 | 2.8 | 2.7 | 2.5 | 2.4 | 2.5 |
| Wood products. | 39.4 | 38.6 | 38.6 | 39.0 | 39.1 | 38.8 | 38.8 | 38.4 | 38.1 | 37.6 | 36.8 | 36.9 | 37.1 | 36.9 | 37.0 |
| Nonmetallic mineral products.. | 42.3 | 42.1 | 42.3 | 42.3 | 42.0 | 42.6 | 42.2 | 41.9 | 41.8 | 40.9 | 40.9 | 40.2 | 40.0 | 39.9 | 40.2 |
| Primary metals.. | 42.9 | 42.2 | 42.6 | 42.4 | 42.5 | 42.2 | 42.5 | 41.8 | 41.4 | 40.9 | 40.5 | 40.4 | 40.1 | 40.2 | 40.1 |
| Fabricated metal products.. | 41.6 | 41.3 | 41.6 | 41.5 | 41.2 | 41.2 | 41.1 | 40.9 | 40.8 | 40.8 | 40.3 | 39.7 | 39.5 | 39.0 | 39.1 |
| Machinery. | 42.6 | 42.3 | 42.5 | 42.2 | 42.1 | 42.1 | 42.5 | 42.1 | 41.8 | 41.4 | 41.1 | 40.9 | 40.6 | 40.2 | 40.5 |
| Computer and electronic products. | 40.6 | 41.0 | 41.1 | 41.1 | 41.2 | 41.1 | 41.0 | 40.8 | 40.8 | 41.3 | 40.4 | 40.7 | 40.5 | 39.9 | 40.3 |
| Electrical equipment and appliances... | 41.2 | 40.9 | 41.0 | 41.1 | 40.9 | 40.8 | 40.8 | 41.0 | 40.4 | 40.2 | 39.7 | 39.4 | 38.9 | 38.8 | 39.6 |
| Transportation equipment. | 42.8 | 42.0 | 42.5 | 41.9 | 42.1 | 42.6 | 41.7 | 40.9 | 41.3 | 40.9 | 40.9 | 40.4 | 40.1 | 40.3 | 41.0 |
| Furniture and related products. | 39.2 | 38.1 | 38.7 | 38.8 | 38.7 | 38.3 | 37.9 | 37.4 | 37.4 | 37.2 | 37.3 | 37.7 | 37.4 | 37.7 | 37.4 |
| Miscellaneous manufacturing............. | 38.9 | 38.9 | 39.3 | 39.2 | 39.0 | 39.1 | 39.4 | 38.7 | 38.9 | 38.5 | 38.3 | 38.4 | 38.2 | 38.3 | 38.5 |
| Nondurable goods. | 40.8 | 40.4 | 40.5 | 40.5 | 40.4 | 40.6 | 40.4 | 40.2 | 40.2 | 39.9 | 39.7 | 39.7 | 39.5 | 39.4 | 39.5 |
| Overtime hours.. | 4.1 | 3.7 | 3.9 | 3.8 | 3.8 | 3.7 | 3.8 | 3.6 | 3.6 | 3.4 | 3.1 | 3.2 | 3.0 | 3.0 | 3.0 |
| Food manufacturing. | 40.7 | 40.5 | 40.8 | 40.8 | 40.6 | 40.6 | 40.5 | 40.3 | 40.3 | 39.9 | 39.8 | 40.1 | 39.9 | 40.0 | 40.0 |
| Beverage and tobacco products. | 40.7 | 38.8 | 39.4 | 39.5 | 38.8 | 38.7 | 38.2 | 38.2 | 38.1 | 37.9 | 36.7 | 37.0 | 37.0 | 36.1 | 35.8 |
| Textile mills. | 40.3 | 38.7 | 38.4 | 38.9 | 38.8 | 39.2 | 39.5 | 38.9 | 38.4 | 37.7 | 37.0 | 37.1 | 36.4 | 36.2 | 36.3 |
| Textile product mills | 39.7 | 38.6 | 38.3 | 38.7 | 38.9 | 39.1 | 38.7 | 38.1 | 37.9 | 37.9 | 37.1 | 37.0 | 37.1 | 37.0 | 37.1 |
| Apparel... | 37.2 | 36.4 | 36.6 | 36.0 | 36.4 | 37.0 | 36.5 | 35.9 | 36.3 | 36.2 | 36.0 | 36.0 | 35.6 | 36.1 | 36.1 |
| Leather and allied products. | 38.2 | 37.5 | 38.6 | 38.8 | 38.4 | 38.2 | 37.5 | 37.5 | 36.9 | 34.4 | 34.7 | 34.0 | 33.3 | 33.0 | 32.6 |
| Paper and paper products............... | 43.1 | 42.9 | 43.3 | 42.6 | 42.7 | 42.6 | 42.9 | 42.4 | 42.2 | 42.1 | 41.9 | 41.6 | 41.5 | 41.0 | 41.3 |
| Printing and related support activities. | 39.1 | 38.3 | 38.5 | 38.6 | 38.1 | 38.0 | 38.2 | 38.3 | 38.3 | 38.2 | 38.0 | 37.7 | 37.3 | 37.5 | 37.5 |
| Petroleum and coal products. | 44.1 | 44.6 | 43.2 | 44.1 | 44.6 | 45.5 | 45.6 | 45.2 | 45.2 | 44.4 | 45.3 | 45.1 | 43.8 | 44.4 | 44.7 |
| Chemicals. | 41.9 | 41.5 | 41.3 | 41.2 | 41.6 | 41.9 | 41.4 | 41.3 | 41.5 | 41.3 | 41.1 | 41.1 | 41.1 | 40.9 | 40.9 |
| Plastics and rubber products.. | 41.3 | 41.0 | 41.0 | 40.9 | 41.0 | 41.3 | 41.0 | 40.7 | 40.6 | 40.6 | 40.0 | 39.9 | 39.6 | 39.3 | 39.8 |
| PRIVATE SERVICEPROVIDING | 32.4 | 32.3 | 32.4 | 32.4 | 32.3 | 32.3 | 32.4 | 32.3 | 32.3 | 32.2 | 32.2 | 32.2 | 32.1 | 32.1 | 32.1 |
| Trade, transportation, and utilities $\qquad$ | 33.3 | 33.2 | 33.3 | 33.2 | 33.2 | 33.2 | 33.2 | 33.2 | 33.1 | 33.0 | 32.9 | 32.9 | 32.8 | 32.8 | 32.8 |
| Wholesale trade. | 38.2 | 38.2 | 38.3 | 38.3 | 38.3 | 38.4 | 38.3 | 38.1 | 38.2 | 38.1 | 37.8 | 38.1 | 37.9 | 37.7 | 37.8 |
| Retail trade.. | 30.2 | 30.0 | 30.2 | 30.1 | 30.0 | 30.0 | 30.0 | 30.1 | 29.9 | 29.8 | 29.7 | 29.7 | 29.8 | 29.8 | 29.8 |
| Transportation and warehousing... | 37.0 | 36.4 | 36.6 | 36.4 | 36.4 | 36.4 | 36.4 | 36.4 | 36.3 | 36.1 | 36.2 | 36.0 | 35.7 | 36.0 | 36.0 |
| Utilities. | 42.4 | 42.7 | 42.6 | 42.5 | 43.0 | 42.4 | 42.3 | 42.7 | 42.5 | 42.4 | 42.9 | 42.6 | 43.2 | 42.5 | 42.4 |
| Information. | 36.5 | 36.7 | 36.6 | 36.6 | 36.7 | 36.7 | 36.8 | 36.9 | 36.9 | 37.0 | 37.0 | 37.2 | 36.9 | 36.7 | 36.5 |
| Financial activities. | 35.9 | 35.8 | 35.9 | 35.9 | 35.8 | 35.7 | 36.1 | 36.0 | 35.9 | 36.1 | 35.9 | 36.2 | 36.2 | 36.0 | 36.0 |
| Professional and business services. | 34.8 | 34.8 | 34.8 | 34.9 | 34.8 | 34.8 | 34.9 | 34.8 | 34.9 | 34.9 | 34.8 | 34.9 | 34.8 | 34.7 | 34.8 |
| Education and health services. | 32.6 | 32.5 | 32.6 | 32.7 | 32.5 | 32.5 | 32.6 | 32.5 | 32.5 | 32.4 | 32.4 | 32.4 | 32.3 | 32.4 | 32.5 |
| Leisure and hospitality..................... | 25.5 | 25.2 | 25.4 | 25.3 | 25.3 | 25.2 | 25.2 | 25.2 | 25.1 | 25.0 | 25.0 | 24.8 | 25.0 | 24.8 | 24.8 |
| Other services................................... | 30.9 | 30.8 | 30.8 | 30.8 | 30.7 | 30.8 | 30.9 | 30.7 | 30.7 | 30.7 | 30.6 | 30.7 | 30.6 | 30.5 | 30.5 |
| 1 Data relate to production workers in natural resources and mining and manufacturing, construction workers in construction, and nonsupervisory workers in the service-providing industries. |  |  |  |  | NOTE: See "No revision. $\mathrm{p}=$ preliminary. |  |  | on the | ata" for | descri | ion of | e most | cent b | nchmar |  |

14. Average hourly earnings of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry, monthly data seasonally adjusted

| Industry | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
| TOTAL PRIVATE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Current dollars. | \$17.43 | \$18.08 | \$17.94 | \$17.99 | \$18.04 | \$18.10 | \$18.18 | \$18.21 | \$18.28 | \$18.34 | \$18.40 | \$18.43 | \$18.46 | \$18.50 | \$18.51 |
| Constant (1982) dollars. | 8.33 | 8.30 | 8.29 | 8.27 | 8.20 | 8.16 | 8.20 | 8.21 | 8.33 | 8.54 | 8.65 | 8.64 | 8.61 | 8.64 | 8.65 |
| GOODS-PRODUCING... | 18.67 | 19.33 | 19.16 | 19.20 | 19.27 | 19.36 | 19.43 | 19.48 | 19.56 | 19.63 | 19.69 | 19.72 | 19.78 | 19.86 | 19.84 |
| Natural resources and mining. | 20.97 | 22.50 | 21.77 | 21.79 | 22.04 | 22.54 | 23.01 | 23.08 | 23.03 | 23.28 | 23.23 | 23.14 | 23.14 | 23.41 | 23.49 |
| Construction. | 20.95 | 21.87 | 21.62 | 21.72 | 21.77 | 21.85 | 22.02 | 22.09 | 22.17 | 22.28 | 22.41 | 22.43 | 22.42 | 22.60 | 22.57 |
| Manufacturing. | 17.26 | 17.74 | 17.64 | 17.68 | 17.73 | 17.80 | 17.78 | 17.81 | 17.89 | 17.94 | 17.96 | 17.99 | 18.07 | 18.11 | 18.13 |
| Excluding overtime. | 16.43 | 16.97 | 16.82 | 16.88 | 16.94 | 17.03 | 17.01 | 17.07 | 17.15 | 17.25 | 17.33 | 17.36 | 17.47 | 17.53 | 17.53 |
| Durable goods. | 18.20 | 18.70 | 18.61 | 18.63 | 18.70 | 18.78 | 18.74 | 18.74 | 18.84 | 18.91 | 18.94 | 18.99 | 19.09 | 19.18 | 19.21 |
| Nondurable goods. | 15.67 | 16.15 | 16.01 | 16.08 | 16.11 | 16.16 | 16.19 | 16.28 | 16.35 | 16.37 | 16.39 | 16.43 | 16.49 | 16.46 | 16.49 |
| PRIVATE SERVICE-PRIVATE SERVICEPROVIDING. $\qquad$ | 17.11 | 17.77 | 17.63 | 17.69 | 17.74 | 17.79 | 17.87 | 17.90 | 17.97 | 18.03 | 18.10 | 18.14 | 18.17 | 18.19 | 18.22 |
| Trade,transportation, and |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| utilities...................... | 15.78 | 16.16 | 16.08 | 16.13 | 16.16 | 16.17 | 16.23 | 16.20 | 16.23 | 16.29 | 16.31 | 16.36 | 16.38 | 16.37 | 16.40 |
| Wholesale trade. | 19.59 | 20.14 | 20.05 | 20.07 | 20.11 | 20.15 | 20.28 | 20.20 | 20.22 | 20.29 | 20.31 | 20.41 | 20.52 | 20.60 | 20.70 |
| Retail trade. | 12.75 | 12.87 | 12.84 | 12.87 | 12.87 | 12.88 | 12.92 | 12.91 | 12.89 | 12.93 | 12.94 | 12.97 | 12.96 | 12.97 | 12.98 |
| Transportation and warehousing. | 17.72 | 18.41 | 18.31 | 18.39 | 18.41 | 18.42 | 18.48 | 18.47 | 18.58 | 18.66 | 18.66 | 18.72 | 18.67 | 18.62 | 18.62 |
| Utilities. | 27.88 | 28.84 | 28.54 | 28.81 | 29.12 | 28.67 | 28.89 | 28.86 | 28.91 | 28.91 | 29.16 | 29.22 | 29.67 | 29.29 | 29.36 |
| Information. | 23.96 | 24.77 | 24.56 | 24.71 | 24.78 | 24.87 | 24.95 | 24.90 | 24.99 | 24.94 | 24.91 | 24.98 | 25.09 | 25.30 | 25.27 |
| Financial activities.. | 19.64 | 20.27 | 20.17 | 20.23 | 20.24 | 20.26 | 20.37 | 20.43 | 20.43 | 20.41 | 20.53 | 20.53 | 20.55 | 20.63 | 20.63 |
| Professional and business services. $\qquad$ | 20.15 | 21.19 | 20.90 | 20.96 | 21.08 | 21.19 | 21.38 | 21.47 | 21.63 | 21.78 | 21.97 | 22.04 | 22.17 | 22.28 | 22.30 |
| Education and health services. $\qquad$ | 18.11 | 18.88 | 18.74 | 18.80 | 18.84 | 18.92 | 18.96 | 19.04 | 19.08 | 19.13 | 19.20 | 19.18 | 19.24 | 19.21 | 19.29 |
| Leisure and hospitality....................... | 10.41 | 10.84 | 10.81 | 10.83 | 10.85 | 10.87 | 10.89 | 10.90 | 10.92 | 10.90 | 10.94 | 10.97 | 10.97 | 10.97 | 10.96 |
| Other services................................... | 15.42 | 16.08 | 16.00 | 16.04 | 16.09 | 16.13 | 16.17 | 16.20 | 16.24 | 16.29 | 16.29 | 16.30 | 16.25 | 16.23 | 16.23 |

1 Data relate to production workers in natural resources and mining and NOTE: See "Notes on the data" for a description of the most recent benchmark revision. manufacturing, construction workers in construction, and nonsupervisory $p=$ preliminary. workers in the service-providing industries.
15. Average hourly earnings of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry

| Industry | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
| TOTAL PRIVATE. | \$17.43 | \$18.08 | \$17.95 | \$17.94 | \$18.00 | \$18.02 | \$18.10 | \$18.25 | \$18.27 | \$18.40 | \$18.40 | \$18.49 | \$18.57 | \$18.56 | \$18.51 |
| Seasonally adjusted. |  | - | 17.94 | 17.99 | 18.04 | 18.10 | 18.18 | 18.21 | 18.28 | 18.34 | 18.40 | 18.43 | 18.46 | 18.50 | 18.51 |
| GOODS-PRODUCING. | 18.67 | 19.33 | 19.09 | 19.15 | 19.26 | 19.39 | 19.53 | 19.63 | 19.61 | 19.65 | 19.75 | 19.64 | 19.64 | 19.74 | 19.80 |
| Natural resources and mining | 20.97 | 22.50 | 21.78 | 21.52 | 21.75 | 22.45 | 23.06 | 23.19 | 22.98 | 23.31 | 23.53 | 23.41 | 23.19 | 23.44 | 23.54 |
| Construction. | 20.95 | 21.87 | 21.49 | 21.61 | 21.69 | 21.90 | 22.16 | 22.34 | 22.28 | 22.32 | 22.52 | 22.32 | 22.25 | 22.46 | 22.45 |
| Manufacturing | 17.26 | 17.74 | 17.64 | 17.65 | 17.73 | 17.73 | 17.75 | 17.84 | 17.86 | 17.94 | 18.06 | 18.03 | 18.07 | 18.09 | 18.14 |
| Durable goods. | 18.20 | 18.70 | 18.59 | 18.60 | 18.70 | 18.66 | 18.72 | 18.80 | 18.81 | 18.92 | 19.06 | 18.99 | 19.09 | 19.18 | 19.22 |
| Wood products | 13.68 | 14.20 | 14.00 | 14.11 | 14.16 | 14.25 | 14.25 | 14.37 | 14.44 | 14.58 | 14.66 | 14.69 | 14.77 | 14.68 | 14.70 |
| Nonmetallic mineral products | 16.93 | 16.90 | 17.12 | 16.89 | 16.97 | 16.93 | 16.85 | 16.94 | 16.92 | 16.85 | 16.73 | 16.82 | 17.03 | 17.22 | 17.45 |
| Primary metals | 19.66 | 20.18 | 20.21 | 20.24 | 20.26 | 20.43 | 20.28 | 20.36 | 20.01 | 19.98 | 20.05 | 19.80 | 19.75 | 19.69 | 19.91 |
| Fabricated metal products | 16.53 | 16.99 | 16.82 | 16.85 | 16.93 | 16.94 | 17.08 | 17.14 | 17.18 | 17.21 | 17.36 | 17.24 | 17.30 | 17.30 | 17.45 |
| Machinery | 17.72 | 17.97 | 17.91 | 18.01 | 17.90 | 17.96 | 17.97 | 18.08 | 18.11 | 18.18 | 18.15 | 18.16 | 18.17 | 18.23 | 18.16 |
| Computer and electronic products | 19.94 | 21.03 | 20.86 | 20.95 | 21.02 | 21.11 | 21.21 | 21.23 | 21.42 | 21.37 | 21.44 | 21.46 | 21.42 | 21.69 | 21.77 |
| Electrical equipment and appliances | 15.93 | 15.78 | 15.74 | 15.66 | 15.72 | 15.85 | 15.94 | 15.99 | 15.83 | 15.74 | 15.88 | 15.81 | 15.93 | 15.95 | 15.97 |
| Transportation equipment | 23.04 | 23.83 | 23.59 | 23.59 | 23.86 | 23.75 | 23.88 | 24.05 | 24.10 | 24.37 | 24.58 | 24.66 | 24.69 | 24.82 | 24.78 |
| Furniture and related products | 14.32 | 14.54 | 14.45 | 14.48 | 14.58 | 14.52 | 14.59 | 14.54 | 14.55 | 14.77 | 14.92 | 14.95 | 14.85 | 15.02 | 14.98 |
| Miscellaneous manufacturing .. | 14.66 | 15.19 | 14.96 | 14.97 | 15.15 | 15.35 | 15.33 | 15.31 | 15.33 | 15.42 | 15.60 | 15.66 | 15.97 | 16.00 | 16.14 |
| Nondurable goods.. | 15.67 | 16.15 | 16.03 | 16.05 | 16.08 | 16.20 | 16.15 | 16.30 | 16.32 | 16.35 | 16.43 | 16.51 | 16.48 | 16.42 | 16.49 |
| Food manufacturing | 13.55 | 14.00 | 13.88 | 13.91 | 13.97 | 14.03 | 14.02 | 14.15 | 14.10 | 14.17 | 14.26 | 14.34 | 14.30 | 14.22 | 14.27 |
| Beverages and tobacco products | 18.54 | 19.35 | 19.41 | 19.19 | 18.74 | 19.02 | 18.60 | 18.97 | 19.41 | 19.98 | 19.95 | 20.07 | 20.25 | 20.40 | 20.03 |
| Textile mills | 13.00 | 13.57 | 13.45 | 13.50 | 13.58 | 13.77 | 13.67 | 13.72 | 13.71 | 13.69 | 13.80 | 13.90 | 13.76 | 13.89 | 13.82 |
| Textile product mills | 11.78 | 11.73 | 11.77 | 11.86 | 11.80 | 11.80 | 11.78 | 11.81 | 11.62 | 11.59 | 11.72 | 11.59 | 11.53 | 11.32 | 11.34 |
| Apparel. | 11.05 | 11.40 | 11.51 | 11.43 | 11.35 | 11.35 | 11.28 | 11.48 | 11.38 | 11.35 | 11.38 | 11.46 | 11.40 | 11.25 | 11.50 |
| Leather and allied products | 12.04 | 12.96 | 12.63 | 12.88 | 12.88 | 12.85 | 12.94 | 12.98 | 13.14 | 13.61 | 13.47 | 14.10 | 14.19 | 14.18 | 14.27 |
| Paper and paper products | 18.44 | 18.88 | 18.64 | 18.79 | 18.93 | 19.11 | 18.81 | 19.04 | 19.11 | 18.89 | 19.11 | 19.27 | 18.99 | 18.90 | 19.17 |
| Printing and related support activ | 16.15 | 16.75 | 16.63 | 16.66 | 16.77 | 16.81 | 16.83 | 16.90 | 16.99 | 16.86 | 17.01 | 16.79 | 16.79 | 16.72 | 16.78 |
| Petroleum and coal products | 25.21 | 27.46 | 26.96 | 26.85 | 26.99 | 27.54 | 27.69 | 28.25 | 28.69 | 28.28 | 28.17 | 29.13 | 29.57 | 29.82 | 28.88 |
| Chemicals | 19.55 | 19.49 | 19.35 | 19.33 | 19.29 | 19.41 | 19.53 | 19.77 | 19.67 | 19.77 | 19.72 | 19.89 | 19.96 | 19.93 | 19.94 |
| Plastics and rubber products | 15.39 | 15.85 | 15.80 | 15.74 | 15.72 | 15.87 | 15.86 | 15.94 | 16.03 | 16.13 | 16.24 | 16.24 | 16.22 | 16.17 | 16.20 |
| PRIVATE SERVICEPROVIDING | 17.11 | 17.77 | 17.67 | 17.64 | 17.68 | 17.68 | 17.73 | 17.90 | 17.94 | 18.10 | 18.09 | 18.23 | 18.33 | 18.31 | 18.24 |
| Trade, transportation, and utilities. $\qquad$ | 15.78 | 16.16 | 16.13 | 16.12 | 16.17 | 16.18 | 16.21 | 16.27 | 16.24 | 16.26 | 16.14 | 16.37 | 16.47 | 16.43 | 16.41 |
| Wholesale trade | 19.59 | 20.14 | 20.01 | 19.93 | 20.05 | 20.12 | 20.23 | 20.20 | 20.21 | 20.41 | 20.36 | 20.44 | 20.65 | 20.66 | 20.70 |
| Retail trade | 12.75 | 12.87 | 12.89 | 12.89 | 12.90 | 12.92 | 12.93 | 13.01 | 12.89 | 12.85 | 12.74 | 12.96 | 12.99 | 13.01 | 13.02 |
| Transportation and warehousi | 17.72 | 18.41 | 18.30 | 18.35 | 18.46 | 18.54 | 18.52 | 18.53 | 18.55 | 18.69 | 18.62 | 18.68 | 18.73 | 18.54 | 18.51 |
| Utilities | 27.88 | 28.84 | 28.70 | 28.84 | 29.02 | 28.49 | 28.64 | 28.95 | 29.00 | 28.96 | 29.28 | 29.27 | 29.70 | 29.41 | 29.52 |
| Information | 23.96 | 24.77 | 24.56 | 24.65 | 24.78 | 24.75 | 24.87 | 25.03 | 25.06 | 25.03 | 24.86 | 25.03 | 25.12 | 25.39 | 25.27 |
| Financial activities | 19.64 | 20.27 | 20.21 | 20.19 | 20.26 | 20.19 | 20.29 | 20.42 | 20.41 | 20.54 | 20.50 | 20.48 | 20.68 | 20.70 | 20.66 |
| Professional and business services. $\qquad$ | 20.15 | 21.19 | 20.91 | 20.88 | 21.09 | 21.06 | 21.12 | 21.31 | 21.45 | 21.97 | 22.01 | 22.16 | 22.52 | 22.54 | 22.28 |
| Education and health services. | 18.11 | 18.88 | 18.75 | 18.76 | 18.79 | 18.96 | 18.95 | 19.08 | 19.04 | 19.10 | 19.23 | 19.26 | 19.26 | 19.20 | 19.29 |
| Leisure and hospitality | 10.41 | 10.84 | 10.81 | 10.83 | 10.78 | 10.73 | 10.79 | 10.89 | 10.93 | 10.93 | 11.05 | 11.03 | 11.06 | 10.99 | 10.97 |
| Other services............................. | 15.42 | 16.08 | 16.09 | 16.11 | 16.10 | 16.06 | 16.10 | 16.22 | 16.17 | 16.24 | 16.27 | 16.34 | 16.34 | 16.34 | 16.30 |

1 Data relate to production workers in natural resources and mining and manufacturing, construction workers in construction, and nonsupervisory workers in the service-providing industries.
16. Average weekly earnings of production or nonsupervisory workers ${ }^{1}$ on private nonfarm payrolls, by industry

| Industry | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
| TOTAL PRIVATE <br> Seasonally adjusted | \$590.04 | \$607.99 | $\$ 603.12$ 606.37 | $\$ 602.78$ 606.26 | $\$ 613.80$ 606.14 | $\$ 607.27$ 608.16 | $\begin{array}{r} \$ 613.59 \\ 612.67 \end{array}$ | $\begin{array}{r} \$ 613.20 \\ 611.86 \end{array}$ | $\begin{array}{r} \$ 613.87 \\ 612.38 \end{array}$ | $\begin{array}{r} \$ 620.08 \\ 612.56 \end{array}$ | $\begin{array}{r} \$ 610.88 \\ 612.72 \end{array}$ | $\$ 608.32$ 613.72 | $\begin{array}{r} \$ 616.52 \\ 614.72 \end{array}$ | $\begin{array}{r} \$ 616.19 \\ 614.20 \end{array}$ | $\begin{array}{r} \$ 607.13 \\ 614.53 \end{array}$ |
| GOODS-PRODUCING | 757.34 | 776.60 | 767.42 | 769.83 | 783.88 | 781.42 | 794.87 | 791.09 | 788.32 | 782.07 | 778.15 | 762.03 | 758.10 | 763.94 | 760.32 |
| Natural resources and mining | 962.64 | 1,013.78 | 969.21 | 951.18 | 985.28 | 1,005.76 | 1,051.54 | 1,041.23 | 1,038.70 | 1,072.26 | 1,040.03 | 1,020.68 | 1,008.77 | 1,005.58 | 1,002.80 |
| CONSTRUCTION | 816.66 | 842.36 | 825.22 | 834.15 | 854.59 | 858.48 | 875.32 | 869.03 | 866.69 | 845.93 | 840.00 | 828.07 | 823.25 | 837.76 | 830.65 |
| Manufacturing. | 711.56 | 724.23 | 723.24 | 721.89 | 730.48 | 719.84 | 727.75 | 729.66 | 726.90 | 726.57 | 727.82 | 712.19 | 708.34 | 709.13 | 705.65 |
| Durable goods. | 754.77 | 767.56 | 767.77 | 766.32 | 776.05 | 761.33 | 775.01 | 770.80 | 767.45 | 766.26 | 771.93 | 750.11 | 748.33 | 751.86 | 749.58 |
| Wood products | 539.34 | 547.81 | 540.40 | 554.52 | 566.40 | 560.03 | 561.45 | 561.87 | 551.61 | 549.67 | 538.02 | 524.43 | 531.72 | 531.42 | 536.55 |
| Nonmetallic mineral products.... | 716.78 | 711.30 | 722.46 | 717.83 | 724.62 | 726.30 | 726.24 | 725.03 | 719.10 | 692.54 | 677.57 | 654.30 | 657.36 | 675.02 | 701.49 |
| Primary metals. | 843.26 | 850.84 | 854.88 | 854.13 | 871.18 | 860.10 | 865.96 | 861.23 | 832.42 | 817.18 | 818.04 | 797.94 | 786.05 | 793.51 | 782.46 |
| Fabricated metal products. | 687.20 | 701.47 | 699.71 | 697.59 | 699.21 | 692.85 | 707.11 | 707.88 | 707.82 | 707.33 | 706.55 | 680.98 | 678.16 | 671.24 | 664.85 |
| Machinery. | 754.19 | 759.92 | 761.18 | 758.22 | 755.38 | 750.73 | 763.73 | 764.78 | 760.62 | 758.11 | 755.04 | 740.93 | 735.89 | 731.02 | 722.77 |
| Computer and electronic products. $\qquad$ | 808.80 | 861.43 | 853.17 | 861.05 | 872.33 | 861.29 | 869.61 | 874.68 | 876.08 | 891.13 | 883.33 | 866.98 | 863.23 | 863.26 | 862.09 |
| Electrical equipment and appliances. | 656.46 | 645.60 | 643.77 | 638.93 | 647.66 | 640.34 | 650.35 | 660.39 | 645.86 | 642.19 | 646.32 | 621.33 | 613.31 | 615.67 | 6.44 |
| Transportation equipment. | 986.79 | 999.94 | 1,002.58 | 988.42 | 1,016.44 | 978.50 | 1,002.96 | 990.86 | 1,002.56 | 994.30 | 1,022.53 | 993.80 | 990.07 | 997.76 | 996.16 |
| Furniture and related products. | 560.84 | 554.20 | 553.44 | 557.48 | 571.54 | 557.57 | 566.09 | 549.61 | 542.72 | 546.49 | 563.98 | 559.13 | 547.97 | 564.75 | 549.77 |
| Miscellaneous manufacturing. | 569.99 | 591.73 | 586.43 | 583.83 | 595.40 | 594.05 | 608.60 | 595.56 | 593.27 | 593.67 | 600.60 | 599.78 | 603.67 | 614.40 | 616.55 |
| Nondurable go | 639.99 | 652.20 | 647.61 | 646.82 | 652.85 | 652.86 | 654.08 | 663.41 | 659.33 | 658.91 | 657.20 | 650.49 | 644.37 | 643.66 | 639.81 |
| Food manufacturing. | 551.32 | 566.91 | 560.75 | 566.14 | 568.58 | 568.22 | 572.02 | 581.57 | 575.28 | 572.47 | 573.25 | 569.30 | 561.99 | 561.69 | 552.25 |
| Beverages and tobacco |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| products......... | 755.22 | 750.18 | 770.58 | 765.68 | 738.36 | 741.78 | 716.10 | 720.86 | 729.82 | 767.23 | 726.18 | 728.54 | 741.15 | 730.32 | 703.05 |
| Textile mills. | 524.40 | 524.93 | 515.14 | 522.45 | 529.62 | 535.65 | 542.70 | 544.68 | 525.09 | 520.22 | 514.74 | 510.13 | 493.98 | 500.04 | 491.99 |
| Textile product mills. | 467.77 | 453.12 | 449.61 | 454.24 | 468.46 | 462.56 | 460.60 | 452.32 | 438.07 | 441.58 | 441.84 | 423.04 | 426.61 | 418.84 | 416.18 |
| Apparel. | 411.39 | 415.17 | 423.57 | 412.62 | 415.41 | 416.55 | 410.59 | 409.84 | 411.96 | 414.28 | 410.82 | 407.98 | 403.56 | 408.38 | 410.55 |
| Leather and allied products. | 459.50 | 486.49 | 491.31 | 502.32 | 501.03 | 485.73 | 481.37 | 486.75 | 484.87 | 462.74 | 476.84 | 470.94 | 465.43 | 470.78 | 453.79 |
| Paper and paper products.. | 795.58 | 809.21 | 805.25 | 791.06 | 806.42 | 808.35 | 806.95 | 818.72 | 812.18 | 802.83 | 814.09 | 797.78 | 780.49 | 769.23 | 784.05 |
| Printing and related support activities.. | 632.02 | 642.50 | 638.59 | 638.08 | 633.91 | 630.38 | 644.59 | 655.72 | 659.21 | 652.48 | 654.89 | 627.95 | 622.91 | 628.67 | 620.86 |
| Petroleum and coal products. | 1,112.73 | 1,224.26 | 1,156.58 | 1,181.40 | 1,219.95 | 1,266.84 | 1,259.90 | 1,302.33 | 1,322.61 | 1,275.43 | 1,256.38 | 1,307.94 | 1,286.30 | 1,294.19 | 1,276.50 |
| Chemicals............ | 819.54 | 808.80 | 799.16 | 790.60 | 808.25 | 809.40 | 810.50 | 820.46 | 814.34 | 822.43 | 814.44 | 811.51 | 820.36 | 815.14 | 811.56 |
| Plastics and rubber products. $\qquad$ | 635.63 | 649.04 | 647.80 | 645.34 | 650.81 | 647.50 | 650.26 | 655.13 | 652.42 | 658.10 | 657.72 | 647.98 | 639.07 | 633.86 | 633.42 |
| PRIVATE SERVICEPROVIDING. | 554.89 | 574.31 | 568.97 | 569.77 | 579.90 | 572.83 | 576.23 | 578.17 | 577.67 | 588.25 | 578.88 | 579.71 | 592.06 | 589.58 | 581.86 |
| Trade, transportation, and utilities. | 526.07 | 535.79 | 533.90 | 533.57 | 544.93 | 538.79 | 541.41 | 543.42 | 535.92 | 536.58 | 531.01 | 530.39 | 538.57 | 537.26 | 534.97 |
| Wholesale trade. | 748.94 | 769.91 | 764.38 | 761.33 | 779.95 | 770.60 | 774.81 | 767.60 | 772.02 | 787.83 | 767.57 | 770.59 | 784.70 | 780.95 | 774.18 |
| Retail trade. | 385.11 | 386.39 | 385.41 | 386.70 | 393.45 | 391.48 | 391.78 | 395.50 | 384.12 | 381.65 | 380.93 | 378.43 | 384.50 | 385.10 | 385.39 |
| Transportation and warehousing. Utilities. | 654.95 $1,182.65$ | 670.33 $1,231.19$ | 662.46 $1,225.49$ | 664.27 $1,222.82$ | 681.17 $1,250.76$ | 674.86 $1,205.13$ | 679.68 $1,205.74$ | 676.35 $1,244.85$ | 671.51 | 680.32 $1,236.59$ | 679.63 $1,256.11$ | 663.14 $1,243.98$ | 663.04 $1,286.01$ | 669.29 $1,241.10$ | 657.11 $1,251.65$ |
| Information.. | 874.65 | 908.44 | 891.53 | 892.33 | 919.34 | 910.80 | 917.70 | 926.11 | 924.71 | 936.12 | 917.33 | 921.10 | 931.95 | 934.35 | 914.77 |
| Financial activities.. | 705.13 | 726.37 | 721.50 | 718.76 | 737.46 | 718.76 | 726.38 | 728.99 | 728.64 | 753.82 | 731.85 | 735.23 | 761.02 | 753.48 | 739.63 |
| Professional and business services... | 700.82 | 738.25 | 727.67 | 726.62 | 748.70 | 730.78 | 739.20 | 739.46 | 750.75 | 775.54 | 761.55 | 762.30 | 785.95 | 786.65 | 766.43 |
| Education and $\qquad$ health services. $\qquad$ | 590.09 | 614.30 | 607.50 | 609.70 | 614.43 | 618.10 | 617.77 | 620.10 | 616.90 | 624.57 | 621.13 | 622.10 | 624.02 | 624.00 | 623.07 |
| Leisure and hospitality... | 265.52 | 273.27 | 272.41 | 274.00 | 280.28 | 276.83 | 278.38 | 272.25 | 273.25 | 273.25 | 270.73 | 264.72 | 275.39 | 272.55 | 269.86 |
| Other services.. | 477.06 | 494.99 | 493.96 | 494.58 | 500.71 | 496.25 | 500.71 | 497.95 | 496.42 | 501.82 | 496.24 | 498.37 | 501.64 | 498.37 | 495.52 |

1 Data relate to production workers in natural resources and mining and manufacturing, NOTE: See "Notes on the data" for a description of the most recent benchmark revision.
construction workers in construction, and nonsupervisory workers in the service- Dash indicates data not available.
providing industries.
$\mathrm{p}=$ preliminary.

## 17. Diffusion indexes of employment change, seasonally adjusted

[In percent]

18. Job openings levels and rates by industry and region, seasonally adjusted

| Industry and region | Levels ${ }^{1}$ (in thousands) |  |  |  |  |  |  | Percent |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2008 |  |  | 2009 |  |  |  | 2008 |  |  | 2009 |  |  |  |
|  | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ |
| Total ${ }^{2}$. | 3,390 | 3,311 | 3,224 | 2,920 | 2,973 | 2,633 | 2,531 | 2.4 | 2.4 | 2.3 | 2.1 | 2.2 | 1.9 | 1.9 |
| Industry |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total private ${ }^{2}$. | 2,964 | 2,928 | 2,861 | 2,461 | 2,606 | 2,269 | 2,080 | 2.5 | 2.5 | 2.5 | 2.2 | 2.3 | 2.0 | 1.9 |
| Construction... | 79 | 76 | 66 | 55 | 58 | 51 | 30 | 1.1 | 1.1 | 0.9 | 0.8 | 0.9 | 0.8 | 0.5 |
| Manufacturing. | 230 | 203 | 188 | 115 | 141 | 115 | 95 | 1.7 | 1.5 | 1.4 | 0.9 | 1.1 | 0.9 | 0.8 |
| Trade, transportation, and utilities...... | 564 | 624 | 495 | 488 | 488 | 414 | 332 | 2.1 | 2.3 | 1.9 | 1.9 | 1.9 | 1.6 | 1.3 |
| Professional and business services.... | 603 | 505 | 562 | 501 | 482 | 428 | 458 | 3.3 | 2.8 | 3.1 | 2.8 | 2.8 | 2.5 | 2.7 |
| Education and health services... | 646 | 697 | 685 | 636 | 589 | 537 | 522 | 3.3 | 3.5 | 3.5 | 3.2 | 3.0 | 2.7 | 2.7 |
| Leisure and hospitality.. | 417 | 302 | 315 | 272 | 332 | 289 | 330 | 3.0 | 2.2 | 2.3 | 2.0 | 2.4 | 2.1 | 2.4 |
| Government... | 427 | 378 | 345 | 417 | 367 | 353 | 450 | 1.9 | 1.6 | 1.5 | 1.8 | 1.6 | 1.5 | 2.0 |
| Region ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast. | 636 | 582 | 633 | 560 | 607 | 583 | 550 | 2.4 | 2.2 | 2.4 | 2.2 | 2.4 | 2.3 | 2.2 |
| South.. | 1,314 | 1,267 | 1,245 | 1,109 | 1,109 | 1,000 | 951 | 2.6 | 2.5 | 2.5 | 2.2 | 2.2 | 2.0 | 2.0 |
| Midwest.. | 698 | 644 | 607 | 587 | 563 | 499 | 519 | 2.2 | 2.0 | 1.9 | 1.9 | 1.8 | 1.6 | 1.7 |
| West..................................... | 734 | 767 | 689 | 655 | 638 | 556 | 572 | 2.3 | 2.5 | 2.2 | 2.1 | 2.1 | 1.8 | 1.9 |

[^14]19. Hires levels and rates by industry and region, seasonally adjusted

| Industry and region | Levels ${ }^{1}$ (in thousands) |  |  |  |  |  |  | Percent |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2008 |  |  | 2009 |  |  |  | 2008 |  |  | 2009 |  |  |  |
|  | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ |
| Total ${ }^{2}$ $\qquad$ Industry | 4,486 | 4,226 | 4,508 | 4,460 |  |  |  |  |  |  | $3.3$ |  |  | 3.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total private ${ }^{2}$ | $\begin{array}{r} 4,160 \\ 380 \end{array}$ | 3,928 | 4,214 | 4,141 | 4,042 | 3,799 | 3,803 | 3.7 | 3.5 | 3.7 | 3.7 | 3.6 | 3.4 | 3.5 |
| Construction.. |  | 340 | 366 | 381 | 370 | 343 | 348 | 5.4 | 4.9 | 5.3 | 5.7 | 5.6 | 5.3 |  |
| Manufacturing... | 380 290 | 257852783 | $\begin{aligned} & 252 \\ & 891 \end{aligned}$ | 237 | 257 | 244 | 235 | 2.2 | 2.0 | 2.0 | 1.9 | 2.1 | 2.0 | 5.5 1.9 |
| Trade, transportation, and utilities... | 933 |  |  | 949 | 814 | 883 | 897 | 3.6 | 3.3 | 3.4 | 3.7 | 3.2 | 3.5 | 1.9 3.5 |
| Professional and business services.. | 788 | 783 | 786 | 762 | 730 | 668 | 743 | 4.5 | 4.5 | 4.5 | 4.4 | 4.3 | 4.0 | 4.4 |
| Education and health services. | 544769 | 528 | 528 | 539 | 527 | 483 | 486 | 2.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.5 | 2.55.3 |
| Leisure and hospitality.. |  | 706 | 711 | 743 | 704 | 693 | 691 | 5.7 | 5.3 | 5.3 | 5.6 | 5.3 | 5.3 |  |
| Government... | 318 | 281 | 271 | 306 | 275 | 271 | 338 | 1.4 | 1.2 | 1.2 | 1.4 | 1.2 | 1.2 | 1.5 |
| Region ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast. | 7591,652 | 661 | 726 | 753 | 837 | 696 | 732 | 3.0 | 2.6 | 2.9 | 3.0 | 3.3 | 2.8 | 2.9 |
| South.. |  | 1,572 | 1,659 | 1,663 | 1,566 | 1,458 | 1,591 | 3.4 | 3.2 | 3.4 | 3.4 | 3.2 | 3.0 | 3.3 |
| Midwest. | $\begin{aligned} & 1,051 \\ & 1,043 \end{aligned}$ | $\begin{array}{r} 934 \\ 1,043 \\ \hline \end{array}$ | $\begin{aligned} & 1,009 \\ & 1,053 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,003 \\ & 1,002 \end{aligned}$ | $\begin{aligned} & 904 \\ & 960 \end{aligned}$ | $\begin{aligned} & 943 \\ & 931 \end{aligned}$ | $\begin{aligned} & 921 \\ & 965 \end{aligned}$ | 3.43.4 | 3.03.4 | 3.33.5 | 3.33.3 | 3.0 | 3.1 | 3.1 <br> 3.3 |
| West....................................... |  |  |  |  |  |  |  |  |  |  |  | 3.2 | 3.1 |  |

[^15]20. Total separations levels and rates by industry and region, seasonally adjusted

| Industry and region | Levels ${ }^{1}$ (in thousands) |  |  |  |  |  |  | Percent |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2008 |  |  | 2009 |  |  |  | 2008 |  |  | 2009 |  |  |  |
|  | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ |
| Total ${ }^{2}$. | 4,910 | 4,863 | 4,958 | 4,949 | 4,833 | 4,712 | 4,718 | 3.6 | 3.6 | 3.7 | 3.7 | 3.6 | 3.5 | 3.6 |
| Industry |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total private ${ }^{2}$. | $\begin{array}{r} 4,607 \\ 440 \\ 404 \end{array}$ | 4,571 | 4,673 | 4,686 | 4,555 | 4,434 | 4,431 | 4.0 | 4.0 | 4.1 | 4.2 | 4.1 | 4.0 | 4.0 |
| Construction... |  | 472 | 452 | 524 | 463 | 463 | 441 | 6.2 | 6.8 | 6.6 | 7.8 | 7.0 | 7.2 | 7.0 |
| Manufacturing... |  | $\begin{array}{r} 384 \\ 1,030 \end{array}$ | $\begin{array}{r} 419 \\ 1,041 \end{array}$ | $\begin{array}{r} 476 \\ 1,049 \end{array}$ | 424 | 401 | 3791,008 | 3.1 | 2.9 | 3.2 | 3.8 | 3.4 | 3.3 | 3.1 |
| Trade, transportation, and utilities... | $\begin{array}{r} 404 \\ 1,034 \end{array}$ |  |  |  | 920951 | 1,001778 |  | 4.05.1 | 4.05.2 | 4.0 | 4.1 | 3.6 | 3.9 | 4.0 |
| Professional and business services... | 906 | 909 | 898 | 866 |  |  | 851 |  |  | 5.2 | 5.0 | 5.6 | 4.6 | 5.1 |
| Education and health services.. | 507 | 466 | 498 | 494 | 498 | 466 | 471 | 2.7 | 2.4 | 2.6 | 2.6 | 2.6 | 2.4 | 2.55.4 |
| Leisure and hospitality. | $\begin{aligned} & 794 \\ & 294 \end{aligned}$ | $\begin{aligned} & 773 \\ & 282 \end{aligned}$ | $\begin{aligned} & 755 \\ & 278 \end{aligned}$ | $\begin{aligned} & 763 \\ & 277 \end{aligned}$ | $\begin{aligned} & 731 \\ & 271 \end{aligned}$ | $\begin{aligned} & 751 \\ & 265 \end{aligned}$ | 712 | 5.9 | 5.8 | 5.7 | 5.7 | 5.5 | 5.7 |  |
| Government... |  |  |  |  |  |  | 270 | 1.3 | 1.3 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
| Region ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast.. | 7431,782 | 767 | 799 | 813 | 783 | 878 | 705 | 2.9 | 3.0 | 3.2 | 3.2 | 3.1 | 3.5 | 2.8 |
| South.... |  | $\begin{aligned} & 1,841 \\ & 1,105 \end{aligned}$ | 1,815 | 1,898 | 1,742 | 1,741 | 1,704 | 3.6 | 3.8 | 3.7 | 3.9 | 3.6 3 | 3.6 | 3.6 |
| Midwest. | $\begin{aligned} & 1,168 \\ & 1,209 \end{aligned}$ |  | 1,088 |  | 1,121 |  |  | $3.8$ |  |  | $3.7$ | $3.7$ | 3.6 | 3.5 <br> 4.1 |
| West........................................ |  | 1,205 | 1,227 | 1,180 | 1,188 | 978 | 1,231 | 4.0 | 4.0 | 4.0 | 3.9 | 4.0 | 3.3 |  |

${ }^{1}$ Detail will not necessarily add to totals because of the independent seasonal adjustment of the various series.
2 Includes natural resources and mining, information, financial activities, and other services, not shown separately.
${ }^{3}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia;

Midwest: Illinois, Indiana, lowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

NOTE: The total separations level is the number of total separations during the entire month; the total separations rate is the number of total separations during the entire month as a percent of total employment.
${ }^{\mathrm{p}}=$ preliminary

## 21. Quits levels and rates by industry and region, seasonally adjusted

| Industry and region | Levels ${ }^{1}$ (in thousands) |  |  |  |  |  |  | Percent |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2008 |  |  | 2009 |  |  |  | 2008 |  |  | 2009 |  |  |  |
|  | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ |
| Total ${ }^{2}$. | 2,436 | 2,201 | 2,114 | 2,063 | $1,911$ | 1,856 | 1,771 | 1.8 | 1.6 | 1.6 | 1.5 | 1.4 | 1.4 | 1.3 |
| Industry |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total private ${ }^{2}$. | 2,305 | 2,076 | 1,984 | 1,945 | 1,831 | 1,749 | 1,674 | 2.0 | 1.8 | 1.8 | 1.7 | 1.6 | 1.6 | 1.5 |
| Construction... | 107 | 109 | 92 | 85 | 87 | 102 | 64 | 1.5 | 1.6 | 1.3 | 1.3 | 1.3 | 1.6 | 1.0 |
| Manufacturing.. | 143 | 122 | 87 | 105 | 105 | 81 | 82 | 1.1 | . 9 | . 7 | . 8 | . 8 | . 7 | . 7 |
| Trade, transportation, and utilities... | 548 | 489 | 518 | 469 | 372 | 444 | 385 | 2.1 | 1.9 | 2.0 | 1.8 | 1.5 | 1.7 | 1.5 |
| Professional and business services. | 477 | 349 | 297 | 326 | 310 | 278 | 269 | 2.7 | 2.0 | 1.7 | 1.9 | 1.8 | 1.6 | 1.6 |
| Education and health services. | 294 | 251 | 256 | 248 | 258 | 249 | 230 | 1.5 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.2 |
| Leisure and hospitality. | 516 | 469 | 461 | 443 | $\begin{aligned} & 431 \\ & 115 \end{aligned}$ | $\begin{aligned} & 433 \\ & 107 \end{aligned}$ | $\begin{array}{r} 424 \\ 99 \end{array}$ | 3.8.6 | 3.5.5 | 3.5 | 3.3 | 3.3.5 | 3.3.5 | 3.2.4 |
| Government... | 132 | 122 | 130 | 105 |  |  |  |  |  | . 6 | . 5 |  |  |  |
| Region ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast. | 347949 | 321 | 302 | 278 | 271 | 273 | 271 | 1.4 | 1.3 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 |
| South... |  | 879 | 847 | 790 | 759 | 751 | 682 | 1.9 | 1.8 | 1.7 | 1.6 | 1.6 | 1.6 | 1.4 |
| Midwest.. | 595 | 491 | 452 | 491 | 468 | 431 | 412 | 1.9 | 1.6 | 1.5 | 1.6 | 1.5 | 1.4 | 1.4 |
| West....................................... | 541 | 510 | 498 | 492 | 453 | 408 | 439 | 1.8 | 1.7 | 1.6 | 1.6 | 1.5 | 1.4 | 1.5 |

[^16]22. Quarterly Census of Employment and Wages: 10 largest counties, third quarter 2008.

| County by NAICS supersector | ```Establishments, third quarter 2008 (thousands)``` | Employment |  | Average weekly wage ${ }^{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { September } \\ & 2008 \\ & \text { (thousands) } \end{aligned}$ | Percent change, September 2007-08 ${ }^{2}$ | Third quarter 2008 | Percent change, third quarter 2007-08 ${ }^{2}$ |
| United States ${ }^{3}$ | 9,150.8 | 135,173.8 | -0.8 | \$841 | 2.8 |
| Private industry | 8,857.7 | 113,499.1 | -1.1 | 833 | 2.8 |
| Natural resources and mining . | 126.2 | 2,003.6 | 3.6 | 880 | 7.3 |
| Construction ... | 889.2 | 7,255.4 | -6.7 | 922 | 5.1 |
| Manufacturing | 361.0 | 13,345.0 | -3.6 | 1,006 | 1.9 |
| Trade, transportation, and utilities ............................... | 1,927.8 | 25,953.1 | -1.3 | 719 | 1.7 |
| Information .. | 146.3 | 2,973.8 | -2.0 | 1,335 | 4.9 |
| Financial activities .................................................... | 866.3 | 7,919.9 | -2.5 | 1,207 | . 8 |
| Professional and business services .......................... | 1,528.7 | 17,752.2 | -1.4 | 1,045 | 4.6 |
| Education and health services ....... | 851.2 | 17,996.4 | 2.7 | 803 | 3.6 |
| Leisure and hospitality .............................................. | 739.3 | 13,568.1 | . 0 | 358 | 2.9 |
| Other services ................................................................. | 1,205.9 | 4,482.9 | . 9 | 544 | 2.4 |
| Government ................................................................ | 293.1 | 21,674.7 | 1.0 | 886 | 3.0 |
| Los Angeles, CA | 428.8 | 4,141.1 | -1.5 | 951 | 3.1 |
| Private industry ........................................................ | 424.8 | 3,581.8 | -1.4 | 923 | 2.7 |
| Natural resources and mining ...................................... | . 5 | 11.7 | -2.8 | 1,232 | 9.3 |
| Construction | 14.0 | 145.0 | -9.5 | 994 | 5.2 |
| Manufacturing | 14.6 | 432.3 | -3.4 | 1,009 | 4.6 |
| Trade, transportation, and utilities | 53.7 | 792.1 | -2.1 | 775 | 2.1 |
| Information ...... | 8.7 | 214.8 | ${ }^{4}$ ) | 1,551 | ${ }^{4}$ ) |
| Financial activities ............................................. | 24.1 | 233.8 | -5.4 | 1,482 | . 1 |
| Professional and business services .............................. | 42.5 | 583.7 | ${ }^{4}$ ) | 1,104 | ${ }^{4}$ ) |
| Education and health services ..................................... | 28.0 | 488.8 | 1.7 | 888 | 4.5 |
| Leisure and hospitality .......................................... | 27.0 | 401.6 | -. 2 | 536 | 3.3 |
| Other services | 195.2 | 259.5 | 4.2 | 439 | . 5 |
| Government .... | 4.0 | 559.3 | ${ }^{4}$ ) | 1,132 | 5.8 |
| Cook, IL | 140.4 | 2,504.2 | -1.3 | 988 | 2.8 |
| Private industry | 139.0 | 2,195.4 | -1.5 | 986 | 2.8 |
| Natural resources and mining | . 1 | 1.3 | -3.6 | 960 | -9.3 |
| Construction | 12.4 | 92.9 | -5.9 | 1,284 | 5.9 |
| Manufacturing | 7.0 | 226.3 | -4.1 | 1,002 | 2.5 |
| Trade, transportation, and utilities | 27.6 | 460.4 | -2.3 | 788 | 1.8 |
| Information .......... | 2.5 | 56.5 | -1.5 | 1,557 | 10.2 |
| Financial activities ................................................... | 15.7 | 206.3 | -3.2 | 1,538 | -. 8 |
| Professional and business services | 28.9 | 434.2 | -2.1 | 1,248 | 5.3 |
| Education and health services | 13.9 | 378.9 | 2.9 | 873 | 3.3 |
| Leisure and hospitality | 11.7 | 237.8 | -1.3 | 443 | 3.3 |
| Other services .... | 14.5 | 96.6 | 1.5 | 707 | 2.2 |
| Government .... | 1.4 | 308.8 | . 0 | 1,009 | 2.9 |
| New York, NY .. | 118.9 | 2,363.8 | . 6 | 1,552 | . 5 |
| Private industry ........................................................... | 118.6 | 1,919.7 | . 7 | 1,673 | . 4 |
| Natural resources and mining ........................................ | . 0 | . 2 | -8.9 | 1,820 | 14.0 |
| Construction | 2.4 | 37.8 | 4.1 | 1,535 | 5.4 |
| Manufacturing | 3.0 | 35.4 | -5.8 | 1,183 | -2.6 |
| Trade, transportation, and utilities ...................................... | 22.1 | 248.9 | . 4 | 1,127 | . 4 |
| Information | 4.6 | 135.9 | . 0 | 1,982 | 4.2 |
| Financial activities | 19.1 | 372.9 | -2.1 | 2,985 | -2.2 |
| Professional and business services ................................ | 25.6 | 491.8 | 1.4 | 1,799 | 2.3 |
| Education and health services .. | 8.8 | 283.4 | . 6 | 1,059 | 4.7 |
| Leisure and hospitality .............................................. | 11.7 | 218.9 | 3.9 | 748 | 3.2 |
| Other services ............................................................ | 18.0 | 89.1 | 2.1 | 919 | 4.1 |
| Government .................................................................. | . 3 | 444.1 | . 1 | 1,027 | 1.4 |
| Harris, TX | 97.3 | 2,047.2 | 1.3 | 1,050 | 3.0 |
| Private industry ...................................................... | 96.7 | 1,796.9 | 1.1 | 1,061 | 2.9 |
| Natural resources and mining ..................................... | 1.6 | 84.8 | 7.9 | 2,585 | $\left({ }^{4}\right)$ |
| Construction. | 6.7 | 157.2 | ${ }^{4}$ ) | 1,005 | $\left.{ }^{4}\right)$ |
| Manufacturing | 4.6 | 187.3 | 2.8 | 1,272 | -1.1 |
| Trade, transportation, and utilities | 22.4 | 428.3 | 1.0 | 919 | 2.1 |
| Information ... | 1.4 | 31.9 | -2.4 | 1,285 | 2.1 |
| Financial activities | 10.6 | 118.2 | ${ }^{4}$ ) | 1,287 | 2.6 |
| Professional and business services | 19.4 | 336.5 | $\left.{ }^{4}\right)$ | 1,233 | 4.8 |
| Education and health services | 10.3 | 218.7 | 1.6 | 865 | 4.3 |
| Leisure and hospitality ................................................ | 7.5 | 174.2 | -1.2 | 385 | 5.2 |
| Other services ........................................................... | 11.7 | 58.5 | . 2 | 598 | 1.2 |
| Government .......................................................................... | . 5 | 250.3 | 2.7 | 973 | 5.1 |
| Maricopa, AZ ..................................................................... | 103.0 | 1,761.0 | -3.7 | 836 | 1.8 |
| Private industry | 102.3 | 1,535.7 | -4.5 | 825 | 1.9 |
| Natural resources and mining ....................................... | . 5 | 8.5 | . 9 | 840 | 16.5 |
| Construction ....................................................................... | 11.0 | 130.8 | -21.8 | 878 | 5.1 |
| Manufacturing ............................................................. | 3.6 | 125.0 | -5.6 | 1,137 | 2.1 |
| Trade, transportation, and utilities ................................... | 22.8 | 361.4 | -3.9 | 770 | -. 3 |
| Information .................................................................. | 1.7 | 29.8 | -2.0 | 1,083 | 5.5 |
| Financial activities ........................................................ | 12.9 | 142.4 | -4.0 | 1,004 | -1.8 |
| Professional and business services ................................. | 22.9 | 293.9 | -6.4 | 863 | 4.2 |
| Education and health services ........................................ | 10.1 | 216.2 | 7.8 | 906 | 2.7 |
| Leisure and hospitality ................................................. | 7.4 | 176.8 | -1.7 | 394 | 1.8 |
| Other services ...................................................................... | 7.3 | 49.2 | -2.3 | 584 | 3.4 |
| Government ........................................................................ | . 7 | 225.3 | 2.3 | 915 | . 9 |

See footnotes at end of table.
22. Quarterly Census of Employment and Wages: 10 largest counties, third quarter 2008.

| County by NAICS supersector | Establishments, third quarter 2008 (thousands) | Employment |  | Average weekly wage ${ }^{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { September } \\ 2008 \\ \text { (thousands) } \end{gathered}$ | Percent change, September 2007-08 ${ }^{2}$ | Third quarter 2008 | Percent change, third quarter 2007-08 ${ }^{2}$ |
| United States ${ }^{3}$ | 9,150.8 | 135,173.8 | -0.8 | \$841 | 2.8 |
| Private industry | 8,857.7 | 113,499.1 | -1.1 | 833 | 2.8 |
| Natural resources and mining ...................................... | 126.2 | 2,003.6 | 3.6 | 880 | 7.3 |
| Construction ........................ | 889.2 | 7,255.4 | -6.7 | 922 | 5.1 |
| Manufacturing | 361.0 | 13,345.0 | -3.6 | 1,006 | 1.9 |
| Trade, transportation, and utilities | 1,927.8 | 25,953.1 | -1.3 | 719 | 1.7 |
| Information | 146.3 | 2,973.8 | -2.0 | 1,335 | 4.9 |
| Financial activities | 866.3 | 7,919.9 | -2.5 | 1,207 | . 8 |
| Professional and business services | 1,528.7 | 17,752.2 | -1.4 | 1,045 | 4.6 |
| Education and health services ....................................... | 851.2 | 17,996.4 | 2.7 | 803 | 3.6 |
| Leisure and hospitality .................................................. | 739.3 | 13,568.1 | . 0 | 358 | 2.9 |
| Other services ...................... | 1,205.9 | 4,482.9 | . 9 | 544 | 2.4 |
| Government | 293.1 | 21,674.7 | 1.0 | 886 | 3.0 |
| Los Angeles, CA | 428.8 | 4,141.1 | -1.5 | 951 | 3.1 |
| Private industry ................ | 424.8 | 3,581.8 | -1.4 | 923 | 2.7 |
| Natural resources and mining | . 5 | 11.7 | -2.8 | 1,232 | 9.3 |
| Construction ........................ | 14.0 | 145.0 | -9.5 | 994 | 5.2 |
| Manufacturing | 14.6 | 432.3 | -3.4 | 1,009 | 4.6 |
| Trade, transportation, and utilities | 53.7 | 792.1 | -2.1 | 775 | 2.1 |
| Information | 8.7 | 214.8 | ${ }^{4}$ ) | 1,551 | ${ }^{4}$ ) |
| Financial activities | 24.1 | 233.8 | -5.4 | 1,482 | . 1 |
| Professional and business services .......................................................................... | 42.5 | 583.7 | ${ }^{4}$ ) | 1,104 | $\left({ }^{4}\right)$ |
| Education and health services | 28.0 | 488.8 | 1.7 | 888 | 4.5 |
| Leisure and hospitality | 27.0 | 401.6 | -. 2 | 536 | 3.3 |
| Other services | 195.2 | 259.5 | 4.2 | 439 | . 5 |
| Government | 4.0 | 559.3 | $\left({ }^{4}\right)$ | 1,132 | 5.8 |
| Cook, IL | 140.4 | 2,504.2 | -1.3 | 988 | 2.8 |
| Private industry | 139.0 | 2,195.4 | -1.5 | 986 | 2.8 |
| Natural resources and mining | . 1 | 1.3 | -3.6 | 960 | -9.3 |
| Construction .. | 12.4 | 92.9 | -5.9 | 1,284 | 5.9 |
| Manufacturing | 7.0 | 226.3 | -4.1 | 1,002 | 2.5 |
| Trade, transportation, and utilities | 27.6 | 460.4 | -2.3 | 788 | 1.8 |
| Information | 2.5 | 56.5 | -1.5 | 1,557 | 10.2 |
| Financial activities | 15.7 | 206.3 | -3.2 | 1,538 | -. 8 |
| Professional and business services | 28.9 | 434.2 | -2.1 | 1,248 | 5.3 |
| Education and health services ..... | 13.9 | 378.9 | 2.9 | 873 | 3.3 |
| Leisure and hospitality | 11.7 | 237.8 | -1.3 | 443 | 3.3 |
| Other services | 14.5 | 96.6 | 1.5 | 707 | 2.2 |
| Government ........ | 1.4 | 308.8 | . 0 | 1,009 | 2.9 |
| New York, NY ....................................................................... | 118.9 | 2,363.8 | . 6 | 1,552 | . 5 |
| Private industry | 118.6 | 1,919.7 | . 7 | 1,673 | . 4 |
| Natural resources and mining | . 0 | . 2 | -8.9 | 1,820 | 14.0 |
| Construction . | 2.4 | 37.8 | 4.1 | 1,535 | 5.4 |
| Manufacturing | 3.0 | 35.4 | -5.8 | 1,183 | -2.6 |
| Trade, transportation, and utilities | 22.1 | 248.9 | . 4 | 1,127 | . 4 |
| Information | 4.6 | 135.9 | . 0 | 1,982 | 4.2 |
| Financial activities | 19.1 | 372.9 | -2.1 | 2,985 | -2.2 |
| Professional and business services | 25.6 | 491.8 | 1.4 | 1,799 | 2.3 |
| Education and health services ..... | 8.8 | 283.4 | . 6 | 1,059 | 4.7 |
| Leisure and hospitality | 11.7 | 218.9 | 3.9 | 748 | 3.2 |
| Other services | 18.0 | 89.1 | 2.1 | 919 | 4.1 |
| Government ........ | . 3 | 444.1 | . 1 | 1,027 | 1.4 |
| Harris, TX | 97.3 | 2,047.2 | 1.3 | 1,050 | 3.0 |
| Private industry ............................................................... | 96.7 | 1,796.9 | 1.1 | 1,061 | 2.9 |
| Natural resources and mining | 1.6 | 84.8 | 7.9 | 2,585 | $\left({ }^{4}\right)$ |
| Construction ......................... | 6.7 | 157.2 | ${ }^{4}$ ) | 1,005 | $\left({ }^{4}\right)$ |
| Manufacturing | 4.6 | 187.3 | 2.8 | 1,272 | -1.1 |
| Trade, transportation, and utilities .................................... | 22.4 | 428.3 | 1.0 | 919 | 2.1 |
| Information ..... | 1.4 | 31.9 | -2.4 | 1,285 | 2.1 |
| Financial activities | 10.6 | 118.2 | $\left({ }^{4}\right)$ | 1,287 | 2.6 |
| Professional and business services ................................. | 19.4 | 336.5 | ${ }^{4}$ ) | 1,233 | 4.8 |
| Education and health services | 10.3 | 218.7 | 1.6 | 865 | 4.3 |
| Leisure and hospitality ............ | 7.5 | 174.2 | -1.2 | 385 | 5.2 |
| Other services | 11.7 | 58.5 | . 2 | 598 | 1.2 |
| Government ....... | . 5 | 250.3 | 2.7 | 973 | 5.1 |
| Maricopa, AZ ........................................................................ | 103.0 | 1,761.0 | -3.7 | 836 | 1.8 |
| Private industry ............................................................... | 102.3 | 1,535.7 | -4.5 | 825 | 1.9 |
| Natural resources and mining ........................................ | . 5 | 8.5 | . 9 | 840 | 16.5 |
| Construction | 11.0 | 130.8 | -21.8 | 878 | 5.1 |
| Manufacturing ............................................................. | 3.6 | 125.0 | -5.6 | 1,137 | 2.1 |
| Trade, transportation, and utilities ................................... | 22.8 | 361.4 | -3.9 | 770 | -. 3 |
| Information ...................... | 1.7 | 29.8 | -2.0 | 1,083 | 5.5 |
| Financial activities ........................................................ | 12.9 | 142.4 | -4.0 | 1,004 | -1.8 |
| Professional and business services ................................. | 22.9 | 293.9 | -6.4 | 863 | 4.2 |
| Education and health services ........................................ | 10.1 | 216.2 | 7.8 | 906 | 2.7 |
| Leisure and hospitality .................................................. | 7.4 | 176.8 | -1.7 | 394 | 1.8 |
| Other services ............................................................. | 7.3 | 49.2 | -2.3 | 584 | 3.4 |
| Government ................................................................... | . 7 | 225.3 | 2.3 | 915 | . 9 |

23. Quarterly Census of Employment and Wages: by State, third quarter 2008.

| State | Establishments, third quarter 2008 (thousands) | Employment |  | Average weekly wage ${ }^{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { September } \\ & 2008 \\ & \text { (thousands) } \end{aligned}$ | Percent change, September 2007-08 | Third quarter 2008 | Percent change, third quarter 2007-08 |
| United States ${ }^{2}$.............................. | 9,150.8 | 135,173.8 | -0.8 | \$841 | 2.8 |
| Alabama .................................. | 121.8 | 1,936.4 | -1.2 | 730 | 3.3 |
| Alaska | 21.6 | 332.1 | 1.4 | 872 | 3.7 |
| Arizona | 164.1 | 2,570.1 | -3.0 | 798 | 2.0 |
| Arkansas | 86.1 | 1,185.0 | -. 1 | 649 | 3.0 |
| California | 1,344.6 | 15,527.1 | -1.4 | 959 | 2.9 |
| Colorado | 180.4 | 2,322.7 | . 4 | 877 | 3.8 |
| Connecticut | 113.5 | 1,692.5 | -. 3 | 1,032 | 1.0 |
| Delaware .... | 29.5 | 420.6 | -1.1 | 879 | 2.1 |
| District of Columbia ...................... | 33.8 | 688.2 | 1.4 | 1,391 | 1.0 |
| Florida ....................................... | 625.2 | 7,546.4 | -4.1 | 756 | 2.2 |
| Georgia | 276.6 | 4,018.6 | -1.6 | 794 | 1.5 |
| Hawaii | 39.1 | 613.0 | -2.1 | 774 | 1.8 |
| Idaho | 57.0 | 665.7 | -1.4 | 643 | 1.3 |
| Illinois | 369.7 | 5,872.8 | -. 7 | 891 | 2.9 |
| Indiana | 160.5 | 2,897.6 | -1.4 | 718 | 2.3 |
| lowa | 94.6 | 1,499.0 | . 2 | 696 | 4.2 |
| Kansas | 86.7 | 1,368.9 | . 0 | 711 | 4.6 |
| Kentucky | 110.4 | 1,795.3 | -1.0 | 692 | 2.4 |
| Louisiana | 124.1 | 1,877.4 | -. 2 | 756 | 5.6 |
| Maine ........................................... | 50.7 | 610.8 | -. 6 | 683 | 3.5 |
| Maryland ....... | 163.9 | 2,543.4 | -. 8 | 920 | 3.1 |
| Massachusetts ............................. | 213.9 | 3,265.7 | . 0 | 1,025 | 2.3 |
| Michigan . | 259.0 | 4,093.9 | -3.0 | 820 | 1.5 |
| Minnesota | 171.6 | 2,699.6 | -. 5 | 862 | 4.7 |
| Mississippi | 70.8 | 1,128.3 | -1.3 | 631 | 4.0 |
| Missouri | 175.4 | 2,736.1 | -. 4 | 739 | 2.8 |
| Montana | 43.3 | 446.4 | . 1 | 628 | 3.1 |
| Nebraska | 60.0 | 925.7 | . 2 | 694 | 4.2 |
| Nevada | 77.5 | 1,253.0 | -2.7 | 809 | 2.1 |
| New Hampshire | 49.8 | 634.6 | -. 5 | 822 | 2.8 |
| New Jersey ................................... | 277.8 | 3,952.9 | -. 7 | 990 | 2.5 |
| New Mexico | 54.7 | 835.2 | . 7 | 712 | 3.5 |
| New York ..... | 586.1 | 8,633.8 | . 5 | 1,030 | 2.2 |
| North Carolina .............................. | 259.4 | 4,064.2 | -1.0 | 741 | 3.1 |
| North Dakota ............................ | 25.8 | 357.0 | 2.8 | 665 | 6.9 |
| Ohio | 295.5 | 5,251.1 | -1.5 | 766 | 2.8 |
| Oklahoma .................................... | 100.9 | 1,562.8 | 1.2 | 698 | 4.5 |
| Oregon ........................................ | 132.5 | 1,734.1 | -1.0 | 766 | 2.1 |
| Pennsylvania | 343.5 | 5,679.0 | . 0 | 822 | 2.5 |
| Rhode Island ................................. | 35.9 | 476.0 | -2.0 | 778 | 2.5 |
| South Carolina ............................... | 119.6 | 1,874.6 | -1.5 | 683 | 2.9 |
| South Dakota ................................ | 30.6 | 401.3 | 1.0 | 623 | 4.2 |
| Tennessee .................................. | 143.5 | 2,730.4 | -1.5 | 745 | 2.8 |
| Texas | 563.6 | 10,438.3 | 1.4 | 850 | 2.9 |
| Utah ..... | 87.3 | 1,229.3 | -. 1 | 717 | 2.9 |
| Vermont | 25.1 | 304.2 | -. 5 | 722 | 3.3 |
| Virginia ......................................... | 232.7 | 3,676.1 | -. 3 | 877 | 2.3 |
| Washington ................................... | 225.5 | 3,007.5 | 1.0 | 903 | 3.0 |
| West Virginia ................................ | 48.9 | 716.4 | . 6 | 661 | 5.9 |
| Wisconsin ..................................... | 161.6 | 2,788.7 | -. 6 | 730 | 3.4 |
| Wyoming ...................................... | 25.2 | 294.0 | 3.3 | 781 | 6.4 |
| Puerto Rico .................................... | 55.6 | 992.8 | -1.6 | 477 | 5.5 |
| Virgin Islands ................................ | 3.5 | 44.9 | -. 9 | 709 | 4.3 |

[^17]24. Annual data: Quarterly Census of Employment and Wages, by ownership

| Year | Average establishments | Average annual employment | Total annual wages (in thousands) | Average annual wage per employee | Average weekly wage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total covered (UI and UCFE) |  |  |  |  |
| 1998 | 7,634,018 | 124,183,549 | \$3,967,072,423 | \$31,945 | \$614 |
| 1999 .......................................... | 7,820,860 | 127,042,282 | 4,235,579,204 | 33,340 | 641 |
| 2000 | 7,879,116 | 129,877,063 | 4,587,708,584 | 35,323 | 679 |
| 2001. | 7,984,529 | 129,635,800 | 4,695,225,123 | 36,219 | 697 |
| 2002 | 8,101,872 | 128,233,919 | 4,714,374,741 | 36,764 | 707 |
| 2003 | 8,228,840 | 127,795,827 | 4,826,251,547 | 37,765 | 726 |
| 2004 | 8,364,795 | 129,278,176 | 5,087,561,796 | 39,354 | 757 |
| 2005 ..... | 8,571,144 | 131,571,623 | 5,351,949,496 | 40,677 | 782 |
| 2006 .......................................... | 8,784,027 | 133,833,834 | 5,692,569,465 | 42,535 | 818 |
| 2007 ............................................ | 8,971,897 | 135,366,106 | 6,018,089,108 | 44,458 | 855 |
|  | Ul covered |  |  |  |  |
| 1998 | 7,586,767 | 121,400,660 | \$3,845,494,089 | \$31,676 | \$609 |
| 1999 | 7,771,198 | 124,255,714 | 4,112,169,533 | 33,094 | 636 |
| 2000 | 7,828,861 | 127,005,574 | 4,454,966,824 | 35,077 | 675 |
| 2001 | 7,933,536 | 126,883,182 | 4,560,511,280 | 35,943 | 691 |
| 2002 | 8,051,117 | 125,475,293 | 4,570,787,218 | 36,428 | 701 |
| 2003 ........................................ | 8,177,087 | 125,031,551 | 4,676,319,378 | 37,401 | 719 |
| 2004 | 8,312,729 | 126,538,579 | 4,929,262,369 | 38,955 | 749 |
| 2005 | 8,518,249 | 128,837,948 | 5,188,301,929 | 40,270 | 774 |
| 2006 | 8,731,111 | 131,104,860 | 5,522,624,197 | 42,124 | 810 |
| 2007 ............................................ | 8,908,198 | 132,639,806 | 5,841,231,314 | 44,038 | 847 |
|  | Private industry covered |  |  |  |  |
| 1998 | 7,381,518 | 105,082,368 | \$3,337,621,699 | \$31,762 | \$611 |
| 1999 | 7,560,567 | 107,619,457 | 3,577,738,557 | 33,244 | 639 |
| 2000 | 7,622,274 | 110,015,333 | 3,887,626,769 | 35,337 | 680 |
| 2001 | 7,724,965 | 109,304,802 | 3,952,152,155 | 36,157 | 695 |
| 2002 | 7,839,903 | 107,577,281 | 3,930,767,025 | 36,539 | 703 |
| 2003 | 7,963,340 | 107,065,553 | 4,015,823,311 | 37,508 | 721 |
| 2004 | 8,093,142 | 108,490,066 | 4,245,640,890 | 39,134 | 753 |
| 2005 | 8,294,662 | 110,611,016 | 4,480,311,193 | 40,505 | 779 |
| 2006 ......................................... | 8,505,496 | 112,718,858 | 4,780,833,389 | 42,414 | 816 |
| 2007 ............................................ | 8,681,001 | 114,012,221 | 5,057,840,759 | 44,362 | 853 |
|  | State government covered |  |  |  |  |
| 1998 | 67,347 | 4,240,779 | \$142,512,445 | \$33,605 | \$646 |
| 1999 | 70,538 | 4,296,673 | 149,011,194 | 34,681 | 667 |
| 2000 ... | 65,096 | 4,370,160 | 158,618,365 | 36,296 | 698 |
| 2001 | 64,583 | 4,452,237 | 168,358,331 | 37,814 | 727 |
| 2002 | 64,447 | 4,485,071 | 175,866,492 | 39,212 | 754 |
| 2003 | 64,467 | 4,481,845 | 179,528,728 | 40,057 | 770 |
| 2004 | 64,544 | 4,484,997 | 184,414,992 | 41,118 | 791 |
| 2005 | 66,278 | 4,527,514 | 191,281,126 | 42,249 | 812 |
| 2006 | 66,921 | 4,565,908 | 200,329,294 | 43,875 | 844 |
| 2007 ........................................... | 67,381 | 4,611,395 | 211,677,002 | 45,903 | 883 |
|  | Local government covered |  |  |  |  |
| 1998 ......................................... | 137,902 | 12,077,513 | \$365,359,945 | \$30,251 | \$582 |
| 1999 ................................... | 140,093 | 12,339,584 | 385,419,781 | 31,234 | 601 |
| 2000 | 141,491 | 12,620,081 | 408,721,690 | 32,387 | 623 |
| 2001 | 143,989 | 13,126,143 | 440,000,795 | 33,521 | 645 |
| 2002 | 146,767 | 13,412,941 | 464,153,701 | 34,605 | 665 |
| 2003 | 149,281 | 13,484,153 | 480,967,339 | 35,669 | 686 |
| 2004 ........................................ | 155,043 | 13,563,517 | 499,206,488 | 36,805 | 708 |
| 2005 | 157,309 | 13,699,418 | 516,709,610 | 37,718 | 725 |
| 2006 ...................................... | 158,695 | 13,820,093 | 541,461,514 | 39,179 | 753 |
| 2007 ........................................ | 159,816 | 14,016,190 | 571,713,553 | 40,790 | 784 |
|  | Federal government covered (UCFE) |  |  |  |  |
| 1998 | 47,252 | 2,782,888 | \$121,578,334 | \$43,688 | \$840 |
| 1999 | 49,661 | 2,786,567 | 123,409,672 | 44,287 | 852 |
| 2000 | 50,256 | 2,871,489 | 132,741,760 | 46,228 | 889 |
| 2001 ......................................... | 50,993 | 2,752,619 | 134,713,843 | 48,940 | 941 |
| 2002 ......................................... | 50,755 | 2,758,627 | 143,587,523 | 52,050 | 1,001 |
| 2003 | 51,753 | 2,764,275 | 149,932,170 | 54,239 | 1,043 |
| 2004 | 52,066 | 2,739,596 | 158,299,427 | 57,782 | 1,111 |
| 2005 ........................................ | 52,895 | 2,733,675 | 163,647,568 | 59,864 | 1,151 |
| 2006 .......................................... | 52,916 | 2,728,974 | 169,945,269 | 62,274 | 1,198 |
| 2007 ............................................. | 63,699 | 2,726,300 | 176,857,794 | 64,871 | 1,248 |

NOTE: Data are final. Detail may not add to total due to rounding.
25. Annual data: Quarterly Census of Employment and Wages, establishment size and employment, private ownership, by supersector, first quarter 2007

${ }^{1}$ Includes establishments that reported no workers in March 2007.
NOTE: Data are final. Detail may not add to total due to rounding.
2 Includes data for unclassified establishments, not shown separately.
26. Average annual wages for 2006 and 2007 for all covered workers ${ }^{1}$ by metropolitan area

| Metropolitan area² | Average annual wages ${ }^{3}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 2006 | 2007 | Percent change, 2006-07 |
| Metropolitan areas ${ }^{4}$ | \$44,165 | \$46,139 | 4.5 |
| Abilene, TX | 29,842 | 31,567 | 5.8 |
| Aguadilla-Isabela-San Sebastian, PR | 19,277 | 20,295 | 5.3 |
| Akron, OH .................................... | 38,088 | 39,499 | 3.7 |
| Albany, GA | 32,335 | 33,378 | 3.2 |
| Albany-Schenectady-Troy, NY | 41,027 | 42,191 | 2.8 |
| Albuquerque, NM | 36,934 | 38,191 | 3.4 |
| Alexandria, LA | 31,329 | 32,757 | 4.6 |
| Allentown-Bethlehem-Easton, PA-NJ | 39,787 | 41,784 | 5.0 |
| Altoona, PA | 30,394 | 31,988 | 5.2 |
| Amarillo, TX ................................................................. | 33,574 | 35,574 | 6.0 |
| Ames, IA | 35,331 | 37,041 | 4.8 |
| Anchorage, AK | 42,955 | 45,237 | 5.3 |
| Anderson, IN | 32,184 | 32,850 | 2.1 |
| Anderson, SC | 30,373 | 31,086 | 2.3 |
| Ann Arbor, MI | 47,186 | 49,427 | 4.7 |
| Anniston-Oxford, AL | 32,724 | 34,593 | 5.7 |
| Appleton, WI | 35,308 | 36,575 | 3.6 |
| Asheville, NC | 32,268 | 33,406 | 3.5 |
| Athens-Clarke County, GA | 33,485 | 34,256 | 2.3 |
| Atlanta-Sandy Springs-Marietta, GA ................................. | 45,889 | 48,111 | 4.8 |
| Atlantic City, NJ | 38,018 | 39,276 | 3.3 |
| Auburn-Opelika, AL | 30,468 | 31,554 | 3.6 |
| Augusta-Richmond County, GA-SC | 35,638 | 36,915 | 3.6 |
| Austin-Round Rock, TX | 45,737 | 46,458 | 1.6 |
| Bakersfield, CA | 36,020 | 38,254 | 6.2 |
| Baltimore-Towson, MD | 45,177 | 47,177 | 4.4 |
| Bangor, ME ........ | 31,746 | 32,829 | 3.4 |
| Barnstable Town, MA | 36,437 | 37,691 | 3.4 |
| Baton Rouge, LA | 37,245 | 39,339 | 5.6 |
| Battle Creek, MI | 39,362 | 40,628 | 3.2 |
| Bay Cit | 35,094 | 35,680 | 1.7 |
| Beaumont-Port Arthur, TX | 39,026 | 40,682 | 4.2 |
| Bellingham, WA | 32,618 | 34,239 | 5.0 |
| Bend, OR | 33,319 | 34,318 | 3.0 |
| Billings, MT | 33,270 | 35,372 | 6.3 |
| Binghamton, NY | 35,048 | 36,322 | 3.6 |
| Birmingham-Hoover, AL | 40,798 | 42,570 | 4.3 |
| Bismarck, ND | 32,550 | 34,118 | 4.8 |
| Blacksburg-Christiansburg-Radford, VA | 34,024 | 35,248 | 3.6 |
| Bloomington, IN ........................................................... | 30,913 | 32,028 | 3.6 |
| Bloomington-Normal, IL | 41,359 | 42,082 | 1.7 |
| Boise City-Nampa, ID | 36,734 | 37,553 | 2.2 |
| Boston-Cambridge-Quincy, MA-NH | 56,809 | 59,817 | 5.3 |
| Boulder, CO | 50,944 | 52,745 | 3.5 |
| Bowling Green, KY | 32,529 | 33,308 | 2.4 |
| Bremerton-Silverdale, WA | 37,694 | 39,506 | 4.8 |
| Bridgeport-Stamford-Norwalk, CT | 74,890 | 79,973 | 6.8 |
| Brownsville-Harlingen, TX ......... | 25,795 | 27,126 | 5.2 |
| Brunswick, GA | 32,717 | 32,705 | 0.0 |
| Buffalo-Niagara Falls, NY | 36,950 | 38,218 | 3.4 |
| Burlington, NC | 32,835 | 33,132 | 0.9 |
| Burlington-South Burlington, VT | 40,548 | 41,907 | 3.4 |
| Canton-Massillon, OH ..... | 33,132 | 34,091 | 2.9 |
| Cape Coral-Fort Myers, FL | 37,065 | 37,658 | 1.6 |
| Carson City, NV | 40,115 | 42,030 | 4.8 |
| Casper, WY | 38,307 | 41,105 | 7.3 |
| Cedar Rapids, IA | 38,976 | 41,059 | 5.3 |
| Champaign-Urbana, IL | 34,422 | 35,788 | 4.0 |
| Charleston, WV | 36,887 | 38,687 | 4.9 |
| Charleston-North Charleston, SC ...................................... | 35,267 | 36,954 | 4.8 |
| Charlotte-Gastonia-Concord, NC-SC | 45,732 | 46,975 | 2.7 |
| Charlottesville, VA | 39,051 | 40,819 | 4.5 |
| Chattanooga, TN-GA | 35,358 | 36,522 | 3.3 |
| Cheyenne, WY | 35,306 | 36,191 | 2.5 |
| Chicago-Naperville-Joliet, IL-IN-WI | 48,631 | 50,823 | 4.5 |
| Chico, CA | 31,557 | 33,207 | 5.2 |
| Cincinnati-Middletown, OH-KY-IN | 41,447 | 42,969 | 3.7 |
| Clarksville, TN-KY | 30,949 | 32,216 | 4.1 |
| Cleveland, TN | 33,075 | 34,666 | 4.8 |
| Cleveland-Elyria-Mentor, OH ........................................... | 41,325 | 42,783 | 3.5 |
| Coeur d'Alene, ID | 29,797 | 31,035 | 4.2 |
| College Station-Bryan, TX | 30,239 | 32,630 | 7.9 |
| Colorado Springs, CO | 38,325 | 39,745 | 3.7 |
| Columbia, MO | 32,207 | 33,266 | 3.3 |
| Columbia, SC | 35,209 | 36,293 | 3.1 |
| Columbus, GA-AL | 32,334 | 34,511 | 6.7 |
| Columbus, IN | 40,107 | 41,078 | 2.4 |
| Columbus, OH | 41,168 | 42,655 | 3.6 |
| Corpus Christi, TX | 35,399 | 37,186 | 5.0 |
| Corvallis, OR ............................. | 40,586 | 41,981 | 3.4 |

26. Continued - Average annual wages for 2006 and 2007 for all covered workers ${ }^{1}$ by metropolitan area

| Metropolitan area² | Average annual wages ${ }^{3}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 2006 | 2007 | Percent change, 2006-07 |
| Cumberland, MD-WV | \$29,859 | \$31,373 | 5.1 |
| Dallas-Fort Worth-Arlington, TX | 47,525 | 49,627 | 4.4 |
| Dalton, GA | 33,266 | 34,433 | 3.5 |
| Danville, IL | 33,141 | 34,086 | 2.9 |
| Danville, VA | 28,870 | 30,212 | 4.6 |
| Davenport-Moline-Rock Island, IA-IL | 37,559 | 39,385 | 4.9 |
| Dayton, OH | 39,387 | 40,223 | 2.1 |
| Decatur, AL | 34,883 | 35,931 | 3.0 |
| Decatur, IL ......................................... | 39,375 | 41,039 | 4.2 |
| Deltona-Daytona Beach-Ormond Beach, FL | 31,197 | 32,196 | 3.2 |
| Denver-Aurora, CO | 48,232 | 50,180 | 4.0 |
| Des Moines, IA | 41,358 | 42,895 | 3.7 |
| Detroit-Warren-Livonia, MI | 47,455 | 49,019 | 3.3 |
| Dothan, AL | 31,473 | 32,367 | 2.8 |
| Dover, DE | 34,571 | 35,978 | 4.1 |
| Dubuque, IA | 33,044 | 34,240 | 3.6 |
| Duluth, MN-WI | 33,677 | 35,202 | 4.5 |
| Durham, NC | 49,314 | 52,420 | 6.3 |
| Eau Claire, WI | 31,718 | 32,792 | 3.4 |
| El Centro, CA | 30,035 | 32,419 | 7.9 |
| Elizabethtown, KY | 32,072 | 32,701 | 2.0 |
| Elkhart-Goshen, IN | 35,878 | 36,566 | 1.9 |
| Elmira, NY | 33,968 | 34,879 | 2.7 |
| El Paso, TX | 29,903 | 31,354 | 4.9 |
| Erie, PA | 33,213 | 34,788 | 4.7 |
| Eugene-Springfield, OR | 33,257 | 34,329 | 3.2 |
| Evansville, IN-KY | 36,858 | 37,182 | 0.9 |
| Fairbanks, AK | 41,296 | 42,345 | 2.5 |
| Fajardo, PR | 21,002 | 22,075 | 5.1 |
| Fargo, ND-MN | 33,542 | 35,264 | 5.1 |
| Farmington, NM | 36,220 | 38,572 | 6.5 |
| Fayetteville, NC | 31,281 | 33,216 | 6.2 |
| Fayetteville-Springdale-Rogers, AR-MO | 35,734 | 37,325 | 4.5 |
| Flagstaff, AZ | 32,231 | 34,473 | 7.0 |
| Flint, MI | 39,409 | 39,310 | -0.3 |
| Florence, SC | 33,610 | 34,305 | 2.1 |
| Florence-Muscle Shoals, AL | 29,518 | 30,699 | 4.0 |
| Fond du Lac, WI | 33,376 | 34,664 | 3.9 |
| Fort Collins-Loveland, CO | 37,940 | 39,335 | 3.7 |
| Fort Smith, AR-OK | 30,932 | 31,236 | 1.0 |
| Fort Walton Beach-Crestview-Destin, FL | 34,409 | 35,613 | 3.5 |
| Fort Wayne, IN | 35,641 | 36,542 | 2.5 |
| Fresno, CA | 33,504 | 35,111 | 4.8 |
| Gadsden, AL | 29,499 | 30,979 | 5.0 |
| Gainesville, FL | 34,573 | 36,243 | 4.8 |
| Gainesville, GA | 34,765 | 36,994 | 6.4 |
| Glens Falls, NY | 32,780 | 33,564 | 2.4 |
| Goldsboro, NC | 29,331 | 30,177 | 2.9 |
| Grand Forks, ND-MN | 29,234 | 30,745 | 5.2 |
| Grand Junction, CO | 33,729 | 36,221 | 7.4 |
| Grand Rapids-Wyoming, MI | 38,056 | 38,953 | 2.4 |
| Great Falls, MT | 29,542 | 31,009 | 5.0 |
| Greeley, CO | 35,144 | 37,066 | 5.5 |
| Green Bay, WI | 36,677 | 37,788 | 3.0 |
| Greensboro-High Point, NC | 35,898 | 37,213 | 3.7 |
| Greenville, NC | 32,432 | 33,703 | 3.9 |
| Greenville, SC | 35,471 | 36,536 | 3.0 |
| Guayama, PR | 24,551 | 26,094 | 6.3 |
| Gulfport-Biloxi, MS | 34,688 | 34,971 | 0.8 |
| Hagerstown-Martinsburg, MD-WV ......... | 34,621 | 35,468 | 2.4 |
| Hanford-Corcoran, CA | 31,148 | 32,504 | 4.4 |
| Harrisburg-Carlisle, PA | 39,807 | 41,424 | 4.1 |
| Harrisonburg, VA | 31,522 | 32,718 | 3.8 |
| Hartford-West Hartford-East Hartford, CT | 51,282 | 54,188 | 5.7 |
| Hattiesburg, MS | 30,059 | 30,729 | 2.2 |
| Hickory-Lenoir-Morganton, NC | 31,323 | 32,364 | 3.3 |
| Hinesville-Fort Stewart, GA | 31,416 | 33,210 | 5.7 |
| Holland-Grand Haven, MI | 36,895 | 37,470 | 1.6 |
| Honolulu, HI | 39,009 | 40,748 | 4.5 |
| Hot Springs, AR | 27,684 | 28,448 | 2.8 |
| Houma-Bayou Cane-Thibodaux, LA | 38,417 | 41,604 | 8.3 |
| Houston-Baytown-Sugar Land, TX | 50,177 | 53,494 | 6.6 |
| Huntington-Ashland, WV-KY-OH | 32,648 | 33,973 | 4.1 |
| Huntsville, AL | 44,659 | 45,763 | 2.5 |
| Idaho Falls, ID | 31,632 | 29,878 | -5.5 |
| Indianapolis, IN | 41,307 | 42,227 | 2.2 |
| Iowa City, IA | 35,913 | 37,457 | 4.3 |
| Ithaca, NY | 38,337 | 39,387 | 2.7 |
| Jackson, MI | 36,836 | 38,267 | 3.9 |
| Jackson, MS ......................... | 34,605 | 35,771 | 3.4 |

See footnotes at end of table.
26. Continued - Average annual wages for 2006 and 2007 for all covered workers ${ }^{1}$ by metropolitan area

| Metropolitan area ${ }^{2}$ | Average annual wages ${ }^{3}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 2006 | 2007 | Percent change, 2006-07 |
| Jackson, TN | \$34,477 | \$35,059 | 1.7 |
| Jacksonville, FL | 40,192 | 41,437 | 3.1 |
| Jacksonville, NC | 25,854 | 27,005 | 4.5 |
| Janesville, WI | 36,732 | 36,790 | 0.2 |
| Jefferson City, MO | 31,771 | 32,903 | 3.6 |
| Johnson City, TN | 31,058 | 31,985 | 3.0 |
| Johnstown, PA | 29,972 | 31,384 | 4.7 |
| Jonesboro, AR | 28,972 | 30,378 | 4.9 |
| Joplin, MO ............................................................... | 30,111 | 31,068 | 3.2 |
| Kalamazoo-Portage, MI ................................................. | 37,099 | 38,402 | 3.5 |
| Kankakee-Bradley, IL | 32,389 | 33,340 | 2.9 |
| Kansas City, MO-KS | 41,320 | 42,921 | 3.9 |
| Kennewick-Richland-Pasco, WA | 38,750 | 40,439 | 4.4 |
| Killeen-Temple-Fort Hood, TX | 31,511 | 32,915 | 4.5 |
| Kingsport-Bristol-Bristol, TN-VA | 35,100 | 36,399 | 3.7 |
| Kingston, NY ..... | 33,697 | 35,018 | 3.9 |
| Knoxville, TN | 37,216 | 38,386 | 3.1 |
| Kokomo, IN | 45,808 | 47,269 | 3.2 |
| La Crosse, WI-MN ....................................................... | 31,819 | 32,949 | 3.6 |
| Lafayette, IN .............................................................. | 35,380 | 36,419 | 2.9 |
| Lafayette, LA | 38,170 | 40,684 | 6.6 |
| Lake Charles, LA | 35,883 | 37,447 | 4.4 |
| Lakeland, FL | 33,530 | 34,394 | 2.6 |
| Lancaster, PA | 36,171 | 37,043 | 2.4 |
| Lansing-East Lansing, MI | 39,890 | 40,866 | 2.4 |
| Laredo, TX | 28,051 | 29,009 | 3.4 |
| Las Cruces, NM | 29,969 | 31,422 | 4.8 |
| Las Vegas-Paradise, NV | 40,139 | 42,336 | 5.5 |
| Lawrence, KS | 29,896 | 30,830 | 3.1 |
| Lawton, OK | 29,830 | 30,617 | 2.6 |
| Lebanon, PA | 31,790 | 32,876 | 3.4 |
| Lewiston, ID-WA | 30,776 | 31,961 | 3.9 |
| Lewiston-Auburn, ME | 32,231 | 33,118 | 2.8 |
| Lexington-Fayette, KY | 37,926 | 39,290 | 3.6 |
| Lima, OH | 33,790 | 35,177 | 4.1 |
| Lincoln, NE | 33,703 | 34,750 | 3.1 |
| Little Rock-North Little Rock, AR | 36,169 | 39,305 | 8.7 |
| Logan, UT-ID | 26,766 | 27,810 | 3.9 |
| Longview, TX | 35,055 | 36,956 | 5.4 |
| Longview, WA ........................................................... | 35,140 | 37,101 | 5.6 |
| Los Angeles-Long Beach-Santa Ana, CA | 48,680 | 50,480 | 3.7 |
| Louisville, KY-IN ....................... | 38,673 | 40,125 | 3.8 |
| Lubbock, TX | 31,977 | 32,761 | 2.5 |
| Lynchburg, VA | 33,242 | 34,412 | 3.5 |
| Macon, GA .... | 34,126 | 34,243 | 0.3 |
| Madera, CA | 31,213 | 33,266 | 6.6 |
| Madison, WI | 40,007 | 41,201 | 3.0 |
| Manchester-Nashua, NH | 46,659 | 49,235 | 5.5 |
| Mansfield, OH | 33,171 | 33,109 | -0.2 |
| Mayaguez, PR ............................................................ | 20,619 | 21,326 | 3.4 |
| McAllen-Edinburg-Pharr, TX | 26,712 | 27,651 | 3.5 |
| Medford, OR | 31,697 | 32,877 | 3.7 |
| Memphis, TN-MS-AR | 40,580 | 42,339 | 4.3 |
| Merced, CA ............. | 31,147 | 32,351 | 3.9 |
| Miami-Fort Lauderdale-Miami Beach, FL | 42,175 | 43,428 | 3.0 |
| Michigan City-La Porte, IN . | 31,383 | 32,570 | 3.8 |
| Midland, TX ................... | 42,625 | 45,574 | 6.9 |
| Milwaukee-Waukesha-West Allis, WI | 42,049 | 43,261 | 2.9 |
| Minneapolis-St. Paul-Bloomington, MN-WI | 46,931 | 49,542 | 5.6 |
| Missoula, MT | 30,652 | 32,233 | 5.2 |
| Mobile, AL | 36,126 | 36,890 | 2.1 |
| Modesto, CA | 35,468 | 36,739 | 3.6 |
| Monroe, LA | 30,618 | 31,992 | 4.5 |
| Monroe, MI | 40,938 | 41,636 | 1.7 |
| Montgomery, AL | 35,383 | 36,223 | 2.4 |
| Morgantown, WV | 32,608 | 35,241 | 8.1 |
| Morristown, TN | 31,914 | 32,806 | 2.8 |
| Mount Vernon-Anacortes, WA | 32,851 | 34,620 | 5.4 |
| Muncie, IN ................................................................... | 30,691 | 31,326 | 2.1 |
| Muskegon-Norton Shores, MI .......................................... | 33,949 | 34,982 | 3.0 |
| Myrtle Beach-Conway-North Myrtle Beach, SC ................... | 27,905 | 28,576 | 2.4 |
| Napa, CA .................................................................... | 41,788 | 44,171 | 5.7 |
| Naples-Marco Island, FL | 39,320 | 41,300 | 5.0 |
| Nashville-Davidson--Murfreesboro, TN | 41,003 | 42,728 | 4.2 |
| New Haven-Milford, CT | 44,892 | 47,039 | 4.8 |
| New Orleans-Metairie-Kenner, LA | 42,434 | 43,255 | 1.9 |
| New York-Northern New Jersey-Long Island, NY-NJ-PA ...... | 61,388 | 65,685 | 7.0 |
| Niles-Benton Harbor, MI ................................................. | 36,967 | 38,140 | 3.2 |
| Norwich-New London, CT | 43,184 | 45,463 | 5.3 |
| Ocala, FL ................................................................... | 31,330 | 31,623 | 0.9 |

See footnotes at end of table.
26. Continued - Average annual wages for 2006 and 2007 for all covered workers ${ }^{1}$ by metropolitan area

| Metropolitan area² | Average annual wages ${ }^{3}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 2006 | 2007 | Percent change, 2006-07 |
| Ocean City, NJ | \$31,801 | \$32,452 | 2.0 |
| Odessa, TX | 37,144 | 41,758 | 12.4 |
| Ogden-Clearfield, UT | 32,890 | 34,067 | 3.6 |
| Oklahoma City, OK | 35,846 | 37,192 | 3.8 |
| Olympia, WA | 37,787 | 39,678 | 5.0 |
| Omaha-Council Bluffs, NE-IA | 38,139 | 39,273 | 3.0 |
| Orlando, FL | 37,776 | 38,633 | 2.3 |
| Oshkosh-Neenah, WI | 39,538 | 41,014 | 3.7 |
| Owensboro, KY | 32,491 | 33,593 | 3.4 |
| Oxnard-Thousand Oaks-Ventura, CA | 45,467 | 47,669 | 4.8 |
| Palm Bay-Melbourne-Titusville, FL | 39,778 | 40,975 | 3.0 |
| Panama City-Lynn Haven, FL | 33,341 | 33,950 | 1.8 |
| Parkersburg-Marietta, WV-OH | 32,213 | 33,547 | 4.1 |
| Pascagoula, MS | 36,287 | 39,131 | 7.8 |
| Pensacola-Ferry Pass-Brent, FL | 33,530 | 34,165 | 1.9 |
| Peoria, IL | 42,283 | 43,470 | 2.8 |
| Philadelphia-Camden-Wilmington, PA-NJ-DE-MD | 48,647 | 50,611 | 4.0 |
| Phoenix-Mesa-Scottsdale, AZ | 42,220 | 43,697 | 3.5 |
| Pine Bluff, AR | 32,115 | 33,094 | 3.0 |
| Pittsburgh, PA | 40,759 | 42,910 | 5.3 |
| Pittsfield, MA | 36,707 | 38,075 | 3.7 |
| Pocatello, ID | 28,418 | 29,268 | 3.0 |
| Ponce, PR | 20,266 | 21,019 | 3.7 |
| Portland-South Portland-Biddeford, ME | 36,979 | 38,497 | 4.1 |
| Portland-Vancouver-Beaverton, OR-WA | 42,607 | 44,335 | 4.1 |
| Port St. Lucie-Fort Pierce, FL | 34,408 | 36,375 | 5.7 |
| Poughkeepsie-Newburgh-Middletown, NY | 39,528 | 40,793 | 3.2 |
| Prescott, AZ | 30,625 | 32,048 | 4.6 |
| Providence-New Bedford-Fall River, RI-MA | 39,428 | 40,674 | 3.2 |
| Provo-Orem, UT | 32,308 | 34,141 | 5.7 |
| Pueblo, CO | 30,941 | 32,552 | 5.2 |
| Punta Gorda, FL | 32,370 | 32,833 | 1.4 |
| Racine, WI | 39,002 | 40,746 | 4.5 |
| Raleigh-Cary, NC | 41,205 | 42,801 | 3.9 |
| Rapid City, SD | 29,920 | 31,119 | 4.0 |
| Reading, PA | 38,048 | 39,945 | 5.0 |
| Redding, CA | 33,307 | 34,953 | 4.9 |
| Reno-Sparks, NV | 39,537 | 41,365 | 4.6 |
| Richmond, VA | 42,495 | 44,530 | 4.8 |
| Riverside-San Bernardino-Ontario, CA | 36,668 | 37,846 | 3.2 |
| Roanoke, VA | 33,912 | 35,419 | 4.4 |
| Rochester, MN | 42,941 | 44,786 | 4.3 |
| Rochester, NY | 39,481 | 40,752 | 3.2 |
| Rockford, IL | 37,424 | 38,304 | 2.4 |
| Rocky Mount, NC | 31,556 | 32,527 | 3.1 |
| Rome, GA | 34,850 | 33,041 | -5.2 |
| Sacramento--Arden-Arcade--Roseville, CA | 44,552 | 46,385 | 4.1 |
| Saginaw-Saginaw Township North, MI | 37,747 | 37,507 | -0.6 |
| St. Cloud, MN | 33,018 | 33,996 | 3.0 |
| St. George, UT | 28,034 | 29,052 | 3.6 |
| St. Joseph, MO-KS | 31,253 | 31,828 | 1.8 |
| St. Louis, MO-IL | 41,354 | 42,873 | 3.7 |
| Salem, OR | 32,764 | 33,986 | 3.7 |
| Salinas, CA | 37,974 | 39,419 | 3.8 |
| Salisbury, MD | 33,223 | 34,833 | 4.8 |
| Salt Lake City, UT | 38,630 | 40,935 | 6.0 |
| San Angelo, TX | 30,168 | 30,920 | 2.5 |
| San Antonio, TX | 36,763 | 38,274 | 4.1 |
| San Diego-Carlsbad-San Marcos, CA | 45,784 | 47,657 | 4.1 |
| Sandusky, OH ............................ | 33,526 | 33,471 | -0.2 |
| San Francisco-Oakland-Fremont, CA | 61,343 | 64,559 | 5.2 |
| San German-Cabo Rojo, PR | 19,498 | 19,777 | 1.4 |
| San Jose-Sunnyvale-Santa Clara, CA | 76,608 | 82,038 | 7.1 |
| San Juan-Caguas-Guaynabo, PR | 24,812 | 25,939 | 4.5 |
| San Luis Obispo-Paso Robles, CA | 35,146 | 36,740 | 4.5 |
| Santa Barbara-Santa Maria-Goleta, CA | 40,326 | 41,967 | 4.1 |
| Santa Cruz-Watsonville, CA .. | 40,776 | 41,540 | 1.9 |
| Santa Fe, NM | 35,320 | 37,395 | 5.9 |
| Santa Rosa-Petaluma, CA | 41,533 | 42,824 | 3.1 |
| Sarasota-Bradenton-Venice, FL | 35,751 | 36,424 | 1.9 |
| Savannah, GA | 35,684 | 36,695 | 2.8 |
| Scranton--Wilkes-Barre, PA | 32,813 | 34,205 | 4.2 |
| Seattle-Tacoma-Bellevue, WA | 49,455 | 51,924 | 5.0 |
| Sheboygan, WI | 35,908 | 37,049 | 3.2 |
| Sherman-Denison, TX | 34,166 | 35,672 | 4.4 |
| Shreveport-Bossier City, LA | 33,678 | 34,892 | 3.6 |
| Sioux City, IA-NE-SD | 31,826 | 33,025 | 3.8 |
| Sioux Falls, SD | 34,542 | 36,056 | 4.4 |
| South Bend-Mishawaka, IN-MI | 35,089 | 36,266 | 3.4 |
| Spartanburg, SC ............ | 37,077 | 37,967 | 2.4 |

See footnotes at end of table.
26. Continued - Average annual wages for 2006 and 2007 for all covered workers ${ }^{1}$ by metropolitan area

| Metropolitan area² | Average annual wages ${ }^{3}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 2006 | 2007 | Percent change, 2006-07 |
| Spokane, WA | \$34,016 | \$35,539 | 4.5 |
| Springfield, IL | 40,679 | 42,420 | 4.3 |
| Springfield, MA | 37,962 | 39,487 | 4.0 |
| Springfield, MO | 30,786 | 31,868 | 3.5 |
| Springfield, OH | 31,844 | 32,017 | 0.5 |
| State College, PA | 35,392 | 36,797 | 4.0 |
| Stockton, CA ...... | 36,426 | 37,906 | 4.1 |
| Sumter, SC | 29,294 | 30,267 | 3.3 |
| Syracuse, NY | 38,081 | 39,620 | 4.0 |
| Tallahassee, FL | 35,018 | 36,543 | 4.4 |
| Tampa-St. Petersburg-Clearwater, FL | 38,016 | 39,215 | 3.2 |
| Terre Haute, IN | 31,341 | 32,349 | 3.2 |
| Texarkana, TX-Texarkana, AR | 32,545 | 34,079 | 4.7 |
| Toledo, OH | 37,039 | 38,538 | 4.0 |
| Topeka, KS | 34,806 | 36,109 | 3.7 |
| Trenton-Ewing, NJ | 54,274 | 56,645 | 4.4 |
| Tucson, AZ | 37,119 | 38,524 | 3.8 |
| Tulsa, OK | 37,637 | 38,942 | 3.5 |
| Tuscaloosa, AL | 35,613 | 36,737 | 3.2 |
| Tyler, TX .... | 36,173 | 37,184 | 2.8 |
| Utica-Rome, NY | 32,457 | 33,916 | 4.5 |
| Valdosta, GA | 26,794 | 27,842 | 3.9 |
| Vallejo-Fairfield, CA | 40,225 | 42,932 | 6.7 |
| Vero Beach, FL ..... | 33,823 | 35,901 | 6.1 |
| Victoria, TX ..... | 36,642 | 38,317 | 4.6 |
| Vineland-Millville-Bridgeton, NJ | 37,749 | 39,408 | 4.4 |
| Virginia Beach-Norfolk-Newport News, VA-NC | 36,071 | 37,734 | 4.6 |
| Visalia-Porterville, CA | 29,772 | 30,968 | 4.0 |
| Waco, TX | 33,450 | 34,679 | 3.7 |
| Warner Robins, GA | 38,087 | 39,220 | 3.0 |
| Washington-Arlington-Alexandria, DC-VA-MD-WV | 58,057 | 60,711 | 4.6 |
| Waterloo-Cedar Falls, IA ................................... | 34,329 | 35,899 | 4.6 |
| Wausau, WI | 34,438 | 35,710 | 3.7 |
| Weirton-Steubenville, WV-OH | 31,416 | 32,893 | 4.7 |
| Wenatchee, WA | 28,340 | 29,475 | 4.0 |
| Wheeling, WV-OH | 30,620 | 31,169 | 1.8 |
| Wichita, KS ......... | 38,763 | 39,662 | 2.3 |
| Wichita Falls, TX | 30,785 | 32,320 | 5.0 |
| Williamsport, PA | 31,431 | 32,506 | 3.4 |
| Wilmington, NC | 32,948 | 34,239 | 3.9 |
| Winchester, VA-WV | 34,895 | 36,016 | 3.2 |
| Winston-Salem, NC | 37,712 | 38,921 | 3.2 |
| Worcester, MA | 42,726 | 44,652 | 4.5 |
| Yakima, WA | 28,401 | 29,743 | 4.7 |
| Yauco, PR | 19,001 | 19,380 | 2.0 |
| York-Hanover, PA | 37,226 | 38,469 | 3.3 |
| Youngstown-Warren-Boardman, OH-PA | 33,852 | 34,698 | 2.5 |
| Yuba City, CA | 33,642 | 35,058 | 4.2 |
| Yuma, AZ ......... | 28,369 | 30,147 | 6.3 |

${ }^{1}$ Includes workers covered by Unemployment nsurance (Ul) and Unemployment Compensation for Federal Employees (UCFE) programs.

2 Includes data for Metropolitan Statistical Areas (MSA) as defined by OMB Bulletin No Areas (MSA) as defined by
$04-03$ as of February 18, 2004.
${ }^{3}$ Each year's total is based on the MSA definition for the specific year. Annual changes definition for the specific year. Annual changes include difference
${ }^{4}$ Totals do not include the six MSAs within Puerto Rico.

## 27. Annual data: Employment status of the population

[Numbers in thousands]

| Employment status | $1998{ }^{1}$ | 1999 ${ }^{1}$ | $2000^{1}$ | $2001{ }^{1}$ | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Civilian noninstitutional population... | 205,220 | 207,753 | 212,577 | 215,092 | 217,570 | 221,168 | 223,357 | 226,082 | 228,815 | 231,867 | 233,788 |
| Civilian labor force.. | 137,673 | 139,368 | 142,583 | 143,734 | 144,863 | 146,510 | 147,401 | 149,320 | 151,428 | 153,124 | 154,287 |
| Labor force participation rate... | 67.1 | 67.1 | 67.1 | 66.8 | 66.6 | 66.2 | 66.0 | 66.0 | 66.2 | 66.0 | 66.0 |
| Employed.. | 131,463 | 133,488 | 136,891 | 136,933 | 136,485 | 137,736 | 139,252 | 141,730 | 144,427 | 146,047 | 145,362 |
| Employment-population ratio. | 64.1 | 64.3 | 64.4 | 63.7 | 62.7 | 62.3 | 62.3 | 62.7 | 63.1 | 63.0 | 62.2 |
| Unemployed... | 6,210 | 5,880 | 5,692 | 6,801 | 8,378 | 8,774 | 8,149 | 7,591 | 7,001 | 7,078 | 8,924 |
| Unemployment rate..... | 4.5 | 4.2 | 4.0 | 4.7 | 5.8 | 6.0 | 5.5 | 5.1 | 4.6 | 4.6 | 5.8 |
| Not in the labor force.. | 67,547 | 68,385 | 69,994 | 71,359 | 72,707 | 74,658 | 75,956 | 76,762 | 77,387 | 78,743 | 79,501 |

[^18]28. Annual data: Employment levels by industry

| Industry | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total private employment... | 106,021 | 108,686 | 110,995 | 110,708 | 108,828 | 108,416 | 109,814 | 111,899 | 114,113 | 115,420 | 114,792 |
| Total nonfarm employment. | 125,930 | 128,993 | 131,785 | 131,826 | 130,341 | 129,999 | 131,435 | 133,703 | 136,086 | 137,623 | 137,248 |
| Goods-producing... | 24,354 | 24,465 | 24,649 | 23,873 | 22,557 | 21,816 | 21,882 | 22,190 | 22,531 | 22,221 | 21,404 |
| Natural resources and mining... | 645 | 598 | 599 | 606 | 583 | 572 | 591 | 628 | 684 | 723 | 774 |
| Construction... | 6,149 | 6,545 | 6,787 | 6,826 | 6,716 | 6,735 | 6,976 | 7,336 | 7,691 | 7,614 | 7,175 |
| Manufacturing... | 17,560 | 17,322 | 17,263 | 16,441 | 15,259 | 14,510 | 14,315 | 14,226 | 14,155 | 13,884 | 13,455 |
| Private service-providing.. | 81,667 | 84,221 | 86,346 | 86,834 | 86,271 | 86,600 | 87,932 | 89,709 | 91,582 | 93,199 | 93,387 |
| Trade, transportation, and utilities.... | 25,186 | 25,771 | 26,225 | 25,983 | 25,497 | 25,287 | 25,533 | 25,959 | 26,276 | 26,608 | 26,332 |
| Wholesale trade.. | 5,795 | 5,893 | 5,933 | 5,773 | 5,652 | 5,608 | 5,663 | 5,764 | 5,905 | 6,028 | 6,012 |
| Retail trade.. | 14,609 | 14,970 | 15,280 | 15,239 | 15,025 | 14,917 | 15,058 | 15,280 | 15,353 | 15,491 | 15,265 |
| Transportation and warehousing... | 4,168 | 4,300 | 4,410 | 4,372 | 4,224 | 4,185 | 4,249 | 4,361 | 4,470 | 4,536 | 4,495 |
| Utilities.. | 613 | 609 | 601 | 599 | 596 | 577 | 564 | 554 | 549 | 553 | 560 |
| Information. | 3,218 | 3,419 | 3,630 | 3,629 | 3,395 | 3,188 | 3,118 | 3,061 | 3,038 | 3,029 | 2,987 |
| Financial activities.. | 7,462 | 7,648 | 7,687 | 7,808 | 7,847 | 7,977 | 8,031 | 8,153 | 8,328 | 8,308 | 8,192 |
| Professional and business services. | 15,147 | 15,957 | 16,666 | 16,476 | 15,976 | 15,987 | 16,394 | 16,954 | 17,566 | 17,962 | 17,863 |
| Education and health services... | 14,446 | 14,798 | 15,109 | 15,645 | 16,199 | 16,588 | 16,953 | 17,372 | 17,826 | 18,327 | 18,878 |
| Leisure and hospitality.. | 11,232 | 11,543 | 11,862 | 12,036 | 11,986 | 12,173 | 12,493 | 12,816 | 13,110 | 13,474 | 13,615 |
| Other services. | 4,976 | 5,087 | 5,168 | 5,258 | 5,372 | 5,401 | 5,409 | 5,395 | 5,438 | 5,491 | 5,520 |
| Government.. | 19,909 | 20,307 | 20,790 | 21,118 | 21,513 | 21,583 | 21,621 | 21,804 | 21,974 | 22,203 | 22,457 |

29. Annual data: Average hours and earnings of production or nonsupervisory workers on nonfarm

| Industry | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Private sector: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours.. | 34.5 | 34.3 | 34.3 | 34.0 | 33.9 | 33.7 | 33.7 | 33.8 | 33.9 | 33.8 | 33.6 |
| Average hourly earnings (in dollars). | 13.01 | 13.49 | 14.02 | 14.54 | 14.97 | 15.37 | 15.69 | 16.13 | 16.76 | 17.42 | 18.05 |
| Average weekly earnings (in dollars). | 448.56 | 463.15 | 481.01 | 493.79 | 506.75 | 518.06 | 529.09 | 544.33 | 567.87 | 589.72 | 606.84 |
| Goods-producing: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours. | 40.8 | 40.8 | 40.7 | 39.9 | 39.9 | 39.8 | 40.0 | 40.1 | 40.5 | 40.6 | 40.2 |
| Average hourly earnings (in dollars). | 14.23 | 14.71 | 15.27 | 15.78 | 16.33 | 16.80 | 17.19 | 17.60 | 18.02 | 18.67 | 19.31 |
| Average weekly earnings (in dollars). | 580.99 | 599.99 | 621.86 | 630.01 | 651.61 | 669.13 | 688.13 | 705.31 | 730.16 | 757.06 | 775.28 |
| Natural resources and mining |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours. | 44.9 | 44.2 | 44.4 | 44.6 | 43.2 | 43.6 | 44.5 | 45.6 | 45.6 | 45.9 | 45.0 |
| Average hourly earnings (in dollars). | 16.20 | 16.33 | 16.55 | 17.00 | 17.19 | 17.56 | 18.07 | 18.72 | 19.90 | 20.96 | 22.42 |
| Average weekly earnings (in dollars). | 727.28 | 721.74 | 734.92 | 757.92 | 741.97 | 765.94 | 803.82 | 853.71 | 907.95 | 961.78 | 1008.27 |
| Construction: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours. | 38.8 | 39.0 | 39.2 | 38.7 | 38.4 | 38.4 | 38.3 | 38.6 | 39.0 | 39.0 | 38.5 |
| Average hourly earnings (in dollars). | 16.23 | 16.80 | 17.48 | 18.00 | 18.52 | 18.95 | 19.23 | 19.46 | 20.02 | 20.95 | 21.86 |
| Average weekly earnings (in dollars). | 629.75 | 655.11 | 685.78 | 695.89 | 711.82 | 726.83 | 735.55 | 750.22 | 781.21 | 816.06 | 841.46 |
| Manufacturing: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours.. | 41.4 | 41.4 | 41.3 | 40.3 | 40.5 | 40.4 | 40.8 | 40.7 | 41.1 | 41.2 | 40.8 |
| Average hourly earnings (in dollars). | 13.45 | 13.85 | 14.32 | 14.76 | 15.29 | 15.74 | 16.14 | 16.56 | 16.81 | 17.26 | 17.72 |
| Average weekly earnings (in dollars). | 557.09 | 573.25 | 590.77 | 595.19 | 618.75 | 635.99 | 658.49 | 673.33 | 691.02 | 711.36 | 723.51 |
| Private service-providing: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours. | 32.8 | 32.7 | 32.7 | 32.5 | 32.5 | 32.3 | 32.3 | 32.4 | 32.5 | 32.4 | 32.3 |
| Average hourly earnings (in dollars). | 12.61 | 13.09 | 13.62 | 14.18 | 14.59 | 14.99 | 15.29 | 15.74 | 16.42 | 17.10 | 17.73 |
| Average weekly earnings (in dollars).. | 413.50 | 427.98 | 445.74 | 461.08 | 473.80 | 484.68 | 494.22 | 509.58 | 532.78 | 554.78 | 572.96 |
| Trade, transportation, and utilities: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours. | 34.2 | 33.9 | 33.8 | 33.5 | 33.6 | 33.6 | 33.5 | 33.4 | 33.4 | 33.3 | 33.2 |
| Average hourly earnings (in dollars). | 12.39 | 12.82 | 13.31 | 13.70 | 14.02 | 14.34 | 14.58 | 14.92 | 15.39 | 15.79 | 16.19 |
| Average weekly earnings (in dollars).... | 423.30 | 434.31 | 449.88 | 459.53 | 471.27 | 481.14 | 488.42 | 498.43 | 514.34 | 526.38 | 537.00 |
| Wholesale trade: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours... | 38.6 | 38.6 | 38.8 | 38.4 | 38.0 | 37.9 | 37.8 | 37.7 | 38.0 | 38.2 | 38.2 |
| Average hourly earnings (in dollars)... | 15.07 | 15.62 | 16.28 | 16.77 | 16.98 | 17.36 | 17.65 | 18.16 | 18.91 | 19.59 | 20.13 |
| Average weekly earnings (in dollars). | 582.21 | 602.77 | 631.40 | 643.45 | 644.38 | 657.29 | 667.09 | 685.00 | 718.63 | 748.90 | 769.74 |
| Retail trade: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours. | 30.9 | 30.8 | 30.7 | 30.7 | 30.9 | 30.9 | 30.7 | 30.6 | 30.5 | 30.2 | 30.0 |
| Average hourly earnings (in dollars)... | 10.05 | 10.45 | 10.86 | 11.29 | 11.67 | 11.90 | 12.08 | 12.36 | 12.57 | 12.76 | 12.90 |
| Average weekly earnings (in dollars). | 582.21 | 602.77 | 631.40 | 643.45 | 644.38 | 657.29 | 667.09 | 685.00 | 718.63 | 748.90 | 769.74 |
| Transportation and warehousing: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours.. | 38.7 | 37.6 | 37.4 | 36.7 | 36.8 | 36.8 | 37.2 | 37.0 | 36.9 | 36.9 | 36.4 |
| Average hourly earnings (in dollars).. | 14.12 | 14.55 | 15.05 | 15.33 | 15.76 | 16.25 | 16.52 | 16.70 | 17.28 | 17.73 | 18.39 |
| Average weekly earnings (in dollars).. | 546.86 | 547.97 | 562.31 | 562.70 | 579.75 | 598.41 | 614.82 | 618.58 | 636.97 | 654.83 | 669.44 |
| Utilities: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours... | 42.0 | 42.0 | 42.0 | 41.4 | 40.9 | 41.1 | 40.9 | 41.1 | 41.4 | 42.4 | 42.6 |
| Average hourly earnings (in dollars). | 21.48 | 22.03 | 22.75 | 23.58 | 23.96 | 24.77 | 25.61 | 26.68 | 27.40 | 27.87 | 28.84 |
| Average weekly earnings (in dollars).. | 902.94 | 924.59 | 955.66 | 977.18 | 979.09 | 1017.27 | 1048.44 | 1095.90 | 1135.34 | 1182.17 | 1230.08 |
| Information: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours.. | 36.6 | 36.7 | 36.8 | 36.9 | 36.5 | 36.2 | 36.3 | 36.5 | 36.6 | 36.5 | 36.7 |
| Average hourly earnings (in dollars).. | 17.67 | 18.40 | 19.07 | 19.80 | 20.20 | 21.01 | 21.40 | 22.06 | 23.23 | 23.94 | 24.74 |
| Average weekly earnings (in dollars). | 646.34 | 675.47 | 700.86 | 730.88 | 737.77 | 760.45 | 777.25 | 805.08 | 850.42 | 873.63 | 907.02 |
| Financial activities: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours.... | 36.0 | 35.8 | 35.9 | 35.8 | 35.6 | 35.5 | 35.5 | 35.9 | 35.7 | 35.9 | 35.9 |
| Average hourly earnings (in dollars).. | 13.93 | 14.47 | 14.98 | 15.59 | 16.17 | 17.14 | 17.52 | 17.95 | 18.80 | 19.64 | 20.28 |
| Average weekly earnings (in dollars).. | 500.98 | 517.57 | 537.37 | 557.92 | 575.54 | 609.08 | 622.87 | 644.99 | 672.21 | 705.29 | 727.38 |
| Professional and business services: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours................... | 34.3 | 34.4 | 34.5 | 34.2 | 34.2 | 34.1 | 34.2 | 34.2 | 34.6 | 34.8 | 34.8 |
| Average hourly earnings (in dollars).. | 14.27 | 14.85 | 15.52 | 16.33 | 16.81 | 17.21 | 17.48 | 18.08 | 19.13 | 20.13 | 21.15 |
| Average weekly earnings (in dollars).... | 490.00 | 510.99 | 535.07 | 557.84 | 574.66 | 587.02 | 597.56 | 618.87 | 662.27 | 700.15 | 736.55 |
| Education and health services: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours.... | 32.2 | 32.1 | 32.2 | 32.3 | 32.4 | 32.3 | 32.4 | 32.6 | 32.5 | 32.6 | 32.5 |
| Average hourly earnings (in dollars). | 13.00 | 13.44 | 13.95 | 14.64 | 15.21 | 15.64 | 16.15 | 16.71 | 17.38 | 18.11 | 18.78 |
| Average weekly earnings (in dollars).... | 418.82 | 431.35 | 449.29 | 473.39 | 492.74 | 505.69 | 523.78 | 544.59 | 564.94 | 590.18 | 611.03 |
| Leisure and hospitality: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours... | 26.2 | 26.1 | 26.1 | 25.8 | 25.8 | 25.6 | 25.7 | 25.7 | 25.7 | 25.5 | 25.2 |
| Average hourly earnings (in dollars).... | 7.67 | 7.96 | 8.32 | 8.57 | 8.81 | 9.00 | 9.15 | 9.38 | 9.75 | 10.41 | 10.83 |
| Average weekly earnings (in dollars)... | 200.82 | 208.05 | 217.20 | 220.73 | 227.17 | 230.42 | 234.86 | 241.36 | 250.34 | 265.45 | 272.97 |
| Other services: |  |  |  |  |  |  |  |  |  |  |  |
| Average weekly hours..... | 32.6 | 32.5 | 32.5 | 32.3 | 32.0 | 31.4 | 31.0 | 30.9 | 30.9 | 30.9 | 30.8 |
| Average hourly earnings (in dollars).... | 11.79 | 12.26 | 12.73 | 13.27 | 13.72 | 13.84 | 13.98 | 14.34 | 14.77 | 15.42 | 15.86 |
| Average weekly earnings (in dollars).. | 384.25 | 398.77 | 413.41 | 428.64 | 439.76 | 434.41 | 433.04 | 443.37 | 456.50 | 476.80 | 488.22 |

NoTE: Data reflect the conversion to the 2002 version of the North American Industry Classification System (NAICS), replacing the Standard Industrial Classification
(SIC) system. NAICS-based data by industry are not comparable with SIC-based data.
30. Employment Cost Index, compensation, by occupation and industry group
[December $2005=100$ ]

| Series | 2007 |  |  |  | 2008 |  |  |  | 2009 | Percent change |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mar. | June | Sept. | Dec. | Mar. | June | Sept. | Dec. | Mar. | 3 months ended | 12 months ended |
|  |  |  |  |  |  |  |  |  |  | Mar. 2009 |  |
| Civilian workers ${ }^{2}$. | 104.2 | 105.0 | 106.1 | 106.7 | 107.6 | 108.3 | 109.2 | 109.5 | 109.9 | 0.4 | 2.1 |
| Workers by occupational group |  |  |  |  |  |  |  |  |  |  |  |
| Management, professional, and related. | 104.7 | 105.5 | 106.7 | 107.2 | 108.3 | 109.0 | 110.1 | 110.4 | 110.9 | . 5 | 2.4 |
| Management, business, and financial. | 104.4 | 105.2 | 106.2 | 106.6 | 108.2 | 108.9 | 109.7 | 109.8 | 110.0 | . 2 | 1.7 |
| Professional and related... | 104.9 | 105.7 | 107.0 | 107.6 | 108.4 | 109.0 | 110.4 | 110.7 | 111.3 | . 5 | 2.7 |
| Sales and office.. | 103.8 | 104.8 | 105.5 | 106.4 | 106.8 | 107.7 | 108.2 | 108.3 | 108.4 | . 1 | 1.5 |
| Sales and related.. | 102.4104.7 | 103.6 | 104.1 | 105.2 | 105.0 | 106.1 | 106.0 | 105.5 | 104.3 | -1.1 | -. 7 |
| Office and administrative support. |  | 105.5 | 106.4 | 107.1 | 108.0 | 108.6 | 109.5 | 110.0 | 110.8 | . 7 | 2.6 |
| Natural resources, construction, and maintenance. | 104.1 | 105.1 | 106.1 | 106.8 | 107.7 | 108.4 | 109.3 | 109.8 | 110.1 | . 3 | 2.2 |
| Construction and extraction............. | 104.3 | 105.7 | 106.5 | 107.4 | 108.5 | 109.6 | 110.3 | 110.8 | 111.0 | . 2 | 2.3 |
| Installation, maintenance, and repair. | 103.7 | 104.4 | 105.6 | 106.2 | 106.7 | 107.0 | 108.0 | 108.6 | 109.1 | . 5 | 2.2 |
| Production, transportation, and material moving. | 102.7 | 103.5 | 104.2 | 104.7 | 105.6 | 106.2 | 106.9 | 107.2 | 108.0 | . 7 | 2.3 |
| Production.. | 102.1 | 102.8 | 103.3 | 104.1 | 104.8 | 105.3 | 105.9 | 106.2 | 107.2 | . 9 | 2.3 |
| Transportation and material moving. | 103.4 | 104.4 | 105.3 | 105.6 | 106.6 | 107.3 | 108.1 | 108.4 | 108.9 | . 5 | 2.9 |
| Service occupations.. | 104.8 | 105.5 | 106.9 | 107.7 | 108.4 | 109.1 | 110.2 | 110.6 | 111.5 | . 8 |  |
| Workers by industry |  |  |  |  |  |  |  |  |  |  |  |
| Goods-producing | 102.9 | 103.9 | 104.4 | 105.0 | 106.1 | 106.8 | 107.3 | 107.5 | 108.0 | . 5 | 1.8 |
| Manufacturing. | 102.0 | 102.9 | 103.2 | 103.8 | 104.7 | 105.1 | 105.6 | 105.9 | 106.5 | . 6 | 1.7 |
| Service-providing. | 104.4 | 105.2 | 106.4 | 107.0 | 107.8 | 108.5 | 109.5 | 109.8 | 110.3 | . 5 | 2.3 |
| Education and health services. | 104.9 | 105.5 | 107.2 | 107.9 | 108.6 | 109.2 | 110.8 | 111.1 | 111.7 | . 5 | 2.9 |
| Health care and social assistance. | 105.4 | 106.1 | 107.1 | 107.9 | 108.9 | 109.6 | 110.4 | 110.8 | 111.7 | . 8 | 2.6 |
| Hospitals. | 105.1 | 105.7 | 106.7 | 107.5 | 108.4 | 109.2 | 110.2 | 110.8 | 111.7 | . 8 | 3.0 |
| Nursing and residential care facilities. | 104.5 | 105.0 | 105.6 | 106.3 | 107.3 | 108.2 | 109.0 | 109.6 | 110.3 | . 6 | 2.8 |
| Education services.. | 104.5 | 104.9 | 107.3 | 107.9 | 108.3 | 108.9 | 111.1 | 111.3 | 111.8 | 4 | 3.2 |
| Elementary and secondary schools. | 104.6 | 105.0 | 107.4 | 107.9 | 108.2 | 108.8 | 111.1 | 111.4 | 111.9 | . 4 | 3.4 |
| Public administration ${ }^{3}$. | 105.6 | 106.6 | 108.0 | 109.1 | 109.7 | 110.1 | 111.6 | 112.0 | 113.0 | . 9 | 3.0 |
| Private industry workers. | 104.0 | 104.9 | 105.7 | 106.3 | 107.3 | 108.0 | 108.7 | 108.9 | 109.3 | . 4 | 1.9 |
| Workers by occupational group Management, professional, and related. |  |  |  |  |  |  |  |  |  |  |  |
| Management, business, and financial.. | 104.3 | 105.1 | 106.0 | 106.3 | 108.0 | 108.7 | 109.3 | 109.5 | 109.6 | . 1 | 1.5 |
| Professional and related..... | 104.9 | 105.9 | 106.7 | 107.3 | 108.3 | 109.0 | 109.9 | 110.3 | 111.0 | . 6 | 2.5 |
| Sales and office. | 103.7 | 104.7 | 105.3 | 106.1 | 106.6 | 107.5 | 107.9 | 107.9 | 107.9 | . 0 | 1.2 |
| Sales and related. | 102.4 | 103.6 | 104.2 | 105.2 | 105.0 | 106.2 | 106.0 | 105.5 | 104.3 | -1.1 | -. 7 |
| Office and administrative support. | 104.5 | 105.4 | 106.0 | 106.7 | 107.8 | 108.5 | 109.2 | 109.6 | 110.5 | . 8 | 2.5 |
| Natural resources, construction, and maintenance. | 104.0 | 105.0 | 105.9 | 106.7 | 107.6 | 108.3 | 109.0 | 109.6 | 109.9 | . 3 | 2.1 |
| Construction and extraction............. | 104.4 | 105.7 | 106.5 | 107.4 | 108.6 | 109.7 | 110.3 | 110.8 | 110.9 | . 1 | 2.1 |
| Installation, maintenance, and repair.. | 103.5 | 104.1 | 105.2 | 105.8 | 106.3 | 106.6 | 107.4 | 108.1 | 108.6 | . 5 | 2.2 |
| Production, transportation, and material moving. | 102.5 | 103.3 | 103.9 | 104.5 | 105.5 | 106.0 | 106.6 | 106.9 | 107.7 | . 7 | 2.1 |
| Production... | 102.1 | 102.8 | 103.2 | 104.0 | 104.8 | 105.2 | 105.8 | 106.1 | 107.1 | . 9 | 2.2 |
| Transportation and material moving.. | 103.1 | 104.1 | 104.9 | 107.0 | 107.8 | 107.2 | 107.7 | 109.8 | 108.4110.7 | . 5 | 1.92.7 |
| Service occupations........................ | 104.5 | 105.2 | 106.4 |  |  | 108.7 | 109.4 |  |  | . 8 |  |
| Workers by industry and occupational group |  |  |  |  |  |  |  |  |  |  |  |
| Goods-producing industries................... | 102.9 102.7 | 103.9 103.8 | 104.4 104.3 | 105.0 104.4 | 106.1 106.1 | 106.8 106.6 | 107.2 106.7 | 107.5 106.6 | 107.9 106.8 | . 4 | 1.7 .7 |
| Sales and office............................. | 103.0 | 103.7 | 104.1 | 104.8 | 105.1 | 106.3 | 106.7 | 107.1 | 107.3 | . 2 | 2.1 |
| Natural resources, construction, and maintenance. | 104.0 | 105.3 | 106.1 | 104.0 | 108.1 | 109.0 | 109.8 | 110.4 | 110.4 | . 0 | 2.1 |
| Production, transportation, and material moving.. | 102.1 | 102.9 | 103.3 |  | 104.8 | 105.3 | 105.8 | 106.2 | 107.0 | . 8 | 2.1 |
| Construction.... | 104.7 | 105.9 | 106.9 | 107.6 | 108.9 | 110.1 | 110.6 | 110.9 | 110.9 | . 0 | 1.8 |
| Manufacturing.. | 102.0 | 102.9 | 103.2 | 103.8 | 104.7 | 105.1 | 105.6 | 105.9 | 106.5 | . 6 | 1.7 |
| Management, professional, and related. | 102.0 | 103.3 | 103.3 | 103.5 | 104.9 | 105.2 | 105.4 | 105.4 | 105.7 | . 3 | . 8 |
| Sales and office............................ | 102.4 | 103.2 | 103.5 | 104.3 | 105.0 | 106.1 | 106.7 | 107.0 | 107.3 | . 3 | 2.2 |
| Natural resources, construction, and maintenance. | 101.7 | 102.4 | 102.8 | 103.9 | 104.6 | 104.5 | 105.3 | 106.0 | 106.6 | . 6 | 1.9 |
| Production, transportation, and material moving.... | 101.9 | 102.6 | 103.1 | 103.8 | 104.5 | 105.0 | 105.5 | 105.8 | 106.7 | . 9 | 2.1 |
| Service-providing industries... | 104.3 | 105.2 | 106.1 | 106.7 | 107.7 | 108.5 | 109.1 | 109.4 | 109.8 | . 4 | 1.9 |
| Management, professional, and related. | 105.0 | 105.9 | 106.8 | 107.3 | 108.5 | 109.3 | 110.2 | 110.6 | 111.1 | . 5 | 2.4 |
| Sales and office.. | 103.7 | 104.8 | 105.4 | 106.3 | 106.8 | 107.7 | 108.0 | 108.0 | 108.0 | . 0 | 1.1 |
| Natural resources, construction, and maintenance.. | 104.0 | 104.5 | 105.7 | 106.2 | 106.7 | 107.3 | 107.8 | 108.4 | 109.0 | . 6 | 2.2 |
| Production, transportation, and material moving... | 103.0 | 104.0 | 104.7 | 105.2 | 106.4 | 107.0 | 107.6 | 107.8 | 108.5 | . 6 | 2.0 |
| Service occupations... | $\begin{aligned} & 104.5 \\ & 103.1 \end{aligned}$ | $\begin{aligned} & 105.3 \\ & 104.2 \end{aligned}$ | $\begin{gathered} 106.4 \\ 104.7 \end{gathered}$ | $\begin{aligned} & 107.1 \\ & 105.5 \end{aligned}$ | $\begin{aligned} & 107.9 \\ & 106.1 \end{aligned}$ | $\begin{aligned} & 108.7 \\ & 107.3 \end{aligned}$ | $\begin{aligned} & 109.5 \\ & 107.6 \end{aligned}$ | $\begin{aligned} & 109.8 \\ & 107.5 \end{aligned}$ | 110.7107.8 | . 8 | 2.6 |
| Trade, transportation, and utilities.. |  |  |  |  |  |  |  |  |  | . 3 | 1.6 |

[^19]30. Continued-Employment Cost Index, compensation, by occupation and industry group
[December 2005 = 100]

${ }^{1}$ Cost (cents per hour worked) measured in the Employment Cost Index consists of wages, salaries, and employer cost of employee benefits.
${ }^{2}$ Consists of private industry workers (excluding farm and household workers) and State and local government (excluding Federal Government) workers.
${ }^{3}$ Consists of legislative, judicial, administrative, and regulatory activities.

NOTE: The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and sOc data shown prior to 2006 are for informational purposes only. Series based on NAICS and soc became the official BLS estimates starting in March 2006.
31. Employment Cost Index, wages and salaries, by occupation and industry group
[December 2005 = 100]

| Series | 2007 |  |  |  | 2008 |  |  |  | 2009 | Percent change |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mar. | June | Sept. | Dec. | Mar. | June | Sept. | Dec. | Mar. | 3 months ended | 12 months ended |
|  |  |  |  |  |  |  |  |  |  | Mar. 2009 |  |
| Civilian workers ${ }^{1}$. | 104.3 | 105.0 | 106.0 | 106.7 | 107.6 | 108.4 | 109.3 | 109.6 | 110.0 | 0.4 | 2.2 |
| Workers by occupational group |  |  |  |  |  |  |  |  |  |  |  |
| Management, professional, and related.. | 104.7 | 105.4 | 106.6 | 107.1 | 108.2 | 109.0 | 110.1 | 110.5 | 111.0 | . 5 | 2.6 |
| Management, business, and financial. | 104.7 | 105.4 | 106.4 | 106.7 | 108.2 | 109.0 | 109.8 | 110.1 | 110.4 | . 3 | 2.0 |
| Professional and related.. | 104.7 | 105.3 | 106.7 | 107.4 | 108.3 | 109.0 | 110.3 | 110.7 | 111.2 | . 5 | 2.7 |
| Sales and office.. | 103.8 | 104.8 | 105.4 | 106.2 | 106.7 | 107.7 | 108.1 | 108.1 | 108.1 | . 0 | 1.3 |
| Sales and related. | 102.7 | 103.9 | 104.3 | 105.5 | 105.2 | 106.6 | 106.3 | 105.6 | 104.3 | -1.2 | -. 9 |
| Office and administrative support. | 104.5 | 105.3 | 106.1 | 106.8 | 107.8 | 108.5 | 109.3 | 109.8 | 110.6 | . 7 | 2.6 |
| Natural resources, construction, and maintenance. | 104.3 | 105.1 | 106.3 | 107.1 | 108.1 | 109.0 | 109.9 | 110.6 | 110.7 | . 1 | 2.4 |
| Construction and extraction. | 104.6 | 105.7 | 106.6 | 107.7 | 109.0 | 109.9 | 110.7 | 111.3 | 111.4 | . 1 | 2.2 |
| Installation, maintenance, and repair. | 103.8 | 104.4 | 105.8 | 106.4 | 107.0 | 107.8 | 108.8 | 109.6 | 110.0 | . 4 | 2.8 |
| Production, transportation, and material moving. | 103.2 | 103.9 | 104.7 | 105.1 | 106.1 | 106.9 | 107.7 | 108.0 | 108.5 | . 5 | 2.3 |
| Production.. | 103.2 | 103.6 | 104.3 | 104.7 | 105.7 | 106.5 | 107.2 | 107.5 | 108.2 | . 7 | 2.4 |
| Transportation and material moving. | 103.3 | 104.2 | 105.1 | 105.5 | 106.6 | 107.3 | 108.2 | 108.5 | 108.8 | . 3 | 2.1 |
| Service occupations. | 104.6 | 105.3 | 106.5 | 107.3 | 108.0 | 108.7 | 109.9 | 110.3 | 111.2 | . 8 | 3.0 |
| Workers by industry |  |  |  |  |  |  |  |  |  |  |  |
| Goods-producing... | 103.9 | 104.7 | 105.4 | 106.0 | 107.1 | 108.0 | 108.6 | 109.0 | 109.2 | . 2 | 2.0 |
| Manufacturing. | 103.3 | 103.9 | 104.5 | 104.9 | 105.9 | 106.7 | 107.4 | 107.7 | 108.1 | . 4 | 2.1 |
| Service-providing. | 104.3 | 105.1 | 106.2 | 106.8 | 107.7 | 108.5 | 109.4 | 109.7 | 110.2 | . 5 | 2.3 |
| Education and health services. | 104.4 | 104.9 | 106.6 | 107.4 | 108.0 | 108.7 | 110.2 | 110.5 | 111.0 | . 5 | 2.8 |
| Health care and social assistance. | 105.1 | 105.9 | 107.1 | 107.9 | 108.9 | 109.6 | 110.4 | 110.9 | 111.7 | . 7 | 2.6 |
| Hospitals. | 104.8 | 105.6 | 106.7 | 107.4 | 108.4 | 109.4 | 110.5 | 111.3 | 112.0 | . 6 | 3.3 |
| Nursing and residential care facilities | 104.1 | 104.7 | 105.8 | 106.4 | 107.4 | 108.1 | 109.1 | 109.7 | 110.3 | . 5 | 2.7 |
| Education services.. | 103.7 | 104.0 | 106.2 | 106.9 | 107.3 | 107.9 | 110.0 | 110.2 | 110.5 | . 3 | 3.0 |
| Elementary and secondary schools | 103.6 | 103.8 | 106.0 | 106.6 | 107.0 | 107.5 | 109.9 | 110.1 | 110.4 | . 3 | 3.2 |
| Public administration ${ }^{2}$. | 104.5 | 105.2 | 106.4 | 107.4 | 108.2 | 108.6 | 109.9 | 110.4 | 111.3 | . 8 | 2.9 |
| Private industry workers................... | 104.3 | 105.1 | 106.0 | 106.6 | 107.6 | 108.4 | 109.1 | 109.4 | 109.8 | . 4 | 2.0 |
| Workers by occupational group |  |  |  |  |  |  |  |  |  |  |  |
| Management, professional, and related. | 104.9 | 105.8 | 106.7 | 107.2 | 108.5 | 109.3 | 110.1 | 110.5 | 111.1 | 5 | 2.4 |
| Management, business, and financial. | 104.7 | 105.5 | 106.3 | 106.6 | 108.2 | 109.0 | 109.7 | 110.0 | 110.3 | . 3 | 1.9 |
| Professional and related. | 105.1 | 106.0 | 107.0 | 107.6 | 108.7 | 109.5 | 110.4 | 110.9 | 111.6 | . 6 | 2.7 |
| Sales and office. | 103.8 | 104.8 | 105.3 | 106.2 | 106.7 | 107.7 | 108.0 | 108.0 | 107.9 | -. 1 | 1.1 |
| Sales and related... | 102.8 | 104.0 | 104.4 | 105.5 | 105.3 | 106.6 | 106.4 | 105.7 | 104.3 | -1.3 | -. 9 |
| Office and administrative support. | 104.5 | 105.4 | 106.0 | 106.7 | 107.7 | 108.5 | 109.2 | 109.7 | 110.6 | . 8 | 2.7 |
| Natural resources, construction, and maintenance | 104.2 | 105.1 | 106.2 | 107.1 | 108.1 | 109.0 | 109.8 | 110.5 | 110.6 | . 1 | 2.3 |
| Construction and extraction.. | 104.7 | 105.8 | 106.7 | 107.8 | 109.2 | 110.1 | 110.8 | 111.5 | 111.4 | -. 1 | 2.0 |
| Installation, maintenance, and repair.. | 103.7 | 104.2 | 105.6 | 106.1 | 106.8 | 107.6 | 108.5 | 109.3 | 109.7 | . 4 | 2.7 |
| Production, transportation, and material moving. | 103.1 | 103.8 | 104.5 | 105.0 | 106.0 | 106.8 | 107.5 | 107.8 | 108.3 | . 5 | 2.2 |
| Production.. | 103.1 | 103.6 | 104.2 | 104.6 | 105.6 | 106.4 | 107.2 | 107.4 | 108.1 | . 7 | 2.4 |
| Transportation and material moving.. | 103.2 | 104.1 | 105.0 | 105.4 | 106.5 | 107.4 | 108.0 | 108.3 | 108.5111.0 | . 2 | 1.9 |
| Service occupations. | 104.6 | 105.3 | 106.5 | 107.1 | 107.9 | 108.8 | 109.7 | 110.1 |  | . 8 | 2.9 |
| Workers by industry and occupational group Goods-producing industries |  |  |  |  |  |  |  |  |  |  |  |
| Management, professional, and related. | 104.4 | 105.3 | 105.9 | 106.0 | 107.7 | 108.4 | 108.7 | 108.8 | 109.3 | . 5 | 1.5 |
| Sales and office.. | 103.4 | 104.1 | 104.7 | 105.5 | 105.8 | 107.2 | 107.6 | 107.9 | 108.1 | . 2 | 2.2 |
| Natural resources, construction, and maintenance.. | 104.4 | 105.6 | 106.5 | 107.6 | 108.8 | 109.6 | 110.5 | 111.3 | 111.1 | -. 2 | 2.1 |
| Production, transportation, and material moving. | 103.2 | 103.7 | 104.4 | 104.8 | 105.7109.0 | 106.6 | 107.3110.6 | 107.6 | 108.0 | . 4 | 2.2 |
| Construction.. | 104.9 | 106.0 | 107.0 |  |  | 110.0 |  | 111.1 | 111.2 | . 1 | 2.0 |
| Manufacturing.. | 103.3 | 103.9104.6 |  | 107.8 | 109.0 105.9 | 106.7 | 107.4 | 107.7 | 108.1 | . 4 | 2.11.6 |
| Management, professional, and related. | 103.8 |  | $\begin{aligned} & 104.5 \\ & 105.0 \end{aligned}$ | $\begin{aligned} & 104.9 \\ & 105.3 \end{aligned}$ | $\begin{aligned} & 105.9 \\ & 106.7 \end{aligned}$ | 107.2 | 107.6 | 107.8 | 108.4 | . 6 |  |
| Sales and office... | 102.4 | 103.2 | 103.9 | $\begin{aligned} & 105.3 \\ & 104.7 \end{aligned}$ | $\begin{aligned} & 106.7 \\ & 105.5 \end{aligned}$ | 106.9107.1 | 107.6 | 108.1 | 108.2 | . 1 | 1.6 2.6 |
| Natural resources, construction, and maintenance... | 103.8 | 104.3 | 104.2 | 105.9 | 106.8 |  | 108.1 | 109.0 | 108.8 | -. 2 | 1.9 |
| Production, transportation, and material moving... | 103.1 | 103.6 |  | 104.510.8 | 105.4 | 106.3 | 107.1 | 107.3 | 107.7 | . 4 | 2.2 |
| Service-providing industries... | 104.4 | 105.3 | 106.1 |  | $\begin{aligned} & 107.7 \\ & 108.6 \end{aligned}$ | 108.6 | 109.3 | 109.6 | 110.0 | . 4 | 2.12.6 |
| Management, professional, and related. | 105.0 | 105.9 | 106.8 | 107.4 |  | 109.4 | 110.3108.0 | 110.8 | 111.4 | . 5 |  |
| Sales and office... | $\begin{aligned} & 103.8 \\ & 103.9 \end{aligned}$ | $\begin{aligned} & 104.9 \\ & 104.3 \end{aligned}$ | $\begin{aligned} & 105.4 \\ & 105.7 \end{aligned}$ | $\begin{aligned} & 106.3 \\ & 106.3 \end{aligned}$ | $\begin{aligned} & 106.8 \\ & 106.9 \end{aligned}$ | 107.7 |  | 108.0 | 107.9 | -. 1 | 1.0 |
| Natural resources, construction, and maintenance.. |  |  |  |  |  | 108.0 | 108.6 | 109.3 | 109.9 | . $5 \quad 2.8$ |  |
| Production, transportation, and material moving.. | $103.0$ | 104.0 | 104.6 | 105.2 | 106.3 | 107.1 | 107.8 | 108.1 | 108.6 | . 5 | 2.2 |
| Service occupations. | 104.6 | 105.3 | 106.6 | 107.2 | 108.0 | 108.8 | 109.7 | 110.1 | 111.0 | . 8 | 2.8 |
| Trade, transportation, and utilities... | 103.2 | 104.3 | 104.6 | 105.5 | 105.9 | 107.2 | 107.5 | 107.4 | 107.8 | . 4 | 1.8 |

31. Continued—Employment Cost Index, wages and salaries, by occupation and industry group
[December 2005 = 100]

|  |  |  |  |  |  |  |  |  | 2009 | Percent | change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | Mar. | June | Sept. | Dec. | Mar. | June | Sept. | Dec. | Mar. | 3 months ended | 12 months ended |
|  |  |  |  |  |  |  |  |  |  | Mar. | 2009 |
| Wholesale trade. | 103.8 | 104.8 | 104.0 | 105.2 | 105.2 | 107.2 | 106.8 | 106.4 | 106.8 | 0.4 | 1.5 |
| Retail trade. | 103.1 | 104.2 | 105.1 | 106.1 | 106.4 | 107.6 | 108.1 | 108.1 | 108.3 | . 2 | 1.8 |
| Transportation and warehousing. | 102.5 | 103.7 | 104.1 | 104.2 | 105.0 | 106.0 | 106.7 | 106.9 | 107.2 | . 3 | 2.1 |
| Utilities. | 104.3 | 105.5 | 106.1 | 106.8 | 108.0 | 109.3 | 109.3 | 109.6 | 111.0 | 1.3 | 2.8 |
| Information. | 103.8 | 104.9 | 105.2 | 105.3 | 105.3 | 106.3 | 107.3 | 107.5 | 107.8 | . 3 | 2.4 |
| Financial activities. | 104.7 | 104.9 | 106.0 | 105.9 | 107.2 | 107.7 | 107.7 | 107.2 | 106.8 | -. 4 | -. 4 |
| Finance and insurance. | 105.4 | 105.5 | 106.5 | 106.6 | 107.9 | 108.4 | 108.2 | 107.6 | 107.1 | -. 5 | -. 7 |
| Real estate and rental and leasing. | 101.6 | 102.4 | 103.6 | 103.1 | 104.5 | 104.7 | 105.3 | 105.7 | 105.6 | -. 1 | 1.1 |
| Professional and business services.. | 104.8 | 105.9 | 106.7 | 107.5 | 109.1 | 110.0 | 111.0 | 111.9 | 112.3 | . 4 | 2.9 |
| Education and health services. | 104.8 | 105.6 | 106.9 | 107.7 | 108.6 | 109.2 | 110.2 | 110.6 | 111.4 | . 7 | 2.6 |
| Education services. | 104.2 | 104.6 | 106.4 | 107.4 | 107.9 | 108.6 | 110.8 | 110.8 | 111.1 | . 3 | 3.0 |
| Health care and social assistance. | 104.9 | 105.8 | 107.0 | 107.8 | 108.7 | 109.4 | 110.1 | 110.6 | 111.5 | . 8 | 2.6 |
| Hospitals. | 104.6 | 105.4 | 106.5 | 107.2 | 108.2 | 109.2 | 110.3 | 111.1 | 111.8 | . 6 | 3.3 |
| Leisure and hospitality. | 105.7 | 106.4 | 108.1 | 108.8 | 109.7 | 109.9 | 111.4 | 112.3 | 113.1 | . 7 | 3.1 |
| Accommodation and food services.. | 106.0 | 106.5 | 108.4 | 109.0 | 110.0 | 110.4 | 111.9 | 112.8 | 113.7 | . 8 | 3.4 |
| Other services, except public administration.. | 105.7 | 106.1 | 107.3 | 107.9 | 109.2 | 109.9 | 110.4 | 110.4 | 111.4 | . 9 | 2.0 |
| State and local government workers............... | 104.1 | 104.6 | 106.4 | 107.1 | 107.7 | 108.2 | 110.1 | 110.4 | 110.9 | . 5 | 3.0 |
| Workers by occupational group |  |  |  |  |  |  |  |  |  |  |  |
| Management, professional, and related...... | 104.0 | 104.3 | 106.3 | 107.0 | 107.6 | 108.2 | 110.1 | 110.4 | 110.7 | . 3 | 2.9 |
| Professional and related.. | 103.9 | 104.2 | 106.3 | 107.0 | 107.5 | 108.1 | 110.1 | 110.3 | 110.6 | . 3 | 2.9 |
| Sales and office.. | 104.5 | 104.8 | 106.3 | 107.0 | 107.4 | 107.9 | 109.3 | 109.7 | 110.5 | . 7 | 2.9 |
| Office and administrative support. | 104.7 | 105.0 | 106.5 | 107.3 | 107.8 | 108.3 | 109.7 | 110.1 | 111.0 | . 8 | 3.0 |
| Service occupations.. | 104.5 | 105.2 | 106.5 | 107.7 | 108.3 | 108.6 | 110.4 | 110.9 | 112.0 | 1.0 | 3.4 |
| Workers by industry <br> Education and health services |  |  |  |  |  |  |  |  |  | . 2 | 3.0 |
| Education services............. | 103.7 | 103.9 | 106.1 | 106.8 | 107.2 | 107.7 | 109.9 | 110.1 | 110.4 | . 3 | 3.0 3.0 |
| Schools.. | 103.6 | 103.9 | 106.1 | 106.8 | 107.2 | 107.7 | 109.9 | 110.1 | 110.4 | . 3 | 3.0 |
| Elementary and secondary schools.. | 103.6 | 103.8 | 106.0 | 106.6 | 106.9 | 107.5 | 109.8 | 110.1 | 110.3 | . 2 | 3.2 |
| Health care and social assistance.. | 106.6 | 107.2 | 108.2 | 109.2 | 110.1 | 111.0 | 112.8 | 113.4 | 113.1 | -. 3 | 2.7 |
| Hospitals........ | 105.7 | 106.5 | 107.6 | 108.6 | 109.8 | 110.3 | 111.4 | 112.1 | 112.8 | . 6 | 2.7 |
| Public administration ${ }^{2}$. | 104.5 | 105.2 | 106.4 | 107.4 | 108.2 | 108.6 | 109.9 | 110.4 | 111.3 | . 8 | 2.9 |

${ }^{1}$ Consists of private industry workers (excluding farm and household workers) and State and local government (excluding Federal Government) workers.
${ }^{2}$ Consists of legislative, judicial, administrative, and regulatory activities.
Note: The Employment Cost Index data reflect the conversion to the 2002 North

American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes only. Series based on NAICS and SOC became the official BLS estimates starting in March 2006.

## 32. Employment Cost Index, benefits, by occupation and industry group

[December $2005=100$ ]

| Series | 2007 |  |  |  | 2008 |  |  |  | 2009 | Percent change |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mar. | June | Sept. | Dec. | Mar. | June | Sept. | Dec. | Mar. | 3 months ended | 12 months ended |
|  |  |  |  |  |  |  |  |  |  | Mar. 2009 |  |
| Civilian workers..................................................... | 104.0 | 105.1 | 106.1 | 106.8 | 107.6 | 108.1 | 108.9 | 109.1 | 109.7 | 0.5 | 2.0 |
| Private industry workers.......................................... | 103.2 | 104.3 | 105.0 | 105.6 | 106.5 | 107.0 | 107.5 | 107.7 | 108.2 | . 5 | 1.6 |
| Workers by occupational group | 103.8 | 104.9 |  |  |  |  |  |  |  |  |  |
| Management, professional, and related. <br> Sales and office. | 103.4 | 104.3 | 105.6 | 106.0 | 107.3 | 107.9 | 108.5 | 108.5 | 108.8 | . 3 | 1.4 1.4 |
| Natural resources, construction, and maintenance. | 103.4 | 104.8 | 105.3 | 105.9 | 106.5 | 107.0 | 107.5 | 107.7 | 108.2 | . 5 | 1.6 |
| Production, transportation, and material moving. | 101.2 | 102.4 | 102.7 | 103.7 | 104.4 | 104.5 | 104.8 | 105.1 | 106.4 | 1.2 | 1.9 |
| Service occupations. | 104.2 | 105.1 | 106.0 | 106.7 | 107.6 | 108.5 | 108.7 | 108.8 | 109.7 | . 8 | 2.0 |
| Workers by industry |  |  |  |  |  |  |  |  |  |  |  |
| Goods-producing. | 100.999.6 | 102.2 | 102.4 | 103.2 | 104.0 | 104.4 | 104.6 | 104.7 | 105.4 | . 7 | 1.3 |
| Manufacturing. |  | 101.0 | 100.7 | 101.7 | 102.3 | 102.2 | 102.3 | 102.5 | 103.5 | 1.0 | 1.2 |
| Service-providing.. | $\begin{array}{r} 99.6 \\ 104.1 \end{array}$ | 105.2 | 106.0 | 106.6 | 107.6 | 108.1 | 108.7 | 108.9 | 109.3 | . 4 |  |
| State and local government workers.......................... | 107.0 | 108.0 | 110.3 | 111.0 | 111.4 | 111.8 | 113.9 | 114.2 | 115.2 | . 9 | 3.4 |

Note: The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and soc data shown prior
to 2006 are for informational purposes only. Series based on NAICS and SOC became the official BLS estimates starting in March 2006.

## 33. Employment Cost Index, private industry workers by bargaining status and region

[December $2005=100$ ]

| Series | 2007 |  |  |  | 2008 |  |  |  | 2009 | Percent change |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mar. | June | Sept. | Dec. | Mar. | June | Sept. | Dec. | Mar. | 3 months ended | 12 months ended |
|  |  |  |  |  |  |  |  |  |  | Mar. 2009 |  |
| COMPENSATION |  |  |  |  |  |  |  |  |  |  |  |
| Workers by bargaining status ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| Union.. | 102.7 | 103.9 | 104.4 | 105.1 | 105.9 | 106.7 | 107.4 | 108.0 | 109.1 | 1.0 | 3.0 |
| Goods-producing. | 101.5 | 102.8 | 103.1 | 104.0 | 104.6 | 105.6 | 106.2 | 106.9 | 108.0 | 1.0 | 3.3 |
| Manufacturing. | 99.2 | 100.0 | 100.0 | 101.0 | 101.4 | 101.7 | 102.1 | 102.8 | 104.4 | 1.6 | 3.0 |
| Service-providing. | 103.7 | 104.7 | 105.4 | 106.0 | 107.0 | 107.5 | 108.3 | 108.8 | 109.9 | 1.0 | 2.7 |
| Nonunion.. | 104.2 | 105.1 | 105.9 | 106.5 | 107.5 | 108.3 | 108.9 | 109.1 | 109.4 | . 3 | 1.8 |
| Goods-producing. | 103.3 | 104.2 | 104.8 | 105.4 | 106.5 | 107.1 | 107.6 | 107.7 | 107.9 | . 2 | 1.3 |
| Manufacturing. | 102.8 | 103.7 | 104.1 | 104.6 | 105.6 | 106.2 | 106.6 | 106.8 | 107.1 | . 3 | 1.4 |
| Service-providing............................................... | 104.4 | 105.3 | 106.2 | 106.8 | 107.7 | 108.6 | 109.2 | 109.4 | 109.8 | . 4 | 1.9 |
| Workers by region ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| Northeast. | 104.0 | 105.1 | 106.2 | 106.8 | 107.4 | 108.1 | 108.7 | 109.5 | 109.8 | . 3 | 2.2 |
| South................................................................. | 104.3 | 105.3 | 106.1 | 106.7 | 107.8 | 108.5 | 109.1 | 109.3 | 109.8 | . 5 | 1.9 |
| Midwest. | 103.3 | 104.2 | 104.6 | 105.3 | 106.0 | 107.0 | 107.4 | 107.6 | 107.9 | . 3 | 1.8 |
| West. | 104.2 | 104.9 | 105.7 | 106.5 | 107.8 | 108.4 | 109.3 | 109.4 | 109.9 | . 5 | 1.9 |
| WAGES AND SALARIES |  |  |  |  |  |  |  |  |  |  |  |
| Workers by bargaining status ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| Union. | 102.8 | 103.7 | 104.4 | 104.7 | 105.5 | 106.7 | 107.4 | 108.1 | 108.8 | . 6 | 3.1 |
| Goods-producing. | 102.7 | 103.6 | 104.3 | 104.3 | 105.2 | 106.4 | 107.1 | 107.7 | 108.2 | . 5 | 2.9 |
| Manufacturing.. | 102.0 | 102.5 | 102.9 | 102.6 | 103.4 | 104.4 | 104.9 | 105.5 | 106.0 | . 5 | 2.5 |
| Service-providing.. | 102.9 | 103.8 | 104.6 | 104.9 | 105.8 | 106.9 | 107.7 | 108.3 | 109.2 | . 8 | 3.2 |
| Nonunion............................................................ | 104.5 | 105.3 | 106.2 | 106.9 | 107.9 | 108.7 | 109.4 | 109.6 | 110.0 | . 4 | 1.9 |
| Goods-producing............................................... | 104.2 | 105.0 | 105.8 | 106.4 | 107.7 | 108.4 | 109.0 | 109.3 | 109.5 | . 2 | 1.7 |
| Manufacturing.. | 103.6 | 104.2 | 104.9 | 105.5 | 106.6 | 107.3 | 108.0 | 108.2 | 108.6 | . 4 | 1.9 |
| Service-providing................................................ | 104.6 | 105.4 | 106.3 | 107.0 | 107.9 | 108.8 | 109.4 | 109.7 | 110.1 | . 4 | 2.0 |
| Workers by region ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| Northeast.. | 104.0 | 105.0 | 106.1 | 106.6 | 107.5 | 108.2 | 108.7 | 109.6 | 109.9 | . 3 | 2.2 |
| South... | 104.6 | 105.6 | 106.5 | 107.0 | 108.1 | 109.1 | 109.8 | 110.0 | 110.4 | . 4 | 2.1 |
| Midwest. | 103.6 | 104.4 | 105.0 | 105.6 | 106.3 | 107.5 | 107.9 | 108.0 | 108.4 | . 4 | 2.0 |
| West............................................................ | 104.8 | 105.4 | 106.2 | 107.0 | 108.3 | 108.9 | 109.9 | 110.1 | 110.5 | . 4 | 2.0 |

${ }^{1}$ The indexes are calculated differently from those for the occupation and industry groups. For a detailed description of the index calculation, see the Monthly Labor Review Technical Note, "Estimation procedures for the Employment Cost Index," May 1982.

NoTE: The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The naics and soc data shown prior to 2006 are for informational purposes only. Series based on NaICs and SOC became the official BLS estimates starting in March 2006.
34. National Compensation Survey: Retirement benefits in private industry by access, participation, and selected series, 2003-2007

| Series | Year |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | 2004 | 2005 | 2006 | $2007{ }^{1}$ |
| All retirement |  |  |  |  |  |
| Percentage of workers with access |  |  |  |  |  |
| All workers........................................................ | 57 | 59 | 60 | 60 | 61 |
| White-collar occupations ${ }^{2}$. | 67 | 69 | 70 | 69 |  |
| Management, professional, and related .................. | - |  | - | - | 76 |
| Sales and office.. |  |  | - |  | 64 |
| Blue-collar occupations ${ }^{2}$. | 59 | 59 | 60 | 62 |  |
| Natural resources, construction, and maintenance...... | - |  | - |  | 61 |
| Production, transportation, and material moving........ |  |  |  |  | 65 |
| Service occupations.... | 28 | 31 | 32 | 34 | 36 |
| Full-time.. | 67 | 68 | 69 | 69 | 70 |
| Part-time.. | 24 | 27 | 27 | 29 | 31 |
| Union.. | 86 | 84 | 88 | 84 | 84 |
| Non-union.. | 54 | 56 | 56 | 57 | 58 |
| Average wage less than $\$ 15$ per hour... | 45 | 46 | 46 | 47 | 47 |
| Average wage $\$ 15$ per hour or higher.... | 76 | 77 | 78 | 77 | 76 |
| Goods-producing industries. | 70 | 70 | 71 | 73 | 70 |
| Service-providing industries... | 53 | 55 | 56 | 56 | 58 |
| Establishments with 1-99 workers.. | 42 | 44 | 44 | 44 | 45 |
| Establishments with 100 or more workers.. | 75 | 77 | 78 | 78 | 78 |
| Percentage of workers participating |  |  |  |  |  |
| All workers.. | 49 | 50 | 50 | 51 | 51 |
| White-collar occupations ${ }^{2}$ | 59 | 61 | 61 | 60 |  |
| Management, professional, and related | - | - | - | - | 69 |
| Sales and office .. |  |  | - |  | 54 |
| Blue-collar occupations ${ }^{2}$. | 50 | 50 | 51 | 52 |  |
| Natural resources, construction, and maintenance...... |  |  |  |  | 51 |
| Production, transportation, and material moving..... | - | - | - | - | 54 |
| Service occupations. | 21 | 22 | 22 | 24 | 25 |
| Full-time.. | 58 | 60 | 60 | 60 | 60 |
| Part-time.. | 18 | 20 | 19 | 21 | 23 |
| Union. | 83 | 81 | 85 | 80 | 81 |
| Non-union. | 45 | 47 | 46 | 47 | 47 |
| Average wage less than $\$ 15$ per hour.. | 35 | 36 | 35 | 36 | 36 |
| Average wage $\$ 15$ per hour or higher. | 70 | 71 | 71 | 70 | 69 |
| Goods-producing industries.. | 63 | 63 | 64 | 64 | 61 |
| Service-providing industries.. | 45 | 47 | 47 | 47 | 48 |
| Establishments with 1-99 workers... | 35 | 37 | 37 | 37 | 37 |
| Establishments with 100 or more workers.. | 65 | 67 | 67 | 67 | 66 |
| Take-up rate (all workers) ${ }^{3}$. |  | - | 85 | 85 | 84 |
| Defined Benefit |  |  |  |  |  |
| Percentage of workers with access |  |  |  |  |  |
| All workers...................................... | 20 | 21 | 22 | 21 | 21 |
| White-collar occupations ${ }^{2}$ | 23 | 24 | 25 | 23 |  |
| Management, professional, and related ........... | - | - | - | - | 29 |
| Sales and office .......... | - | - | - | - | 19 |
| Blue-collar occupations ${ }^{2}$. | 24 | 26 | 26 | 25 |  |
| Natural resources, construction, and maintenance...... | - | - | - | - | 26 |
| Production, transportation, and material moving......... |  | - | - | - | 26 |
| Service occupations................. | 8 | 6 | 7 | 8 | 8 |
| Full-time.. | 24 | 25 | 25 | 24 | 24 |
| Part-time.. | 8 | 9 | 10 | 9 | 10 |
| Union... | 74 | 70 | 73 | 70 | 69 |
| Non-union.. | 15 | 16 | 16 | 15 | 15 |
| Average wage less than $\$ 15$ per hour.. | 12 | 11 | 12 | 11 | 11 |
| Average wage $\$ 15$ per hour or higher.. | 34 | 35 | 35 | 34 | 33 |
| Goods-producing industries.. | 31 | 32 | 33 | 32 | 29 |
| Service-providing industries... | 17 | 18 | 19 | 18 | 19 |
| Establishments with 1-99 workers..... | 9 | 9 | 10 | 9 | 9 |
| Establishments with 100 or more workers. | 34 | 35 | 37 | 35 | 34 |

[^20]34. Continued-National Compensation Survey: Retirement benefits in private industry by access, participation, and selected series, 2003-2007

| Series | Year |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | 2004 | 2005 | 2006 | $2007{ }^{1}$ |
| Percentage of workers participating | 2022 | 2124 | 2124 | 2022 | 20 |
| All workers.... |  |  |  |  |  |
| White-collar occupations ${ }^{2}$ |  |  |  |  | - |
| Management, professional, and related . |  |  |  |  | 28 |
| Sales and office .. |  |  |  |  | 17 |
| Blue-collar occupations ${ }^{2}$. | 24 | 25 | 26 | 25 | - |
| Natural resources, construction, and maintenance... |  |  | - | - | 25 |
| Production, transportation, and material moving.... |  |  |  |  | 25 |
| Service occupations... | 7 | 6 | 7 | 7 | 7 |
| Full-time.... | 24 | 24 | 25 | 23 | 23 |
| Part-time... | 8 | 9 | 9 | 8 | 9 |
| Union... | 72 | 69 | 72 | 68 | 67 |
| Non-union.. | 15 | 15 | 15 | 14 | 15 |
| Average wage less than $\$ 15$ per hour... | 11 | 11 | 11 | 10 | 10 |
| Average wage $\$ 15$ per hour or higher.. | 33 | 35 | 34 | 33 | 32 |
| Goods-producing industries... | 31 | 31 | 32 | 31 | 28 |
| Service-providing industries... | 16 | 18 | 18 | 17 | 18 |
| Establishments with 1-99 workers........ | 8 | 9 | 9 | 9 | 9 |
| Establishments with 100 or more workers.. | 33 | 34 | 36 | 33 | 32 |
| Take-up rate (all workers) ${ }^{3}$. |  |  | 97 | 96 | 95 |
| Defined Contribution |  |  |  |  |  |
| Percentage of workers with access |  |  |  |  |  |
| All workers... | 51 | 53 | 53 | 54 | 55 |
| White-collar occupations ${ }^{2}$ | 62 | 64 | 64 | 65 |  |
| Management, professional, and related . | - | - | - | - | 71 |
| Sales and office |  |  | - |  | 60 |
| Blue-collar occupations ${ }^{2}$. | 49 | 49 | 50 | 53 | - |
| Natural resources, construction, and maintenance... | - |  | - | - | 51 |
| Production, transportation, and material moving.. | - |  | - | - | 56 |
| Service occupations. | 23 | 27 | 28 | 30 | 32 |
| Full-time... | 60 | 62 | 62 | 63 | 64 |
| Part-time.. | 21 | 23 | 23 | 25 | 27 |
| Union.. | 45 | 48 | 49 | 50 | 49 |
| Non-union.. | 51 | 53 | 54 | 55 | 56 |
| Average wage less than $\$ 15$ per hour.. | 40 | 41 | 41 | 43 | 44 |
| Average wage $\$ 15$ per hour or higher.. | 67 | 68 | 69 | 69 | 69 |
| Goods-producing industries.. | 60 | 60 | 61 | 63 | 62 |
| Service-providing industries... | 48 | 50 | 51 | 52 | 53 |
| Establishments with 1-99 workers.... | 38 | 40 | 40 | 41 | 42 |
| Establishments with 100 or more workers.. | 65 | 68 | 69 | 70 | 70 |
| Percentage of workers participating |  |  |  |  |  |
| All workers... | 40 | 42 | 42 | 43 | 43 |
| White-collar occupations ${ }^{2}$ | 51 | 53 | 53 | 53 | - |
| Management, professional, and related | - | - | - | - | 60 |
| Sales and office ........... | - | - | - | - | 47 |
| Blue-collar occupations ${ }^{2}$. | 38 | 38 | 38 | 40 | - |
| Natural resources, construction, and maintenance... | - | - | - | - | 40 |
| Production, transportation, and material moving..... |  |  | - | - | 41 |
| Service occupations...... | 16 | 18 | 18 | 20 | 20 |
| Full-time.. | 48 | 50 | 50 | 51 | 50 |
| Part-time... | 14 | 14 | 14 | 16 | 18 |
| Union... | 39 | 42 | 43 | 44 | 41 |
| Non-union................... | 40 | 42 | 41 | 43 | 43 |
| Average wage less than $\$ 15$ per hour.... | 29 | 30 | 29 | 31 | 30 |
| Average wage $\$ 15$ per hour or higher... | 57 | 59 | 59 | 58 | 57 |
| Goods-producing industries... | 49 | 49 | 50 | 51 | 49 |
| Service-providing industries... | 37 | 40 | 39 | 40 | 41 |
| Establishments with 1-99 workers.... | 31 | 32 | 32 | 33 | 33 |
| Establishments with 100 or more workers.. | 51 | 53 | 53 | 54 | 53 |
| Take-up rate (all workers) ${ }^{3}$................................... |  |  | 78 | 79 | 77 |

[^21]34. Continued-National Compensation Survey: Retirement benefits in private industry by access, participation, and selected series, 2003-2007

${ }^{1}$ The 2002 North American Industry Classification System (NAICS) replaced the 1987 Standard Industrial Classification (SIC)
System. Estimates for goods-producing and service-providing (formerly service-producing) industries are considered comparable. Also introduced was the 2000 Standard Occupational Classification (SOC) to replace the 1990 Census of Population system. Only service occupations are considered comparable.
${ }^{2}$ The white-collar and blue-collar occupation series were discontinued effective 2007.
${ }^{3}$ The take-up rate is an estimate of the percentage of workers with access to a plan who participate in the plan.

Note: Where applicable, dashes indicate no employees in this category or data do not meet publication criteria.
35. National Compensation Survey: Health insurance benefits in private industry by access, particpation, and selected series, 2003-2007

| Series | Year |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | 2004 | 2005 | 2006 | $2007{ }^{1}$ |
| Medical insurance Percentage of workers with access |  |  |  |  |  |
|  |  |  |  |  |  |
| All workers... | 60 | 69 | 70 | 71 | 71 |
| White-collar occupations ${ }^{2}$. | 65 | 76 | 77 | 77 | - |
| Management, professional, and related |  |  |  |  | 85 |
| Sales and office... |  |  |  |  | 71 |
| Blue-collar occupations ${ }^{2}$. | 64 | 76 | 77 | 77 | - |
| Natural resources, construction, and maintenance.. | - |  | - | - | 76 |
| Production, transportation, and material moving.. |  |  | - |  | 78 |
| Service occupations. | 38 | 42 | 44 | 45 | 46 |
| Full-time. | 73 | 84 | 85 | 85 | 85 |
| Part-time. | 17 | 20 | 22 | 22 | 24 |
| Union. | 67 | 89 | 92 | 89 | 88 |
| Non-union... | 59 | 67 | 68 | 68 | 69 |
| Average wage less than $\$ 15$ per hour.. | 51 | 57 | 58 | 57 | 57 |
| Average wage $\$ 15$ per hour or higher.. | 74 | 86 | 87 | 88 | 87 |
| Goods-producing industries.. | 68 | 83 | 85 | 86 | 85 |
| Service-providing industries... | 57 | 65 | 66 | 66 | 67 |
| Establishments with 1-99 workers. | 49 | 58 | 59 | 59 | 59 |
| Establishments with 100 or more workers.. | 72 | 82 | 84 | 84 | 84 |
| Percentage of workers participating |  |  |  |  |  |
| All workers.. | 45 | 53 | 53 | 52 | 52 |
| White-collar occupations ${ }^{2}$ | 50 | 59 | 58 | 57 |  |
| Management, professional, and related . | - |  |  |  | 67 |
| Sales and office... |  |  | - |  | 48 |
| Blue-collar occupations ${ }^{2}$. | 51 | 60 | 61 | 60 | - |
| Natural resources, construction, and maintenance.. | - |  | - |  | 61 |
| Production, transportation, and material moving.. | - |  | - | - | 60 |
| Service occupations. | 22 | 24 | 27 | 27 | 28 |
| Full-time.. | 56 | 66 | 66 | 64 | 64 |
| Part-time. | 9 | 11 | 12 | 13 | 12 |
| Union.. | 60 | 81 | 83 | 80 | 78 |
| Non-union.. | 44 | 50 | 49 | 49 | 49 |
| Average wage less than $\$ 15$ per hour.. | 35 | 40 | 39 | 38 | 37 |
| Average wage $\$ 15$ per hour or higher. | 61 | 71 | 72 | 71 | 70 |
| Goods-producing industries.. | 57 | 69 | 70 | 70 | 68 |
| Service-providing industries... | 42 | 48 | 48 | 47 | 47 |
| Establishments with 1-99 workers.. | 36 | 43 | 43 | 43 | 42 |
| Establishments with 100 or more workers.. | 55 | 64 | 65 | 63 | 62 |
| Take-up rate (all workers) ${ }^{3}$. | - | - | 75 | 74 | 73 |
| Dental |  |  |  |  |  |
| Percentage of workers with access |  |  |  |  |  |
| All workers..... | 40 | 46 | 46 | 46 | 46 |
| White-collar occupations ${ }^{2}$. | 47 | 53 | 54 | 53 | - |
| Management, professional, and related | - |  | - |  | 62 |
| Sales and office... | - |  | - | - | 47 |
| Blue-collar occupations ${ }^{2}$. | 40 | 47 | 47 | 46 | - |
| Natural resources, construction, and maintenance.. | - |  | - | - | 43 |
| Production, transportation, and material moving.. | - | - | - | - | 49 |
| Service occupations.. | 22 | 25 | 25 | 27 | 28 |
| Full-time.. | 49 | 56 | 56 | 55 | 56 |
| Part-time. | 9 | 13 | 14 | 15 | 16 |
| Union.. | 57 | 73 | 73 | 69 | 68 |
| Non-union.. | 38 | 43 | 43 | 43 | 44 |
| Average wage less than $\$ 15$ per hour.. | 30 | 34 | 34 | 34 | 34 |
| Average wage $\$ 15$ per hour or higher.. | 55 | 63 | 62 | 62 | 61 |
| Goods-producing industries.. | 48 | 56 | 56 | 56 | 54 |
| Service-providing industries.. | 37 | 43 | 43 | 43 | 44 |
| Establishments with 1-99 workers... | 27 | 31 | 31 | 31 | 30 |
| Establishments with 100 or more workers. | 55 | 64 | 65 | 64 | 64 |

[^22]35. Continued-National Compensation Survey: Health insurance benefits in private industry by access, particpation, and selected series, 2003-2007

| Series | Year |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | 2004 | 2005 | 2006 | $2007{ }^{1}$ |
| Percentage of workers participating |  |  |  |  |  |
| All workers.. | 32 | 37 | 36 | 36 | 36 |
| White-collar occupations ${ }^{2}$. | 37 | 43 | 42 | 41 | - |
| Management, professional, and related |  | - | - | - | 51 |
| Sales and office.. |  | - |  |  | 33 |
| Blue-collar occupations ${ }^{2}$. | 33 | 40 | 39 | 38 | - |
| Natural resources, construction, and maintenance.. |  | - | - | - | 36 |
| Production, transportation, and material moving.. | - | - | - | - | 38 |
| Service occupations. | 15 | 16 | 17 | 18 | 20 |
| Full-time.. | 40 | 46 | 45 | 44 | 44 |
| Part-time.. | 6 | 8 | 9 | 10 | 9 |
| Union.. | 51 | 68 | 67 | 63 | 62 |
| Non-union.. | 30 | 33 | 33 | 33 | 33 |
| Average wage less than $\$ 15$ per hour.. | 22 | 26 | 24 | 23 | 23 |
| Average wage $\$ 15$ per hour or higher.. | 47 | 53 | 52 | 52 | 51 |
| Goods-producing industries.. | 42 | 49 | 49 | 49 | 45 |
| Service-providing industries..... | 29 | 33 | 33 | 32 | 33 |
| Establishments with 1-99 workers.. | 21 | 24 | 24 | 24 | 24 |
| Establishments with 100 or more workers.. | 44 | 52 | 51 | 50 | 49 |
| Take-up rate (all workers) ${ }^{3}$. | - | - | 78 | 78 | 77 |
| Vision care |  |  |  |  |  |
| Percentage of workers with access. | 25 | 29 | 29 | 29 | 29 |
| Percentage of workers participating... | 19 | 22 | 22 | 22 | 22 |
| Outpatient Prescription drug coverage |  |  |  |  |  |
| Percentage of workers with access... | - | - | 64 | 67 | 68 |
| Percentage of workers participating.. | - | - | 48 | 49 | 49 |
| Percent of estalishments offering healthcare benefits | 58 | 61 | 63 | 62 | 60 |
| Percentage of medical premium paid by Employer and Employee |  |  |  |  |  |
| Single coverage |  |  |  |  |  |
| Employer share... | 82 | 82 | 82 | 82 | 81 |
| Employee share.. | 18 | 18 | 18 | 18 | 19 |
| Family coverage |  |  |  |  |  |
| Employer share... | 70 | 69 | 71 | 70 | 71 |
| Employee share.................................................................. | 30 | 31 | 29 | 30 | 29 |

${ }^{1}$ The 2002 North American Industry Classification System (NAICS) replaced the 1987 Standard Industrial Classification (SIC)
System. Estimates for goods-producing and service-providing (formerly service-producing) industries are considered comparable. Also introduced was the 2000 Standard Occupational Classification (SOC) to replace the 1990 Census of Population system.
Only service occupations are considered comparable
${ }^{2}$ The white-collar and blue-collar occupation series were discontinued effective 2007.
${ }^{3}$ The take-up rate is an estimate of the percentage of workers with access to a plan who participate in the plan.
Note: Where applicable, dashes indicate no employees in this category or data do not meet publication criteria.
36. National Compensation Survey: Percent of workers in private industry with access to selected benefits, 2003-2007

| Benefit | Year |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2003 | 2004 | 2005 | 2006 | 2007 |
| Life insurance.. | 50 | 51 | 52 | 52 | 58 |
| Short-term disabilty insurance... | 39 | 39 | 40 | 39 | 39 |
| Long-term disability insurance..... | 30 | 30 | 30 | 30 | 31 |
| Long-term care insurance.. | 11 | 11 | 11 | 12 | 12 |
| Flexible work place........ | 4 | 4 | 4 | 4 | 5 |
| Section 125 cafeteria benefits |  |  |  |  |  |
| Flexible benefits... | - |  | 17 | 17 | 17 |
| Dependent care reimbursement account...... | - | - | 29 | 30 | 31 |
| Healthcare reimbursement account.. | - |  | 31 | 32 | 33 |
| Health Savings Account........ | - | - | 5 | 6 | 8 |
| Employee assistance program... | - | - | 40 | 40 | 42 |
| Paid leave |  |  |  |  |  |
| Holidays.. | 79 | 77 | 77 | 76 | 77 |
| Vacations.. | 79 | 77 | 77 | 77 | 77 |
| Sick leave.. | - | 59 | 58 | 57 | 57 |
| Personal leave. | - |  | 36 | 37 | 38 |
| Family leave |  |  |  |  |  |
| Paid family leave. | - | - | 7 | 8 | 8 |
| Unpaid family leave.............. |  |  | 81 | 82 | 83 |
| Employer assistance for child care.. | 18 | 14 | 14 | 15 | 15 |
| Nonproduction bonuses......................................... | 49 | 47 | 47 | 46 | 47 |

Note: Where applicable, dashes indicate no employees in this category or data do not meet publication criteria.
37. Work stoppages involving $\mathbf{1 , 0 0 0}$ workers or more

| Measure | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. ${ }^{\text {p }}$ |
| Number of stoppages: <br> Beginning in period. $\qquad$ <br> In effect during period. $\qquad$ | 21 23 | 15 16 | 1 |  | 2 | 1 | 2 | 2 2 | 1 | 0 1 | 0 | 0 | 0 | 0 | 0 |
| Workers involved: <br> Beginning in period (in thousands)... In effect during period (in thousands). | 189.2 220.9 | 72.2 136.8 | 2.3 5.9 | 4.2 10.1 | 4.2 4.2 | 8.5 8.5 | 7.0 7.0 | 28.2 28.2 | 6.0 33.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 | 0.0 0.0 |
| Days idle: <br> Number (in thousands) $\qquad$ <br> Percent of estimated working time ${ }^{1}$. | $\begin{array}{r}1264.8 \\ 0.01 \\ \hline\end{array}$ | $\begin{array}{r} 1954.1 \\ 0.01 \\ \hline \end{array}$ | $\begin{array}{r} 102.2 \\ 0 \\ \hline \end{array}$ | $\begin{array}{r} 129.0 \\ 0 \\ \hline \end{array}$ | $\begin{array}{r}12.3 \\ 0 \\ \hline\end{array}$ | 42.5 0 | 100.6 0 | $\begin{array}{r}469.8 \\ 0.02 \\ \hline\end{array}$ | 600.0 0.02 | 0.0 0 | 0.0 0 | 0.0 0 | 0.0 0 | 0.0 0 | $\begin{array}{r}0.0 \\ 0 \\ \hline\end{array}$ |

[^23]worked is found in "Total economy measures of strike idleness," Monthly Labor Review, October 1968, pp. 54-56.

NOTE: $p=$ preliminary
38. Consumer Price Indexes for All Urban Consumers and for Urban Wage Earners and Clerical Workers:

## U.S. city average, by expenditure category and commodity or service group

[1982-84 = 100, unless otherwise indicated]

| Series | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| CONSUMER PRICE INDEX FOR ALL URBAN CONSUMERS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| All item | 207.342 | 215.303 | 214.823 | 216.632 | 218.815 | 219.964 | 219.086 | 218.783 | 216.573 | 212.425 | 210.228 | 211.143 | 212.193 | 212.709 | 213.240 |
| All items (1967 = 100) | 621.106 | 644.951 | 643.515 | 648.933 | 655.474 | 658.915 | 656.284 | 655.376 | 648.758 | 636.332 | 629.751 | 632.491 | 635.637 | 637.182 | 638.771 |
| Food and beverage | 3.300 | 214.225 | 211.365 | 212.251 | 213.383 | 215.326 | 216.419 | 217.672 | 218.705 | 218.752 | 218.839 | 219.729 | 219.333 | 218.794 | 218.364 |
| Food. | 202.916 | 214.106 | 211.102 | 212.054 | 213.243 | 215.299 | 216.422 | 217.696 | 218.738 | 218.749 | 218.805 | 219.675 | 219.205 | 218.600 | . 162 |
| Food | 201.245 | 214.125 | 210.851 | 211.863 | 213.171 | 215.785 | 217.259 | 218.629 | 219.660 | 219.086 | 218.683 | 74 | 218.389 | 217.110 | 15.783 |
| Cereals and bakery products | 222.107 | 244.853 | 240.034 | 244.192 | 245.758 | 250.321 | 250.080 | 250.924 | 252.832 | 252.723 | 253.063 | 254.445 | 254.187 | 253.698 | 252.709 |
| Meats, poultry, fish, and eggs | 195.616 | 204.653 | 200.770 | 200.960 | 202.914 | 205.075 | 207.488 | 209.937 | 210.706 | 209.602 | 208.890 | 208.616 | 207.963 | 206.348 | 205.699 |
| Dairy and related products ${ }^{1}$. | 194.770 | 6 | 207.680 | 207.778 | 209.117 | 213.981 | 214.748 | 213.533 | 212.733 | 213.102 | 210.838 | 209.632 | 204.537 | 199.687 | 197.124 |
| Fruits and vegetables.....................................262.628Nonalcoholic beverages and beverage |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| materials | 153.432 | 160.045 | 159.730 | 158.336 | 158.320 | 159.346 | 160.055 | 161.499 | 163.727 | 163.015 | 162.750 | 164.882 | 164.213 | 165.656 | 62.889 |
| Other foods at hom | 173.275 | 184.166 | 181.806 | 182.680 | 183.804 | 185.725 | 186.991 | 187.944 | 189.348 | 189.301 | 190.203 | 192.492 | 192.404 | 192.234 | 191.352 |
| Sugar and sweets | 176.772 | 186.577 | 184.878 | 185.097 | 185.558 | 187.067 | 187.813 | 189.929 | 190.515 | 191.756 | 193.312 | 197.429 | 196.676 | 197.137 | 197.301 |
| Fats and oils. | 172.921 | 196.751 | 190.640 | 193.364 | 196.150 | 201.205 | 203.059 | 206.274 | 208.300 | 205.806 | 206.710 | 206.886 | 205.359 | 204.776 | 200.464 |
| Other foods. | 188.244 | 198.103 | 195.993 | 196.787 | 197.888 | 199.566 | 200.961 | 201.388 | 202.993 | 203.058 | 203.902 | 206.343 | 206.621 | 206.367 | 205.734 |
| Other miscellaneous foods ${ }^{1,2}$. | 115.105 | 119.924 | 118.500 | 118.744 | 118.453 | 120.510 | 121.033 | 121.144 | 122.699 | 123.543 | 123.791 | 124.012 | 122.580 | 122.402 | 122.883 |
| Food away from home ${ }^{1}$. | 206.659 | 215.769 | 83 | 213.967 | 215.015 | 216.376 | 217.063 | 218.225 | 219.290 | 220.043 | 220.684 | 221.319 | 21.968 | 22.216 | 222.905 |
| Other food away from home ${ }^{1,2}$. | 144.068 | 150.640 | 148.667 | 149.666 | 149.873 | 151.120 | 151.133 | 152.040 | 153.544 | 153.978 | 154.062 | 153.402 | 154.726 | 154.414 | 155.099 |
| Alcoholic beverages. | 207.026 | 214.484 | 213.503 | 213.532 | 213.912 | 214.394 | 215.094 | 216.055 | 216.972 | 217.492 | 217.975 | 219.113 | 219.682 | 219.999 | 219.671 |
| Housing. | 209.586 | 216.264 | 214.890 | 215.809 | 217.941 | 219.610 | 219.148 | 218.184 | 217.383 | 216.467 | 216.073 | 216.928 | 217.180 | 217.374 | 217.126 |
| Shelter | 240.611 | 246.666 | 246.004 | 246.069 | 247.083 | 248.075 | 247.985 | 247.737 | 247.844 | 247.463 | 247.085 | 248.292 | 248.878 | 249.597 | 249.855 |
| Rent of primary residence | 234.679 | 243.271 | 241.474 | 241.803 | 242.640 | 243.367 | 244.181 | 244.926 | 245.855 | 246.681 | 247.278 | 247.974 | 248.305 | 248.639 | 248.899 |
| Lodging away from home | 142.813 | 143.664 | 46.378 | 145.634 | 621 | 153.032 | 149.146 | . 597 | 141.140 | 555 | 157 | . 559 | . 809 | 137.715 | 137.700 |
| Owners' equivalent rent of primary residenc | 246 | 252.426 | 251.418 | 251.576 | 252.170 | 252.504 | 252.957 | 253.493 | 253.902 | 254.669 | 254.875 | 255.500 | 255.779 | 256.321 | 256.622 |
| Tenants' and household insurance ${ }^{1,2}$. | 117.004 | 118.843 | 118.422 | 118.411 | 119.092 | 118.764 | 118.562 | 119.944 | 119.916 | 120.232 | 120.019 | 120.402 | 120.683 | 120.737 | 120.675 |
| Fuels and utilities | 200.632 | 220.018 | 213.302 | 219.881 | 231.412 | 239.039 | 235.650 | 228.450 | 221.199 | 216.285 | 215.184 | 215.232 | 213.520 | 210.501 | 207.175 |
| Fuels. | 181.744 | 200.808 | 194.121 | 201.212 | 213.762 | 221.742 | 217.455 | 209.501 | 201.176 | 195.599 | 194.335 | 194.149 | 192.168 | 188.736 | 184.903 |
| Fuel oil and other fuels | 251.453 | 334.405 | 342.811 | 363.872 | 389.423 | 395.706 | 367.794 | 349.164 | 318.667 | 281.869 | 256.209 | 247.163 | 242.264 | 230.837 | 228.107 |
| Gas (piped) and electricity | 186.262 | 202.212 | 194.379 | 200.999 | 213.375 | 221.805 | 218.656 | 210.950 | 203.503 | 199.435 | 199.487 | 199.791 | 197.886 | 194.752 | 190.686 |
| Household furnishings and operatio | 126.875 | 127.800 | 127.332 | 127.598 | 127.625 | 127.884 | 128.013 | 128.584 | 128.789 | 128.554 | 128.535 | 128.761 | 129.170 | 129.669 | 129.654 |
| Apparel. | 118.998 | 118.907 | 122.113 | 120.752 | 117.019 | 114.357 | 116.376 | 121.168 | 122.243 | 121.262 | 117.078 | 114.764 | 118.825 | 122.545 | 123.208 |
| Men's and boys' apparel | 112.368 | 113.032 | 116.653 | 116.479 | 112.011 | 109.669 | 110.180 | 112.720 | 115.067 | 114.239 | 110.767 | 110.797 | 115.202 | 117.748 | 117.195 |
| Women's and girls' apparel.. | 110.296 | 107.460 | 111.221 | 108.722 | 104.312 | 100.049 | 104.211 | 111.774 | 111.833 | 110.588 | 105.456 | 100.638 | 105.777 | 111.079 | 111.871 |
| Infants' and toddlers' apparel ${ }^{\text {P }}$ | 113.948 | 113.762 | 116.358 | 114.582 | 111.555 | 109.218 | 109.558 | 94 | 116.158 | 10 | 112.568 | 321 | 13.544 | 15.548 | 117.084 |
| Footwear. | 122.374 | 124.157 | 126.212 | 125.537 | 123.568 | 122.421 | 121.982 | 124.907 | 126.442 | 126.788 | 124.093 | 122.363 | 124.301 | 126.707 | 128.057 |
| Transportation. | 184.682 | 195.549 | 198.608 | 205.262 | 211.787 | 212.806 | 206.739 | 203.861 | 192.709 | 173.644 | 164.628 | 166.738 | 169.542 | 169.647 | 171.987 |
| Private transportation. | 180.778 | 191.039 | 194.574 | 201.133 | 207.257 | 208.038 | 201.779 | 199.153 | 187.976 | 168.527 | 159.411 | 161.788 | 164.871 | 165.023 | 167.516 |
| New and used motor vehicle | 94.303 | 93.291 | 93.973 | 93.705 | 93.598 | 93.650 | 93.260 | 92.480 | 92.071 | 91.6 | 91.408 | 91.831 | 92.224 | 92.109 | 92.381 |
| New vehicles. | 136.254 | 134.194 | 135.175 | 134.669 | 134.516 | 134.397 | 133.404 | 132.399 | 132.264 | 132.359 | 132.308 | 133.273 | 134.186 | 134.611 | 134.863 |
| Used cars and trucks ${ }^{1}$. | 135.747 | 133.951 | 136.787 | 136.325 | 135.980 | 135.840 | 135.405 | 132.916 | 129.733 | 126.869 | 125.883 | 124.863 | 122.837 | 121.061 | 121.213 |
| Motor | 239.070 | 279.652 | 294.291 | 322.124 | 347.418 | 349.731 | 323.822 | 315.078 | 268.537 | 187.189 | 149.132 | 156.604 | 167.395 | 168.404 | 177.272 |
| Gasoline (all types). | 237.959 | 277.457 | 291.910 | 319.787 | 344.981 | 347.357 | 321.511 | 313.535 | 266.382 | 184.235 | 146.102 | 154.488 | 166.118 | 167.826 | 176.704 |
| Motor vehicle parts and equipment. | 121.583 | 128.747 | 126.049 | 126.824 | 127.824 | 129.118 | 130.327 | 131.048 | 131.917 | 132.947 | 133.077 | 133.414 | 134.108 | 134.484 | 134.640 |
| Motor vehicle maintenance and repair. | 222.963 | 233.859 | 230.528 | 231.730 | 233.162 | 234.788 | 236.125 | 237.121 | 238.227 | 239.048 | 239.356 | 241.076 | 241.689 | 242.118 | 242.649 |
| Public transportation. | 230.002 | 250.549 | 244.164 | 251.600 | 264.681 | 270.002 | 268.487 | 261.318 | 252.323 | 243.385 | 237.638 | 234.394 | 231.529 | 230.735 | 229.827 |
| Medical care | 351.054 | 364.065 | 363.184 | 363.396 | 363.616 | 363.963 | 364.477 | 365.036 | 365.746 | 366.613 | 367.133 | 369.830 | 372.405 | 373.189 | 374.170 |
| Medical care commoditie | 289.999 | 296.045 | 296.951 | 294.896 | 295.194 | 294.777 | 295.003 | 295.461 | 295.791 | 297.317 | 298.361 | 299.998 | 302.184 | 302.908 | 303.979 |
| Medical care services | 369.302 | 384.943 | 383.292 | 384.505 | 384.685 | 385.361 | 385.990 | 386.579 | 387.440 | 387.992 | 388.267 | 391.365 | 394.047 | 394.837 | 395.753 |
| Professional services | 300.792 | 310.968 | 309.227 | 310.917 | 311.317 | 311.926 | 312.396 | 312.527 | 312.914 | 313.328 | 313.886 | 315.603 | 316.992 | 317.460 | 317.661 |
| Hospital and related services | 498.922 | 533.953 | 530.144 | 531.022 | 531.606 | 533.558 | 535.501 | 537.728 | 540.853 | 543.183 | 543.585 | 551.305 | 558.373 | 560.995 | 564.785 |
| $\text { Recreation }{ }^{2} \text {. }$ | 111.443 | 113.254 | 112.8 | 112.987 | 112.991 | 113.277 | 113.786 | 114.032 | 114.169 | 114.078 | 113.674 | 113.822 | 114.461 | 114.62 | 114.261 |
| Video and audio ${ }^{1,2}$ | 102.949 | 102.632 | 103.477 | 102.988 | 102.306 | 102.203 | 102.546 | 102.706 | 102.193 | 101.831 | 101.629 | 101.347 | 101.704 | 102.000 | 102.300 |
| Education and communicatior ${ }^{2}$. | 119.577 | 123.631 | 122.07 | 122.348 | 122.828 | 123.44 | 124.653 | 125.505 | 125.686 | 125.758 | 125.921 | 126.151 | 126.190 | 126.187 | 126.273 |
| Education ${ }^{2}$. | 171.388 | 181.277 | 177.754 | 177.994 | 178.385 | 179.229 | 183.184 | 186.148 | 186.669 | 186.733 | 186.916 | 187.175 | 187.256 | 187.298 | 187.416 |
| Educational books and supplies. | 420.418 | 450.187 | 442.160 | 442.770 | 443.309 | 444.382 | 458.989 | 462.787 | 463.825 | 462.694 | 464.544 | 468.432 | 469.996 | 472.185 | 72.507 |
| Tuition, other school fees, and child care. | 494.079 | 522.098 | 511.887 | 512.579 | 513.743 | 516.264 | 527.230 | 536.082 | 537.606 | 537.906 | 538.309 | 538.765 | 538.878 | 538.813 | 539.149 |
| Communication ${ }^{1,2}$ | 367 | 5 | 83.670 | 83.929 | 4.3 | 84.840 | 84.701 | 84.524 | 84.53 | 84.60 | 84.73 | 84 | 84.9 | 84.92 | 84.985 |
| Information and information processing ${ }^{1,2}$ | 80.720 | 81.352 | 80.921 | 81.080 | 81.513 | 81.965 | 81.815 | 81.635 | 81.652 | 81.723 | 81.886 | 82.030 | 82.052 | 82.022 | 82.090 |
| Telephone servicese ${ }^{1,2} . . . . . . . . . . . . . . . . . . . . . . . . ~$ | 98.247 | 100.451 | 99.494 | 99.879 | 100.677 | 101.339 | 101.301 | 101.311 | 101.407 | 101.538 | 101.688 | 101.880 | 101.895 | 101.991 | 102.072 |
| Information and information processing other than telephone services ${ }^{1,4} \ldots \ldots . . . .$. | 10.597 | 10.061 | 10.170 | 10.118 | 10.071 | 10.087 | 10.012 | 9.901 | 9.874 | 9.867 | 9.906 | 9.919 | 9.926 | 9.872 | 9.881 |
| Personal computers and peripheral |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| equipment ${ }^{1,2}$. | 108.411 | 94.944 | 98.853 | 97.028 | 95.663 | 94.711 | 92.921 | 90.797 | 89.945 | 88.984 | 88.529 | 88.522 | 87.696 | 86.213 | 85.714 |
| Other goods and services.. | 333.328 | 345.381 | 343.410 | 344.709 | 345.885 | 346.810 | 346.990 | 348.166 | 349.276 | 349.040 | 349.220 | 350.259 | 351.223 | 361.156 | 370.606 |
| Tobacco and smoking products | 554.184 | 588.682 | 576.359 | 581.185 | 589.904 | 596.782 | 597.361 | 597.581 | 599.744 | 599.820 | 602.644 | 607.403 | 611.549 | 679.078 | 742.443 |
| Personal care ${ }^{1}$. | 195.622 | 201.279 | 201.028 | 201.523 | 201.537 | 201.545 | 201.623 | 202.486 | 203.107 | 202.921 | 202.774 | 203.080 | 203.391 | 204.117 | 204.896 |
| Personal care products ${ }^{1}$. | 158.285 | 159.290 | 159.398 | 158.790 | 158.868 | 158.989 | 159.252 | 159.643 | 159.826 | 161.000 | 161.397 | 162.588 | 162.508 | 162.69 | 163.777 |
| Personal care services ${ }^{1}$. | 216.559 | 223.669 | 222.799 | 223.649 | 223.520 | 223.719 | 224.151 | 224.614 | 225.564 | 226.197 | 226.281 | 225.734 | 225.895 | 227.982 | 227.913 |

See footnotes at end of table.

## 38. Continued-Consumer Price Indexes for All Urban Consumers and for Urban Wage Earners and Clerical Workers

 U.S. city average, by expenditure category and commodity or service group [1982-84 = 100, unless otherwise indicated]
38. Continued-Consumer Price Indexes for All Urban Consumers and for Urban Wage Earners and Clerical Workers: U.S. city average, by expenditure category and commodity or service group
[1982-84 $=100$, unless otherwise indicated]

| Series | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| w | 137.415 | 135.338 | 136.456 | 135.933 | 135.728 | 135.556 | 134.540 | 133.504 | 133.351 | 133.380 | 133.317 | 134.490 | 135.248 | 135.744 | 5.9 |
| Used cars and trucks ${ }^{1}$. | 586 | 134.731 | 137.616 | 137.145 | 136.790 | 136.639 | 136.186 | 133.669 | 130.444 | 127.540 | 126.526 | 125.485 | 123.443 | 669 | 121.850 |
| Motor | 239.900 | 280.817 | 295.618 | 323.495 | 348.762 | 351.124 | 325.116 | 316.717 | 269.639 | 187.770 | 149.650 | 157.265 | 168.028 | 169.060 | 177.982 |
| Gasoline (all | 238.879 | 278.728 | 293.349 | 321.291 | 346.459 | 348.888 | 322.930 | 315.324 | 267.580 | 184.855 | 146.644 | 155.204 | 166.831 | 168.574 | 177.510 |
| Motor vehicle parts and equipme | 121.356 | 128.776 | 126.032 | 126.742 | 127.750 | 128.997 | 130.228 | 131.072 | 132.088 | 133.125 | 133.295 | 133.645 | 134.264 | 134.485 | 134.614 |
| Motor vehicle maintenance and rep | 535 | 236.353 | 232.983 | 234.221 | 235.550 | 237.324 | 238.583 | 239.571 | 240.688 | 241.509 | 241.855 | 243.594 | 244.219 | 244.650 | 245.180 |
| Public transportation | 228.531 | 247.865 | 241.966 | 249.310 | 261.779 | 266.259 | 264.755 | 258.142 | 249.168 | 240.496 | 235.199 | 232.422 | 229.404 | 229.034 | 228.525 |
| Medical care | 350.882 | 364.208 | 363.356 | 363.462 | 363.628 | 363.942 | 364.652 | 365.250 | 366.000 | 366.800 | 367.301 | 370.001 | 372.630 | 373.541 | 374.599 |
| Medical care commoditie | 282.558 | 287.970 | 288.796 | 286.825 | 287.033 | 286.562 | 286.880 | 287.397 | 287.725 | 289.046 | 290.080 | 291.710 | 293.917 | 294.728 | 295.699 |
| Medical care services | 370.111 | 386.317 | 384.753 | 385.769 | 385.911 | 386.560 | 387.420 | 388.036 | 388.947 | 389.493 | 389.744 | 392.831 | 395.563 | 396.489 | 397.553 |
| Professional services | 303.169 | 313.446 | 311.757 | 313.294 | 313.618 | 314.235 | 314.893 | 314.977 | 315.458 | 315.825 | 316.435 | 318.110 | 319.663 | 320.231 | 320.407 |
| Hospital and related service | 493.740 | 530.193 | 526.495 | 527.230 | 527.948 | 529.798 | 532.065 | 534.394 | 537.382 | 539.864 | 540.101 | 547.655 | 554.390 | 557.167 | 561.516 |
| Recreation ${ }^{2}$. | 108.572 | 110.143 | 109.775 | 109.876 | 109.905 | 110.198 | 110.698 | 110.904 | 110.947 | 0.826 | 110.487 | 110.630 | 11.257 | . 436 | 82 |
| Video and audio ${ }^{1,2}$. | 10 | 102.654 | 103.414 | 102.958 | 102.306 | 102.267 | 102.643 | 102.819 | 102.267 | 101.974 | 101.810 | 101.488 | 101.857 | 102 | 16 |
| Education and commu | 116.301 | 119.827 | 118.462 | 118.737 | 119.264 | 119.852 | 120.809 | 121.439 | 121.569 | 121.636 | 121.819 | 122.025 | 122.092 | 122.087 | 122.152 |
| Education ${ }^{2}$. | 169.280 | 178.892 | 175.545 | 175.791 | 176.148 | 176.879 | 180.819 | 183.613 | 184.091 | 184.115 | 184.352 | 184.642 | 184.765 | 184.824 | 184.892 |
| Educational books and suppl | 423.730 | 452.880 | 444.594 | 445.394 | 445.740 | 446.741 | 461.104 | 465.570 | 466.885 | 465.576 | 467.179 | 471.061 | 473.012 | 474.880 | 474.950 |
| Tuition, other school fees, and child | 477.589 | 504.163 | 494.711 | 495.384 | 496.449 | 498.598 | 509.241 | 517.389 | 518.726 | 518.938 | 519.500 | 519.987 | 520.159 | 520.146 | 520.348 |
| Communication ${ }^{1,2}$. | 85.782 | 86.807 | 86.244 | 86.496 | 87.017 | 87.490 | 87.369 | 87.224 | 87.226 | 87.300 | 87.444 | 87.599 | 87.640 | 87.615 | 87.671 |
| Information and information processi | 83.9 | 84.828 | 84.320 | 84.511 | 85.007 | 85.484 | 85.355 | 85.208 | 85.21 | 85.29 | 85.454 | 85.581 | 85.624 | 85.595 | 85.655 |
| Telephone services ${ }^{1,2}$. | 98.373 | 100.502 | 99.566 | 99.939 | 100.723 | 101.375 | 101.339 | 101.350 | 101.436 | 101.564 | 101.720 | 101.876 | 101.890 | 101.977 | 02.048 |
| Information and information processing |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| other than telephone services | 11 | 10.567 | 10.671 | 10.621 | 10.585 | 10.600 | 10.525 | 10.414 | 10.375 | 10.367 | 10.406 | 10.418 | 10.442 | 10.378 | 10.385 |
| Personal computers and peripheral equipment ${ }^{1,2}$ |  | 94.863 | 98.820 | 97.010 | 95.766 | 94.691 | 92.931 | 90.722 | 89.690 | 88.631 | 88.176 | 88.178 | 7.622 | 86.004 | 85.406 |
| Other goods and services. | 34 | 357.906 | 354.887 | 356.523 | 358.419 | 359.961 | 360.102 | 361.125 | 362.354 | 362.550 | 362.986 | 364.333 | 365.522 | 380.2 | 394.902 |
| Tobacco and smoking produc | 555.502 | 591.100 | 578.296 | 583.296 | 592.248 | 599.180 | 599.823 | 600.293 | 602.533 | 602.881 | 605.662 | 610.503 | 615.012 | 682.115 | 747.906 |
| Personal care ${ }^{1}$. | 193.590 | 199.170 | 198.859 | 199.367 | 199.404 | 199.495 | 199.501 | 200.284 | 200.930 | 201.036 | 200.918 | 201.209 | 201.426 | 202.099 | 203.010 |
| Personal care products ${ }^{1}$ | 158.268 | 159.410 | 159.585 | 158.993 | 159.052 | 159.237 | 159.345 | 159.730 | 159.914 | 160.994 | 161.295 | 162.683 | 162.543 | 162.516 | 163.911 |
| Personal care services ${ }^{1}$. | 21 | 223.978 | 223.088 | 223.922 | 223.838 | 223.994 | 224.464 | 224.910 | 225.800 | 226.433 | 226.578 | 225.951 | 226.088 | 228.201 | 228.119 |
| Miscellaneous personal serv | 326.100 | 340.533 | 338.851 | 341.212 | 341.921 | 341.763 | 342.974 | 345.175 | 344.622 | 342.853 | 342.530 | 343.022 | 343.443 | 344.021 | 345.016 |
| Commodity |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Commodit | 169.554 | 177.618 | 178.900 | 181.837 | 184.495 | 185.105 | 182.846 | 182.647 | 177.906 | 926 | 164.233 | 165.151 | 166.673 | 167.514 | 169.005 |
| Food and beverages | 202.531 | 213.546 | 210.559 | 211.438 | 212.700 | 214.662 | 215.850 | 217.098 | 218.141 | 218.178 | 218.269 | 219.123 | 218.645 | 218.119 | 217.653 |
| Commodities less food and beverages | 150.86 | 157.481 | 160.488 | 164.188 | 167.344 | 167.376 | 163.761 | 162.971 | 155.982 | 143.544 | 137.015 | 137.932 | 140.235 | 141.615 | 143.871 |
| Nondurables less food and beverage | 189.507 | 205.279 | 210.558 | 218.794 | 225.585 | 225.595 | 218.454 | 217.828 | 203.762 | 178.209 | 164.879 | 166.694 | 171.698 | 174.838 | 179.415 |
| Apparel | 118.518 | 118.735 | 121.855 | 120.407 | 116.706 | 113.978 | 116.214 | 120.990 | 121.957 | 121.149 | 117.006 | 114.969 | 118.766 | 122.162 | 122.709 |
| Nondurables les and apparel. |  | 263.756 | 270.496 | 285.024 | 298.593 | 300.341 | 287.124 | 56 | 204 | 500 | 8.108 | 202.400 | 208.25 | 211.287 | 218.502 |
| Durab | 11 | 111.217 | 112.171 | 111.845 | 111.769 | 111.820 | 111.357 | 110.451 | 109.782 | 109.038 | 108.576 | 108.689 | 108.592 | 108.413 | 108.596 |
| Servic | 241.696 | 250.272 | 248.045 | 249.175 | 251.365 | 252.991 | 253.304 | 252.861 | 252.369 | 252.144 | 252.176 | 253.033 | 253.456 | 253.59 | 253.403 |
| Rent of shelter ${ }^{3}$ | 224.617 | 230.555 | 229.719 | 229.810 | 230.620 | 231.255 | 231.445 | 231.541 | 231.885 | 232.096 | 232.112 | 232.981 | 233.365 | 233.903 | 234.148 |
| Transporatation servis | 233 | 242.563 | 239.044 | 240.728 | 243.395 | 245.005 | 246.041 | 245.722 | 246.003 | 246.126 | 245.881 | 246.931 | 248.02 | 247.86 | 248.809 |
| Other services | 275.218 | 284.319 | 281.829 | 282.720 | 283.449 | 284.449 | 286.389 | 287.792 | 287.898 | 288.082 | 288.227 | 288.627 | 289.432 | 290.043 | 289.738 |
| Special indexe |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| tems less food | 202.698 | 210.452 | 210.583 | 212.870 | 215.498 | 216.407 | 214.950 | 214.361 | 210.949 | 205.214 | 202.292 | 203.186 | 204.465 | 205.167 | 206.081 |
| All items less shelte | 193.940 | 203.102 | 202.931 | 205.774 | 208.817 | 210.069 | 208.544 | 208.068 | 204.149 | 197.342 | 193.918 | 194.811 | 196.052 | 196.551 | 197.432 |
| All items less medical car | 196 | 204.626 | 204.290 | 206.423 | 208.906 | 210.002 | 208.900 | 208.563 | 205.726 | 200.707 | 198.153 | 198.978 | 199.928 | 200.42 | 201.112 |
| Commodities less fo | 152.875 | 159.538 | 162.455 | 166.070 | 169.169 | 169.213 | 165.689 | 164.937 | 158.132 | 145.985 | 139.620 | 140.543 | 142.809 | 144.172 | 146.371 |
| Nondurables less food. | 190.698 | 206.047 | 211.005 | 218.809 | 225.276 | 225.309 | 218.562 | 218.010 | 204.734 | 180.533 | 167.933 | 169.708 | 174.484 | 177.487 | 181.815 |
| Nondurables less food and app | 234.201 | 258.423 | 264.488 | 277.717 | 290.127 | 291.760 | 279.753 | 276.112 | 254.473 | 216.516 | 198.909 | 202.906 | 208.291 | 211.094 | 217.649 |
| Nondurables. | 196.772 | 210.333 | 211.757 | 216.582 | 220.813 | 221.740 | 218.473 | 218.725 | 211.680 | 198.009 | 190.910 | 192.284 | 194.740 | 196.174 | 198.408 |
| Services less rent of shelter ${ }^{3}$. | 230.876 | 241.567 | 237.922 | 240.181 | 243.780 | 246.411 | 246.834 | 245.787 | 244.331 | 243.599 | 243.646 | 244.376 | 244.791 | 244.413 | 243.718 |
| Services less medical care service | 232.195 | 240.275 | 238.048 | 239.167 | 241.422 | 243.071 | 243.354 | 242.868 | 242.316 | 242.058 | 242.079 | 242.819 | 243.128 | 243.223 | 242.980 |
| Energy.. | 208.066 | 237.414 | 241.518 | 258.903 | 277.597 | 282.579 | 267.624 | 259.864 | 232.106 | 188.375 | 168.726 | 172.463 | 177.033 | 175.947 | 178.485 |
| All items less energy. | 203.002 | 208.719 | 207.812 | 208.021 | 208.458 | 209.062 | 209.718 | 210.32 | 210.649 | 210.541 | 210.168 | 210.70 | 211.27 | 211.98 | 212.472 |
| All items less food and energy.. | 203.554 | 208.147 | 207.687 | 207.747 | 208.007 | 208.317 | 208.857 | 209.329 | 209.511 | 209.383 | 208.925 | 209.404 | 210.203 | 211.178 | 211.857 |
| Commodities less food and ene | 140.612 | 141.084 | 142.040 | 141.558 | 140.878 | 140.492 | 140.802 | 141.428 | 141.375 | 140.793 | 139.731 | 139.614 | 140.554 | 142.077 | 143.237 |
| Energy commodities. | 241.257 | 284.270 | 298.852 | 326.565 | 351.873 | 354.402 | 328.310 | 319.507 | 272.894 | 192.494 | 154.744 | 161.781 | 171.978 | 172.563 | 181.021 |
| Services less energy | 247.888 | 255.598 | 254.031 | 254.517 | 255.513 | 256.365 | 257.072 | 257.411 | 257.774 | 258.008 | 258.039 | 258.976 | 259.643 | 260.158 | 260.439 |

${ }^{2}$ Indexes on a December $1997=100$ base.
${ }^{3}$ Indexes on a December 1982 $=100$ base .
${ }^{4}$ Indexes on a December $1988=100$ base.
NOTE: Index applied to a month as a whole, not to any specific date.
39. Consumer Price Index: U.S. city average and available local area data: all items
[1982-84 = 100, unless otherwise indicated]

|  | Pricing schedule ${ }^{1}$ | All Urban Consumers |  |  |  |  |  | Urban Wage Earners |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2008 |  | 2009 |  |  |  | 2008 |  | 2009 |  |  |  |
|  |  | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| U.S. city average. | M | 212.425 | 210.228 | 211.143 | 212.193 | 212.709 | 213.240 | 207.296 | 204.813 | 205.700 | 206.708 | 207.218 | 207.925 |
| Region and area size ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Northeast urban. | M | 227.236 | 225.091 | 225.436 | 226.754 | 227.309 | 227.840 | 223.741 | 221.446 | 221.704 | 222.945 | 223.626 | 224.252 |
| Size A-More than 1,500,000.. | M | 229.625 | 227.681 | 227.852 | 229.262 | 229.749 | 230.400 | 224.621 | 222.628 | 222.707 | 224.084 | 224.597 | 225.214 |
| Size B/C-50,000 to 1,500,000 ${ }^{3}$. | M | 134.445 | 132.830 | 133.308 | 133.967 | 134.411 | 134.547 | 134.757 | 132.938 | 133.345 | 133.908 | 134.558 | 134.951 |
| Midwest urban ${ }^{4}$. | M | 201.737 | 199.582 | 200.815 | 201.453 | 202.021 | 202.327 | 196.346 | 193.987 | 195.245 | 195.813 | 196.453 | 196.933 |
| Size A-More than 1,500,000. | M | 202.922 | 200.465 | 202.001 | 202.639 | 203.240 | 203.463 | 196.770 | 194.120 | 195.621 | 196.147 | 196.855 | 197.192 |
| Size B/C-50,000 to 1,500,000 ${ }^{3}$. | M | 129.018 | 128.018 | 128.636 | 129.057 | 129.334 | 129.604 | 128.186 | 127.005 | 127.768 | 128.167 | 128.468 | 128.968 |
| Size D-Nonmetropolitan (less than 50,000) | M | 197.883 | 195.383 | 195.843 | 196.421 | 197.267 | 197.644 | 195.114 | 192.391 | 192.907 | 193.527 | 194.393 | 194.651 |
| South urban. | M | 205.559 | 203.501 | 204.288 | 205.343 | 206.001 | 206.657 | 201.821 | 199.399 | 200.067 | 201.150 | 201.737 | 202.619 |
| Size A-More than 1,500,000.. | M | 208.644 | 206.414 | 207.035 | 207.929 | 208.529 | 208.934 | 205.753 | 203.121 | 203.519 | 204.501 | 205.066 | 205.733 |
| Size B/C-50,000 to 1,500,000 ${ }^{3}$. | M | 130.324 | 129.099 | 129.615 | 130.380 | 130.873 | 131.370 | 128.504 | 127.055 | 127.529 | 128.276 | 128.686 | 129.309 |
| Size D-Nonmetropolitan (less than 50,000) | M | 206.659 | 204.428 | 205.766 | 206.671 | 206.927 | 207.898 | 205.777 | 203.054 | 204.316 | 205.337 | 205.744 | 206.921 |
| West urban. | M | 217.113 | 214.685 | 215.923 | 217.095 | 217.357 | 217.910 | 210.870 | 208.088 | 209.367 | 210.492 | 210.661 | 211.386 |
| Size A-More than 1,500,000.. | M | 220.925 | 218.698 | 219.806 | 220.955 | 221.124 | 221.790 | 213.143 | 210.637 | 211.857 | 212.890 | 212.965 | 213.646 |
| Size B/C-50,000 to 1,500,000 ${ }^{3}$. | M | 131.440 | 129.725 | 130.682 | 131.636 | 131.775 | 131.912 | 130.684 | 128.641 | 129.639 | 130.649 | 130.674 | 131.103 |
| Size classes: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $A^{5}$. | M | 194.628 | 192.646 | 193.412 | 194.354 | 194.750 | 195.207 | 192.508 | 190.272 | 191.023 | 191.927 | 192.327 | 192.861 |
| $B / C^{3}$. | M | 130.857 | 129.519 | 130.135 | 130.855 | 131.230 | 131.557 | 129.723 | 128.157 | 128.783 | 129.488 | 129.833 | 130.361 |
|  | M | 204.856 | 202.359 | 203.409 | 203.999 | 204.672 | 205.421 | 202.041 | 199.228 | 200.057 | 200.681 | 201.485 | 202.351 |
| Selected local areas ${ }^{6}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chicago-Gary-Kenosha, IL-IN-WI. | M | 209.053 | 205.959 | 207.616 | 207.367 | 207.462 | 207.886 | 202.022 | 198.434 | 200.222 | 199.944 | 200.218 | 200.607 |
| Los Angeles-Riverside-Orange County, CA. | M | 222.229 | 219.620 | 220.719 | 221.439 | 221.376 | 221.693 | 214.083 | 211.007 | 212.454 | 213.234 | 213.013 | 213.405 |
| New York, NY-Northern NJ-Long Island, NY-NJ-CT-PA. | M | 234.498 | 233.012 | 233.402 | 234.663 | 235.067 | 235.582 | 228.727 | 227.223 | 227.503 | 228.653 | 229.064 | 229.639 |
| Boston-Brockton-Nashua, MA-NH-ME-CT | 1 | 232.354 |  | 230.806 |  | 232.155 |  | 231.854 |  | 230.095 |  | 231.884 |  |
| Cleveland-Akron, OH . | 1 | 198.187 |  | 198.232 |  | 199.457 |  | 188.860 |  | 188.798 |  | 190.107 | - |
| Dallas-Ft Worth, TX. | 1 | 200.051 |  | 198.623 |  | 200.039 |  | 201.479 |  | 199.416 |  | 200.770 | - |
| Washington-Baltimore, DC-MD-VA-WV ${ }^{7}$. | 1 | 138.547 | - | 137.598 | - | 138.620 | - | 137.700 | - | 136.359 | - | 137.539 | - |
| Atlanta, GA. | 2 |  | 196.961 |  | 199.190 |  | 199.210 |  | 195.310 |  | 197.528 |  | 197.676 |
| Detroit-Ann Arbor-Flint, MI. | 2 |  | 197.991 |  | 201.913 |  | 202.373 |  | 192.808 |  | 196.191 |  | 197.239 |
| Houston-Galveston-Brazoria, TX. | 2 |  | 185.930 |  | 187.972 |  | 189.701 | - | 183.088 |  | 185.015 |  | 186.970 |
| Miami-Ft. Lauderdale, FL. | 2 |  | 218.324 |  | 220.589 |  | 220.740 |  | 215.867 |  | 217.635 |  | 217.900 |
| Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD | 2 |  | 218.186 |  | 220.262 |  | 221.686 |  | 217.610 |  | 219.356 |  | 220.732 |
| San Francisco-Oakland-San Jose, CA. | 2 |  | 218.528 | - | 222.166 |  | 223.854 |  | 213.685 | - | 216.797 |  | 218.587 |
| Seattle-Tacoma-Bremerton, WA. | 2 |  | 222.580 | - | 224.737 | - | 225.918 | - | 216.424 | - | 218.752 |  | 220.208 |

${ }^{1}$ Foods, fuels, and several other items priced every month in all areas; most other goods and services priced as indicated:

## M-Every month.

1-January, March, May, July, September, and November.
2-February, April, June, August, October, and December.
${ }^{2}$ Regions defined as the four Census regions.
${ }^{3}$ Indexes on a December 1996 = 100 base.
${ }^{4}$ The "North Central" region has been renamed the "Midwest" region by the Census Bureau. It is composed of the same geographic entities.
${ }^{5}$ Indexes on a December $1986=100$ base.
${ }^{6}$ In addition, the following metropolitan areas are published semiannually and appear in tables 34 and 39 of the January and July issues of the CPI Detailed

Report: Anchorage, AK; Cincinnatti, OH-KY-IN; Kansas City, MO-Ks; Milwaukee-Racine, WI; Minneapolis-St. Paul, MN-WI; Pittsburgh, PA; Port-land-Salem, OR-WA; St Louis, MO-IL; San Diego, CA; Tampa-St. Petersburg-Clearwater, FL.
${ }^{7}$ Indexes on a November $1996=100$ base.
NOTE: Local area CPI indexes are byproducts of the national CPI program. Each local index has a smaller sample size and is, therefore, subject to substantially more sampling and other measurement error. As a result, local area indexes show greater volatility than the national index, although their long-term trends are similar. Therefore, the Bureau of Labor Statistics strongly urges users to consider adopting the national average CPI for use in their escalator clauses. Index applies to a month as a whole, not to any specific date. Dash indicates data not available.
40. Annual data: Consumer Price Index, U.S. city average, all items and major groups
[1982-84 = 100]

| Series | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Consumer Price Index for All Urban Consumers: |  |  |  |  |  |  |  |  |  |  |  |
| Index. | 163.0 | 166.6 | 172.2 | 177.1 | 179.9 | 184.0 | 188.9 | 195.3 | 201.6 | 207.342 | 215.303 |
| Percent change. | 1.6 | 2.2 | 3.4 | 2.8 | 1.6 | 2.3 | 2.7 | 3.4 | 3.2 | 2.8 | 3.8 |
| Food and beverages: |  |  |  |  |  |  |  |  |  |  |  |
| Index.. | 161.1 | 164.6 | 168.4 | 173.6 | 176.8 | 180.5 | 186.6 | 191.2 | 195.7 | 203.300 | 214.225 |
| Percent change. | 2.2 | 2.2 | 2.3 | 3.1 | 1.8 | 2.1 | 3.3 | 2.5 | 2.4 | 3.9 | 5.4 |
| Housing: |  |  |  |  |  |  |  |  |  |  |  |
| Index... | 160.4 | 163.9 | 169.6 | 176.4 | 180.3 | 184.8 | 189.5 | 195.7 | 203.2 | 209.586 | 216.264 |
| Percent change.. | 2.3 | 2.2 | 3.5 | 4.0 | 2.2 | 2.5 | 2.5 | 3.3 | 3.8 | 3.1 | 3.2 |
| Apparel: |  |  |  |  |  |  |  |  |  |  |  |
| Index.. | 133.0 | 131.3 | 129.6 | 127.3 | 124.0 | 120.9 | 120.4 | 119.5 | 119.5 | 118.998 | 118.907 |
| Percent change. | . 1 | -1.3 | -1.3 | -1.8 | -2.6 | -2.5 | -. 4 | -. 7 | . 0 | -0.4 | -0.1 |
| Transportation: |  |  |  |  |  |  |  |  |  |  |  |
| Index... | 141.6 | 144.4 | 153.3 | 154.3 | 152.9 | 157.6 | 163.1 | 173.9 | 180.9 | 184.682 | 195.549 |
| Percent change. | -1.9 | 2.0 | 6.2 | 0.7 | -. 9 | 3.1 | 3.5 | 6.6 | 4.0 | 2.1 | 5.9 |
| Medical care: |  |  |  |  |  |  |  |  |  |  |  |
| Index... | 242.1 | 250.6 | 260.8 | 272.8 | 285.6 | 297.1 | 310.1 | 323.2 | 336.2 | 351.054 | 364.065 |
| Percent change.............................................. | 3.2 | 3.5 | 4.1 | 4.6 | 4.7 | 4.0 | 4.4 | 4.2 | 4.0 | 4.4 | 3.7 |
| Other goods and services: |  |  |  |  |  |  |  |  |  |  |  |
| Index.............................................................. | 237.7 | 258.3 | 271.1 | 282.6 | 293.2 | 298.7 | 304.7 | 313.4 | 321.7 | 333.328 | 345.381 |
| Percent change. | 5.7 | 8.7 | 5.0 | 4.2 | 3.8 | 1.9 | 2.0 | 2.9 | 2.6 | 3.6 | 3.6 |
| Consumer Price Index for Urban Wage Earners and Clerical Workers: <br> All items: |  |  |  |  |  |  |  |  |  |  |  |
| Index.............................................................. | 159.7 | 163.2 | 168.9 | 173.5 | 175.9 | 179.8 | 184.5 | 191.0 | 197.1 | 202.767 | 211.053 |
| Percent change............................................. | 1.3 | 2.2 | 3.5 | 2.7 | 1.4 | 2.2 | 5.1 | 1.1 | 3.2 | 2.9 | 4.1 |

## 41. Producer Price Indexes, by stage of processing

[1982 = 100]

| Grouping | Annual average |  | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 | 2008 | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. ${ }^{\text {p }}$ | Feb. ${ }^{\text {p }}$ | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
| Finished goods. | 166.6 | 177.1 | 176.5 | 179.8 | 182.4 | 185.1 | 182.2 | 182.2 | 177.4 | 172.0 | 168.8 | 170.3 | 170.1 | 168.9 | 169.9 |
| Finished consumer goods. | 173.5 | 186.3 | 185.8 | 190.3 | 193.8 | 197.2 | 193.2 | 193.0 | 185.5 | 178.2 | 173.7 | 175.7 | 175.4 | 173.9 | 175.5 |
| Finished consumer foods. | 167.0 | 178.3 | 175.5 | 177.6 | 180.0 | 181.0 | 181.3 | 181.5 | 180.7 | 179.8 | 177.7 | 177.6 | 174.9 | 174.0 | 175.8 |
| Finished consumer goods excluding foods. $\qquad$ | 5.6 | 189.1 | 189.6 | 195.0 | 199.0 | 203.4 | 197.5 | 197.2 | 187.0 | 177.0 | 171.5 | 174.2 | 174.7 | 173.1 | 174.6 |
| Nondurable goods less food. | 191.7 | 210.5 | 211.7 | 220.0 | 226.4 | 233.1 | 223.9 | 223.4 | 205.4 | 190.6 | 182.1 | 186.1 | 186.9 | 184.6 | 186.8 |
| Durable goods.. | 138.3 | 141.2 | 140.5 | 140.3 | 139.7 | 139.6 | 140.2 | 140.3 | 144.8 | 144.2 | 144.4 | 144.4 | 144.4 | 144.2 | 144.3 |
| Capital equipment | 149.5 | 153.8 | 152.4 | 152.7 | 152.7 | 153.3 | 153.9 | 154.3 | 157.0 | 156.9 | 157.2 | 157.5 | 157.4 | 157.0 | 156.6 |
| Intermediate materials, supplies, and components... | 170.7 | 188.3 | 187.3 | 192.8 | 197.2 | 203.1 | 199.4 | 198.6 | 189.0 | 179.2 | 171.6 | 171.6 | 169.8 | 168.1 | 167.7 |
| Materials and components for manufacturing $\qquad$ | 162.4 | 177.2 | 175.5 | 179.1 | 182.4 | 187.4 | 188.7 | 186.7 | 180.3 | 171.1 | 163.7 | 162.9 | 161.2 | 160.2 | 158.4 |
| Materials for food manufacturing..... | 161.4 | 180.4 | 180.3 | 182.7 | 185.4 | 187.6 | 187.5 | 185.2 | 179.4 | 175.5 | 170.8 | 167.3 | 164.1 | 163.6 | 164.1 |
| Materials for nondurable manufacturing... | 184.0 | 214.3 | 209.5 | 215.9 | 222.8 | 234.8 | 238.6 | 234.7 | 222.4 | 200.6 | 185.0 | 188.3 | 186.7 | 184.8 | 181.3 |
| Materials for durable manufacturing... | 189.8 | 203.3 | 205.6 | 211.9 | 215.4 | 219.2 | 218.9 | 214.5 | 202.2 | 190.0 | 178.6 | 171.6 | 167.1 | 166.0 | 162.7 |
| Components for manufacturing......... | 136.3 | 140.3 | 138.6 | 139.4 | 140.1 | 141.3 | 141.9 | 142.4 | 142.5 | 142.3 | 141.9 | 141.7 | 141.6 | 141.2 | 140.6 |
| Materials and components for construction. $\qquad$ | 192.5 | 205.4 | 200.2 | 203.3 | 206.5 | 209.8 | 212.9 | 214.0 | 212.2 | 210.2 | 207.9 | 206.2 | 204.9 | 204.2 | 202.5 |
| Processed fuels and lubricants | 173.9 | 206.2 | 211.8 | 227.3 | 238.4 | 250.1 | 225.2 | 224.5 | 193.9 | 168.7 | 151.2 | 154.3 | 150.1 | 145.0 | 148.6 |
| Containers. | 180.3 | 191.8 | 187.0 | 187.6 | 189.2 | 191.9 | 195.0 | 198.4 | 199.1 | 199.0 | 198.1 | 198.0 | 199.3 | 198.4 | 196.7 |
| Supplies.. | 161.7 | 173.8 | 171.3 | 173.1 | 174.6 | 178.3 | 178.9 | 179.0 | 177.0 | 175.3 | 173.4 | 173.2 | 172.5 | 172.0 | 171.8 |
| Crude materials for further |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| processing $\qquad$ <br> Foodstuffs and feedstuffs | 207.1 146.7 | 251.8 163.4 | 274.6 168.1 | 293.1 173.2 | 301.2 178.1 | 313.3 178.9 | 274.6 170.6 | 254.2 167.6 | 212.0 147.9 | 183.3 | 172.6 135.5 | 166.9 136.7 | 160.3 133.1 | 159.9 | 164.8 136.7 |
| Foodstuffs and feedstuffs Crude nonfood materials | 146.7 246.3 | 163.4 313.9 | 168.1 352.4 | 173.2 382.4 | 178.1 393.0 | 178.9 414.9 | 170.6 350.0 | 167.6 314.2 | 147.9 253.9 | 144.2 | 191.6 | 136.7 179.8 | 133.1 170.9 | 130.5 172.7 | 136.7 175.8 |
| Special groupings: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Finished goods, excluding foods | 166.2 | 176.6 | 176.4 | 180.1 | 182.8 | 185.9 | 182.2 | 182.1 | 176.3 | 169.6 | 166.1 | 167.9 | 168.2 | 167.0 | 167.9 |
| Finished energy goods... | 156.3 | 178.7 | 182.4 | 194.8 | 204.6 | 214.0 | 198.6 | 197.0 | 167.8 | 144.1 | 130.6 | 135.9 | 136.4 | 132.4 | 135.7 |
| Finished goods less energy... | 162.8 | 169.8 | 168.0 | 168.8 | 169.4 | 170.2 | 170.8 | 171.2 | 173.1 | 172.7 | 172.3 | 172.6 | 172.3 | 171.9 | 172.3 |
| Finished consumer goods less energy | 168.7 | 176.9 | 174.9 | 175.9 | 176.8 | 177.7 | 178.3 | 178.7 | 180.2 | 179.7 | 179.0 | 179.3 | 178.7 | 178.5 | 179.3 |
| Finished goods less food and energy... | 161.7 | 167.2 | 165.7 | 166.1 | 166.0 | 166.7 | 167.4 | 167.9 | 170.8 | 170.6 | 170.8 | 171.3 | 171.6 | 171.4 | 171.3 |
| Finished consumer goods less food and energy $\qquad$ | 170.0 | 176.4 | 174.8 | 175.2 | 175.2 | 175.9 | 176.6 | 177.2 | 180.2 | 180.0 | 180.1 | 180.7 | 181.2 | 181.4 | 181.5 |
| Consumer nondurable goods less food |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| and energy.... | 197.0 | 206.8 | 204.3 | 205.4 | 206.0 | 207.6 | 208.5 | 209.7 | 210.7 | 210.9 | 211.0 | 212.1 | 213.3 | 213.8 | 214.0 |
| Intermediate materials less foods and feeds. $\qquad$ | 171.5 | 188.7 | 187.7 | 193.3 | 197.8 | 203.6 | 199.7 | 199.1 | 189.5 | 179.4 | 171.8 | 172.0 | 170.1 | 168.4 | 167.9 |
| Intermediate foods and feeds.. | 154.4 | 181.6 | 180.5 | 184.5 | 186.6 | 195.5 | 194.3 | 190.0 | 179.9 | 174.7 | 167.9 | 166.9 | 164. | 164.0 | 164.4 |
| Intermediate energy goods... | 174.6 | 208.1 | 213.4 | 228.7 | 240.3 | 253.5 | 231.3 | 227.5 | 197.4 | 167.3 | 147.7 | 153.2 | 148.7 | 142.6 | 146.2 |
| Intermediate goods less energy..... | 167.6 | 180.9 | 178.4 | 181.4 | 183.9 | 187.9 | 188.9 | 188.8 | 184.5 | 179.8 | 175.3 | 174.0 | 172.8 | 172.3 | 170.9 |
| Intermediate materials less foods and energy $\qquad$ | 168.4 | 180.9 | 178.3 | 181.2 | 183.8 | 187.5 | 188.7 | 188.8 | 184.8 | 180.2 | 175.9 | 174.6 | 173.6 | 173.0 | 171.5 |
| Crude energy materials.... | 232.8 | 309.4 | 346.1 | 386.1 | 400.4 | 426.5 | 339.1 | 303.7 | 244.4 | 194.9 | 181.1 | 165.0 | 151.0 | 153.8 | 158.2 |
| Crude materials less energy... | 182.6 | 205.4 | 218.5 | 223.9 | 228.2 | 231.7 | 222.3 | 211.7 | 182.0 | 167.6 | 159.8 | 160.9 | 158.6 | 155.7 | 160.6 |
| Crude nonfood materials less energy.... | 282.6 | 324.4 | 366.7 | 372.4 | 373.8 | 386.1 | 374.2 | 337.5 | 276.7 | 224.8 | 221.3 | 221.7 | 225.3 | 221.7 | 220.5 |

$p=$ preliminary .

## 42. Producer Price Indexes for the net output of major industry groups

[December 2003 = 100, unless otherwise indicated]

| NAICS | Industry | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. ${ }^{\text {p }}$ | Feb. ${ }^{\text {p }}$ | Mar. ${ }^{\text {p }}$ | Apr. ${ }^{\text {p }}$ |
|  | Total mining industries (December 1984=100).. | 301.6 | 329.0 | 341.4 | 363.8 | 299.2 | 273.4 | 223.3 | 184.9 | 174.8 | 164.1 | 155.0 | 157.2 | 161.1 |
| 211 | Oil and gas extraction (December 1985=100) | 390.8 | 436.2 | 456.0 | 490.4 | 383.6 | 341.2 | 259.4 | 199.5 | 184.1 | 165.7 | 150.3 | 152.9 | 159.4 |
| 212 | Mining, except oil and gas.. | 186.1 | 184.7 | 185.8 | 191.8 | 190.4 | 188.9 | 184.1 | 174.7 | 173.0 | 175.4 | 179.9 | 181.6 | 184.6 |
| 213 | Mining support activities.. | 170.1 | 172.2 | 173.1 | 175.9 | 177.1 | 177.6 | 179.3 | 179.9 | 177.0 | 175.9 | 167.9 | 168.2 | 162.2 |
|  | Total manufacturing industries (December 1984=100).. | 175.3 | 179.4 | 182.0 | 185.6 | 182.6 | 182.9 | 176.8 | 169.4 | 164.1 | 164.7 | 164.2 | 163.0 | 163.8 |
| 311 | Food manufacturing (December 1984=100). | 171.2 | 174.0 | 176.1 | 180.3 | 180.5 | 179.2 | 176.4 | 173.4 | 171.1 | 170.0 | 168.7 | 167.7 | 168.5 |
| 312 | Beverage and tobacco manufacturing..... | 112.9 | 114.2 | 114.1 | 115.0 | 114.8 | 115.2 | 116.1 | 116.0 | 116.3 | 117.8 | 119.4 | 120.3 | 119.9 |
| 313 | Textile mills. | 110.6 | 111.4 | 111.7 | 112.6 | 114.2 | 114.9 | 114.9 | 114.7 | 113.5 | 113.9 | 113.0 | 112.7 | 112.9 |
| 315 | Apparel manufacturing. | 102.2 | 102.2 | 102.1 | 102.3 | 102.5 | 102.7 | 103.0 | 103.2 | 103.2 | 103.2 | 103.8 | 103.8 | 103.7 |
| 316 | Leather and allied product manufacturing (December 1984=100) | 152.7 | 152.4 | 153.4 | 153.8 | 154.1 | 154.8 | 154.6 | 154.3 | 154.3 | 155.2 | 155.1 | 155.0 | 154.5 |
| 321 | Wood products manufacturing.. | 106.2 | 108.2 | 109.2 | 108.9 | 109.1 | 109.1 | 107.6 | 106.7 | 106.2 | 104.9 | 104.0 | 103.0 | 102.7 |
| 322 | Paper manufacturing... | 120.2 | 120.5 | 120.9 | 121.8 | 124.5 | 126.6 | 127.3 | 127.2 | 127.0 | 126.4 | 126.2 | 125.6 | 124.6 |
| 323 | Printing and related support activities. | 109.0 | 109.2 | 109.5 | 109.8 | 110.0 | 110.4 | 110.3 | 110.2 | 110.3 | 109.9 | 109.6 | 109.4 | 109.5 |
| 324 | Petroleum and coal products manufacturing (December 1984=100). | 347.7 | 384.1 | 406.0 | 429.6 | 382.2 | 382.6 | 300.0 | 221.4 | 167.0 | 180.7 | 177.9 | 166.6 | 182.5 |
| 325 | Chemical manufacturing (December 1984=100). | 221.1 | 224.5 | 228.5 | 234.5 | 238.2 | 240.4 | 239.3 | 234.5 | 229.7 | 225.7 | 227.1 | 226.9 | 224.0 |
| 326 | Plastics and rubber products manufacturing (December 1984=100) | 156.8 | 158.3 | 159.4 | 162.9 | 165.2 | 166.9 | 167.8 | 166.9 | 165.0 | 162.9 | 161.3 | 160.6 | 160.5 |
| 331 | Primary metal manufacturing (December 1984=100). | 211.5 | 221.1 | 227.8 | 232.7 | 233.5 | 228.9 | 214.9 | 199.9 | 185.6 | 176.4 | 170.5 | 169.1 | 163.8 |
| 332 | Fabricated metal product manufacturing (December 1984=100). | 171.1 | 173.0 | 174.7 | 177.2 | 178.8 | 179.6 | 179.6 | 179.3 | 178.5 | 178.1 | 177.5 | 176.6 | 175.1 |
| 333 | Machinery manufacturing............................................. | 115.1 | 115.8 | 116.4 | 117.9 | 118.3 | 118.8 | 119.4 | 119.9 | 120.0 | 120.7 | 120.6 | 120.5 | 120.3 |
| 334 | Computer and electronic products manufacturing. | 92.7 | 92.8 | 92.8 | 92.8 | 92.7 | 92.7 | 92.7 | 92.6 | 92.4 | 92.9 | 92.7 | 92.3 | 92.5 |
| 335 | Electrical equipment, appliance, and components manufacturing | 127.3 | 127.8 | 128.2 | 129.1 | 129.3 | 129.8 | 129.4 | 127.3 | 126.9 | 126.2 | 126.8 | 126.9 | 127.7 |
| 336 | Transportation equipment manufacturing............................ | 106.7 | 106.6 | 105.9 | 105.9 | 106.5 | 106.6 | 110.4 | 110.0 | 110.1 | 109.8 | 110.2 | 109.5 | 109.2 |
| 337 | Furniture and related product manufacturing <br> (December 1984=100). | 169.5 | 170.2 | 171.3 | 172.3 | 173.5 | 174.3 | 175.1 | 175.3 | 175.7 | 175.9 | 176.3 | 176.9 | 176.5 |
| 339 | Miscellaneous manufacturing | 109.3 | 109.4 | 109.9 | 110.8 | 110.5 | 110.4 | 110.6 | 110.4 | 110.8 | 112.2 | 111.5 | 111.6 | 111.1 |
|  | Retail trade |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 441 | Motor vehicle and parts dealers. | 118.9 | 118.3 | 118.1 | 118.4 | 117.5 | 117.6 | 116.8 | 118.5 | 117.1 | 117.4 | 116.4 | 117.2 | 118.5 |
| 442 | Furniture and home furnishings stores | 119.4 | 120.2 | 119.6 | 120.3 | 122.0 | 121.1 | 121.0 | 120.8 | 120.6 | 121.1 | 121.0 | 120.7 | 121.4 |
| 443 | Electronics and appliance stores. | 119.7 | 118.7 | 105.8 | 106.5 | 111.0 | 110.8 | 108.9 | 108.1 | 107.8 | 112.7 | 107.1 | 102.4 | 106.9 |
| 446 | Health and personal care stores. | 127.2 | 127.3 | 127.8 | 133.8 | 133.3 | 134.0 | 134.6 | 136.4 | 136.4 | 135.3 | 137.5 | 137.9 | 139.7 |
| 447 | Gasoline stations (June 2001=100) | 65.7 | 59.3 | 67.6 | 77.2 | 72.7 | 81.7 | 76.8 | 76.3 | 77.7 | 67.1 | 71.0 | 62.4 | 59.2 |
| 454 | Nonstore retailers..................... | 136.4 | 136.5 | 141.8 | 140.6 | 162.4 | 150.6 | 148.7 | 154.1 | 155.2 | 152.0 | 152.7 | 159.0 | 146.5 |
|  | Transportation and warehousing |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 481 | Air transportation (December 1992=100). | 199.5 | 203.7 | 213.5 | 213.6 | 213.0 | 208.6 | 209.3 | 203.8 | 198.5 | 197.8 | 189.3 | 184.9 | 186.7 |
| $\begin{aligned} & 483 \\ & 491 \end{aligned}$ | Water transportation......................... | 121.1 | 124.7 | 127.0 | 130.4 | 133.7 | 135.1 | 135.0 | 130.6 | 128.0 | 126.6 | 120.6 | 117.5 | 118.0 |
|  | Postal service (June 1989=100) | 175.5 | 180.5 | 180.5 | 180.5 | 180.5 | 180.5 | 180.5 | 180.5 | 180.5 | 180.5 | 181.6 | 181.6 | 181.6 |
|  | Utilities |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 221 | Utilities | 134.5 | 137.0 | 141.7 | 146.8 | 145.7 | 140.8 | 136.0 | 133.4 | 133.1 | 133.1 | 132.6 | 130.2 | 126.7 |
|  | Health care and social assistance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6211 | Office of physicians (December 1996=100). | 123.2 | 123.2 | 123.2 | 123.5 | 123.6 | 123.7 | 124.0 | 124.3 | 124.2 | 124.6 | 125.5 | 125.7 | 125.8 |
| 6215 | Medical and diagnostic laboratories. | 107.3 | 106.9 | 106.9 | 106.9 | 106.9 | 107.6 | 107.7 | 107.7 | 107.8 | 108.0 | 108.3 | 108.4 | 109.0 |
| 6216 | Home health care services (December 1996=100). | 125.4 | 125.4 | 125.4 | 125.6 | 126.3 | 126.5 | 127.3 | 127.3 | 127.4 | 127.4 | 127.6 | 127.4 | 127.2 |
| 622 | Hospitals (December 1992=100). | 162.7 | 162.7 | 162.6 | 163.2 | 163.2 | 163.0 | 164.9 | 164.9 | 165.3 | 165.2 | 166.2 | 166.4 | 166.6 |
| 6231 | Nursing care facilities. | 118.5 | 118.6 | 118.6 | 119.4 | 119.7 | 119.8 | 120.6 | 120.6 | 120.7 | 121.7 | 122.1 | 121.7 | 122.6 |
| 62321 | Residential mental retardation facilities. | 118.2 | 118.5 | 118.5 | 118.6 | 118.7 | 118.9 | 119.1 | 119.2 | 119.2 | 119.2 | 119.8 | 120.4 | 120.5 |
|  | Other services industries |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 511 | Publishing industries, except Internet | 110.9 | 110.7 | 110.4 | 111.0 | 111.1 | 110.2 | 110.9 | 111.1 | 110.7 | 111.9 | 111.9 | 111.4 | 111.5 |
| 515 | Broadcasting, except Internet........... | 106.4 | 105.5 | 104.4 | 103.9 | 105.5 | 107.0 | 112.0 | 111.5 | 109.3 | 107.0 | 108.6 | 109.3 | 106.6 |
| 517 | Telecommunications... | 101.0 | 101.3 | 101.1 | 101.0 | 101.5 | 101.5 | 101.2 | 101.2 | 101.4 | 101.2 | 101.1 | 101.0 | 100.6 |
| $\begin{gathered} 5182 \\ 523 \end{gathered}$ | Data processing and related services. | 100.4 | 100.8 | 100.8 | 100.9 | 101.0 | 101.1 | 101.3 | 101.3 | 101.3 | 100.6 | 100.7 | 100.8 | 100.9 |
|  | Security, commodity contracts, and like activity................... | 119.6 | 119.6 | 120.2 | 119.1 | 120.2 | 120.5 | 117.7 | 115.8 | 115.2 | 113.4 | 112.4 | 108.4 | 110.9 |
| 53112 | Lessors or nonresidental buildings (except miniwarehouse) | 109.5 | 110.5 | 110.4 | 110.9 | 112.7 | 111.7 | 111.5 | 111.7 | 112.8 | 113.8 | 108.5 | 110.1 | 109.1 |
| 5312 | Offices of real estate agents and brokers...... | 110.2 | 106.9 | 106.9 | 106.8 | 104.4 | 103.8 | 103.1 | 103.0 | 102.8 | 98.6 | 101.6 | 101.6 | 101.9 |
| 5313 | Real estate support activities................ | 107.3 | 108.3 | 108.2 | 109.2 | 109.3 | 108.6 | 109.2 | 108.2 | 109.8 | 108.5 | 110.2 | 110.8 | 109.6 |
| 5321 | Automotive equipment rental and leasing (June 2001=100). | 120.3 | 122.0 | 125.4 | 136.7 | 135.0 | 131.3 | 128.2 | 126.9 | 123.7 | 129.6 | 133.1 | 133.0 | 134.9 |
| 5411 | Legal services (December 1996=100).. | 161.1 | 160.9 | 161.1 | 161.5 | 161.5 | 162.6 | 163.2 | 163.2 | 163.2 | 164.2 | 164.6 | 166.0 | 166.1 |
| 541211 | Offices of certified public accountants... | 112.7 | 114.0 | 112.7 | 115.3 | 115.5 | 115.4 | 115.6 | 115.0 | 115.7 | 115.1 | 115.1 | 115.3 | 115.2 |
| 5413 | Architectural, engineering, and related services (December 1996=100). | 140.5 | 140.5 | 141.3 | 141.6 | 141.6 | 141.6 | 141.8 | 141.8 | 141.9 | 142.0 | 142.3 | 142.3 | 142.9 |
| 54181 | Advertising agencies.. | 105.7 | 106.3 | 106.3 | 106.3 | 106.3 | 106.3 | 106.3 | 106.3 | 106.3 | 104.9 | 105.2 | 105.3 | 105.4 |
| 5613 | Employment services (December 1996=100). | 122.9 | 122.7 | 122.8 | 123.0 | 123.4 | 123.1 | 123.6 | 124.1 | 124.2 | 123.3 | 124.1 | 123.2 | 124.1 |
| 56151 | Travel agencies... | 98.8 | 98.8 | 98.8 | 98.8 | 98.8 | 101.4 | 101.4 | 101.4 | 101.4 | 101.4 | 101.4 | 102.6 | 99.7 |
| 56172 | Janitorial services. | 108.9 | 109.0 | 109.1 | 109.0 | 109.3 | 109.4 | 109.4 | 109.4 | 109.1 | 109.8 | 109.7 | 109.5 | 109.6 |
| 5621 | Waste collection. | 112.2 | 111.9 | 112.6 | 112.3 | 113.3 | 114.0 | 113.0 | 113.3 | 111.3 | 113.6 | 114.3 | 116.4 | 116.3 |
| 721 | Accommodation (December 1996=100). | 145.6 | 144.9 | 147.0 | 149.9 | 150.9 | 146.9 | 145.6 | 144.3 | 141.6 | 142.4 | 139.7 | 142.3 | 142.0 |

43. Annual data: Producer Price Indexes, by stage of processing
[1982 = 100]

| Index | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Finished goods |  |  |  |  |  |  |  |  |  |  |  |
| Total. | 130.7 | 133.0 | 138.0 | 140.7 | 138.9 | 143.3 | 148.5 | 155.7 | 160.4 | 166.6 | 177.1 |
| Foods. | 134.3 | 135.1 | 137.2 | 141.3 | 140.1 | 145.9 | 152.7 | 155.7 | 156.7 | 167.0 | 178.3 |
| Energy... | 75.1 | 78.8 | 94.1 | 96.7 | 88.8 | 102.0 | 113.0 | 132.6 | 145.9 | 156.3 | 178.7 |
| Other. | 143.7 | 146.1 | 148.0 | 150.0 | 150.2 | 150.5 | 152.7 | 156.4 | 158.7 | 161.7 | 167.2 |
| Intermediate materials, supplies, and components |  |  |  |  |  |  |  |  |  |  |  |
| Total.. | 123.0 | 123.2 | 129.2 | 129.7 | 127.8 | 133.7 | 142.6 | 154.0 | 164.0 | 170.7 | 188.3 |
| Foods.. | 123.2 | 120.8 | 119.2 | 124.3 | 123.2 | 134.4 | 145.0 | 146.0 | 146.2 | 161.4 | 180.4 |
| Energy. | 80.8 | 84.3 | 101.7 | 104.1 | 95.9 | 111.9 | 123.2 | 149.2 | 162.8 | 174.6 | 208.1 |
| Other.. | 133.5 | 133.1 | 136.6 | 136.4 | 135.8 | 138.5 | 146.5 | 154.6 | 163.8 | 168.4 | 180.9 |
| Crude materials for further processing |  |  |  |  |  |  |  |  |  |  |  |
| Total... | 96.8 | 98.2 | 120.6 | 121.0 | 108.1 | 135.3 | 159.0 | 182.2 | 184.8 | 207.1 | 251.8 |
| Foods. | 103.9 | 98.7 | 100.2 | 106.1 | 99.5 | 113.5 | 127.0 | 122.7 | 119.3 | 146.7 | 163.4 |
| Energy... | 68.6 | 78.5 | 122.1 | 122.3 | 102.0 | 147.2 | 174.6 | 234.0 | 226.9 | 232.8 | 309.4 |
| Other. | 84.5 | 91.1 | 118.0 | 101.5 | 101.0 | 116.9 | 149.2 | 176.7 | 210.0 | 238.7 | 308.5 |

44. U.S. export price indexes by end-use category
[2000 = 100]

| Category | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| ALL COMMODITIES. |  |  |  | 128.0 | 125.9 | 124.9 | 122.3 | 118.4 | 115.8 | 116.6 | 116.2 | 115.4 | 116.0 |
| Foods, feeds, and beverages. | 192.8 | 193.3 | 198.0 | $\begin{aligned} & 211.5 \\ & 218.9 \end{aligned}$ | $\begin{aligned} & 189.6 \\ & 194.7 \end{aligned}$ | $\begin{aligned} & 190.4 \\ & 195.6 \end{aligned}$ | $\begin{aligned} & 175.0 \\ & 178.3 \end{aligned}$ | 164.8 | 155.1 | 165.4 | 162.1 | 156.5 | 162.6 |
| Agricultural foods, feeds, and beverages.. |  | 198.9 |  |  |  |  |  | 166.9 | 156.6 | 167.6 | 164.1 | 158.1 | 164.8 |
| Nonagricultural (fish, beverages) food products. |  | 145.5 | 146.1 | 147.0 | 145.7 | 145.5 | 147.8 | 148.3 | 143.5 | 147.9 | 145.7 | 144.1 | 145.2 |
| Industrial supplies and materials. | 167.9 | 169.6 | $173.2$ | 177.8 | 174.0 | $169.4$ | 161.8 | 148.2 | 139.6 | 139.0 | 137.8 | 136.4 | 136.7 |
| Agricultural industrial supplies and materials | 157.9259.3 | $\begin{aligned} & 156.9 \\ & 275.8 \end{aligned}$ | $\begin{aligned} & 158.0 \\ & 297.2 \end{aligned}$ | $\begin{aligned} & 162.8 \\ & 312.3 \end{aligned}$ | $\begin{aligned} & 160.9 \\ & 275.8 \end{aligned}$ | $\begin{aligned} & 157.4 \\ & 267.2 \end{aligned}$ | $\begin{aligned} & 148.5 \\ & 239.2 \end{aligned}$ | $\begin{aligned} & 134.2 \\ & 193.4 \end{aligned}$ | $\begin{aligned} & 126.1 \\ & 166.8 \end{aligned}$ | $\begin{aligned} & 125.6 \\ & 165.8 \end{aligned}$ | $\begin{aligned} & 125.9 \\ & 156.2 \end{aligned}$ | 123.3 | 123.6 |
| Fuels and lubricants. |  |  |  |  |  |  |  |  |  |  |  | 146.6 | 158.2 |
| Nonagricultural supplies and materials, excluding fuel and building materials. | $\begin{aligned} & \\ & 160.1 \\ & 114.1 \end{aligned}$ | $\begin{aligned} & 160.1 \\ & 113.9 \end{aligned}$ | 161.6 | 165.1 | 165.3 | 160.8 | 155.5 | 145.6 | 138.8 | 138.2 | 138.0 | 137.9 | 136.7114.0 |
| Selected building materials. |  |  | 113.8 | 114.5 | 115.2 | 115.4 | 116.6 | 115.6 | 115.1 | 115.5 | 115.7 | 114.5 |  |
| Capital goods. | $\begin{aligned} & 101.5 \\ & 108.7 \end{aligned}$ | 101.6 | 102.0 | 101.9 | 101.9 | 101.8 | 101.7 | 101.6 | 101.5 | 102.1 | 102.3 | 102.2 | 102.6 |
| Electric and electrical generating equipmen |  | 108.6 | 108.9 | 109.3 | 109.2 | 109.5 | 109.7 | 109.2 | 109.0 | 107.3 | 106.6 | 106.8 | 106.8 |
| Nonelectrical machinery. | $\begin{array}{r} 93.9 \\ 107.5 \end{array}$ | 93.9 | 94.2 | 94.0 | 94.1 | 93.9 | 93.6 | 93.5 | 93.3 | 93.7 | 94.0 | 93.7 | 94.0 |
| Automotive vehicles, parts, and engines. |  | 107.5 | 107.4 | 107.7 | 107.8 | 107.9 | 108.2 | 108.1 | 108.0 | 108.4 | 108.1 | 108.2 | 108.2 |
| Consumer goods, excluding automotive. | $\begin{aligned} & 108.1 \\ & 109.8 \\ & 105.1 \end{aligned}$ |  | 108.2 | 108.5 | 109.0 | 109.3 | 109.9 | 109.1 | 109.0 | 109.2 | $\begin{aligned} & 109.2 \\ & 109.1 \end{aligned}$ | 108.2 | $\begin{aligned} & 108.3 \\ & 107.2 \end{aligned}$ |
| Nondurables, manufactured. |  | 110.0 | 110.1 | 109.8 | 109.6 | 109.0 | 108.9 | 107.4 | 107.2 | 108.8 |  | 106.9 |  |
| Durables, manufactured. |  | 105.1 | 105.2 | 106.0 | 107.2 | 108.7 | 109.9 | 109.8 | 109.7 | 109.7 | 109.8 | 109.8 | 109.7 |
| Agricultural commodities. | 190.5 | 190.8 | 195.2 | 208.2 | 188.2 | 188.3 | 172.5 | 160.6 | 150.8 | $159.7$ | $\begin{aligned} & 156.9 \\ & 113.3 \\ & \hline \end{aligned}$ | $151.5$ | 157.0 |
| Nonagricultural commodities...... | 119.6 | $120.1$ | 121.2 | $122.3$ | $121.5$ | $120.4$ | $118.7$ | $115.4$ | $113.2$ | $113.5$ |  | $112.8$ | 113.1 |

45. U.S. import price indexes by end-use category
[2000 = 100]

| Category | 2008 |  |  |  |  |  |  |  |  | 2009 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Apr. | May | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. |
| ALL COMMODITIES. | 137.3 | 141.2 | 145.5 | 147.5 | 143.0 | 137.8 | 129.6 | 120.0 | 114.5 | 113.0 | 112.9 | 113.1 | 114.9 |
| Foods, feeds, and beverages. | 143.7 | 145.0 | 147.7 | 149.7 | 150.4 | 147.9 | 146.0 | 139.5 | 142.3 | 142.3 | 137.7 | 136.8 | 136.6 |
| Agricultural foods, feeds, and beverages. | 159.8 | 162.2 | 165.1 | 167.6 | 167.9 | 165.1 | 162.8 | 154.4 | 159.4 | 159.0 | 152.9 | 151.1 | 150.5 |
| Nonagricultural (fish, beverages) food products.. | 107.2 | 105.9 | 108.4 | 109.1 | 110.9 | 109.1 | 108.0 | 105.8 | 103.8 | 104.5 | 103.4 | 104.6 | 105.1 |
| Industrial supplies and materials. | 248.7 | 265.0 | 283.0 | 290.7 | 270.7 | 248.9 | 213.5 | 174.6 | 150.4 | 143.7 | 144.7 | 147.3 | 155.3 |
| Fuels and lubricants. | 354.6 | 388.3 | 423.7 | 437.6 | 392.0 | 346.3 | 274.1 | 197.8 | 153.9 | 146.6 | 150.3 | 157.8 | 177.0 |
| Petroleum and petroleum products. | 375.8 | 412.2 | 450.3 | 465.0 | 419.5 | 371.5 | 288.9 | 201.6 | 150.8 | 143.8 | 151.4 | 163.4 | 188.5 |
| Paper and paper base stocks. | 116.2 | 117.1 | 117.3 | 118.9 | 119.7 | 119.9 | 116.4 | 115.1 | 113.2 | 110.3 | 108.4 | 105.8 | 104.1 |
| Materials associated with nondurable supplies and materials. $\qquad$ | 148.7 | 149.6 | 152.9 | 157.4 | 159.6 | 162.4 | 160.2 | 155.0 | 148.5 | 138.8 | 137.1 | 137.4 | 134.8 |
| Selected building materials.. | 114.3 | 116.2 | 119.2 | 121.3 | 122.1 | 122.7 | 120.4 | 118.8 | 118.1 | 117.2 | 116.6 | 116.4 | 115.5 |
| Unfinished metals associated with durable goods.. | 259.2 | 263.6 | 273.2 | 273.4 | 270.3 | 255.4 | 236.7 | 209.3 | 185.7 | 176.5 | 175.8 | 171.2 | 170.2 |
| Nonmetals associated with durable goods. | 106.2 | 107.3 | 107.6 | 110.7 | 111.8 | 111.4 | 110.9 | 110.4 | 109.0 | 107.1 | 106.2 | 105.1 | 104.7 |
| Capital goods. | 93.0 | 93.3 | 93.2 | 93.4 | 93.4 | 93.3 | 93.3 | 92.9 | 92.7 | 92.7 | 92.2 | 91.6 | 91.7 |
| Electric and electrical generating equipment. | 111.5 | 111.7 | 112.0 | 112.7 | 113.0 | 112.9 | 112.3 | 111.8 | 111.4 | 111.1 | 110.2 | 109.7 | 109.6 |
| Nonelectrical machinery. | 88.0 | 88.4 | 88.2 | 88.4 | 88.3 | 88.2 | 88.1 | 87.7 | 87.5 | 87.5 | 87.1 | 86.3 | 86.4 |
| Automotive vehicles, parts, and engines.. | 107.8 | 107.8 | 107.9 | 108.1 | 108.3 | 108.1 | 108.3 | 107.9 | 107.8 | 108.0 | 107.9 | 107.7 | 107.6 |
| Consumer goods, excluding automotive. | 104.6 | 104.8 | 104.9 | 105.1 | 105.2 | 105.1 | 105.1 | 104.6 | 104.4 | 104.4 | 104.4 | 103.9 | 104.1 |
| Nondurables, manufactured. | 107.9 | 108.0 | 107.9 | 108.2 | 108.4 | 108.2 | 108.1 | 108.0 | 108.2 | 108.9 | 108.9 | 108.4 | 108.5 |
| Durables, manufactured. | 101.1 | 101.3 | 101.5 | 101.7 | 101.7 | 101.8 | 101.8 | 101.1 | 100.7 | 100.1 | 99.9 | 99.7 | 100.0 |
| Nonmanufactured consumer goods.. | 105.6 | 105.8 | 106.6 | 106.7 | 106.6 | 106.6 | 105.9 | 103.2 | 103.6 | 102.7 | 104.4 | 101.1 | 102.6 |

46. U.S. international price Indexes for selected categories of services
[2000 $=100$, unless indicated otherwise]

| Category | 2007 |  |  |  | 2008 |  |  |  | 2009 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mar. | June | Sept. | Dec. | Mar. | June | Sept. | Dec. | Mar. |
| Import air freight. | 130.7 | 132.3 | 134.2 | 141.8 | 144.4 | 158.7 | 157.1 | 138.5 | 132.8 |
| Export air freight. | 117.0 | 117.0 | 119.8 | 127.1 | 132.0 | 140.8 | 144.3 | 135.0 | 122.8 |
| Import air passenger fares (Dec. $2006=100) \ldots$ | 122.9 | 144.6 | 140.2 | 135.3 | 131.3 | 171.6 | 161.3 | 157.3 | 134.9 |
| Export air passenger fares (Dec. $2006=100$ )............ | 140.2 | 147.3 | 154.6 | 155.7 | 156.4 | 171.4 | 171.9 | 164.6 | 140.0 |

47. Indexes of productivity, hourly compensation, and unit costs, quarterly data seasonally adjusted
[1992 = 100]

| Item | 2006 |  |  |  | 2007 |  |  |  | 2008 |  |  |  | $2009$I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | II | III | IV | I | II | III | IV | I | II | III | IV |  |
| Business |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons. | 135.9 | 136.5 | 136.0 | 135.9 | 135.7 | 137.5 | 140.0 | 139.6 | 140.4 | 142.0 | 142.8 | 142.6 | 143.2 |
| Compensation per hour. | 167.8 | 168.1 | 169.0 | 172.6 | 174.3 | 175.4 | 177.4 | 178.9 | 180.5 | 181.3 | 183.9 | 185.8 | 187.8 |
| Real compensation per hour | 120.4 | 119.6 | 119.2 | 122.1 | 122.1 | 121.6 | 122.3 | 121.6 | 121.3 | 120.6 | 120.4 | 124.4 | 126.5 |
| Unit labor costs. | 123.5 | 123.1 | 124.3 | 127.0 | 128.5 | 127.5 | 126.7 | 128.2 | 128.6 | 127.7 | 128.8 | 130.3 | 131.2 |
| Unit nonlabor payments. | 133.4 | 136.3 | 136.3 | 133.3 | 134.3 | 137.5 | 139.8 | 139.0 | 140.2 | 142.4 | 144.3 | 141.8 | 142.3 |
| Implicit price deflator. | 127.2 | 128.0 | 128.8 | 129.4 | 130.7 | 131.2 | 131.6 | 132.2 | 132.9 | 133.2 | 134.6 | 134.6 | 135.3 |
| Nonfarm business |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons. | 134.8 | 135.6 | 135.1 | 134.9 | 134.7 | 136.3 | 138.7 | 138.5 | 139.4 | 141.0 | 141.7 | 141.5 | 142.1 |
| Compensation per hour. | 166.5 | 167.0 | 168.0 | 171.7 | 173.4 | 174.0 | 175.8 | 177.8 | 179.4 | 180.2 | 182.7 | 184.7 | 186.8 |
| Real compensation per hour | 119.5 | 118.9 | 118.5 | 121.4 | 121.5 | 120.6 | 121.2 | 120.8 | 120.6 | 119.8 | 119.7 | 123.7 | 125.8 |
| Unit labor costs. | 123.5 | 123.1 | 124.3 | 127.2 | 128.7 | 127.6 | 126.8 | 128.4 | 128.7 | 127.8 | 128.9 | 130.5 | 131.5 |
| Unit nonlabor payments. | 135.5 | 138.6 | 138.4 | 134.7 | 135.1 | 138.3 | 140.5 | 139.7 | 141.0 | 143.3 | 145.6 | 143.4 | 144.2 |
| Implicit price deflator..... | 127.9 | 128.8 | 129.5 | 130.0 | 131.1 | 131.5 | 131.8 | 132.5 | 133.2 | 133.5 | 135.0 | 135.2 | 136.2 |
| Nonfinancial corporations |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all employees. | 146.0 | 145.7 | 146.7 | 145.6 | 145.4 | 146.7 | 147.8 | 148.3 | 148.1 | 151.2 | 153.6 | 151.9 | 151.1 |
| Compensation per hour. | 164.2 | 164.4 | 165.1 | 167.8 | 170.0 | 171.1 | 172.8 | 174.9 | 176.1 | 177.4 | 180.0 | 182.1 | 184.9 |
| Real compensation per hour | 117.8 | 117.0 | 116.5 | 118.7 | 119.1 | 118.6 | 119.1 | 118.9 | 118.4 | 118.0 | 117.9 | 121.9 | 124.5 |
| Total unit costs.. | 112.6 | 113.3 | 113.1 | 115.6 | 117.1 | 116.9 | 117.2 | 118.3 | 119.0 | 118.0 | 118.3 | 121.2 | 124.1 |
| Unit labor costs.. | 112.5 | 112.8 | 112.5 | 115.3 | 116.9 | 116.6 | 116.9 | 117.9 | 118.9 | 117.3 | 117.3 | 119.9 | 122.4 |
| Unit nonlabor costs. | 113.0 | 114.6 | 114.5 | 116.5 | 117.6 | 117.9 | 118.2 | 119.3 | 119.4 | 119.8 | 121.3 | 124.9 | 129.0 |
| Unit profits.. | 182.6 | 183.4 | 193.4 | 174.4 | 172.4 | 173.1 | 167.4 | 156.4 | 150.8 | 147.8 | 156.7 | 144.1 | 136.1 |
| Unit nonlabor payments. | 131.6 | 133.0 | 135.6 | 132.0 | 132.2 | 132.6 | 131.4 | 129.2 | 127.8 | 127.2 | 130.8 | 130.0 | 130.9 |
| Implicit price deflator....................................... | 118.8 | 119.5 | 120.3 | 120.8 | 122.1 | 122.0 | 121.7 | 121.7 | 121.8 | 120.6 | 121.8 | 123.3 | 125.2 |
| Manufacturing |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons.. | 172.6 | 172.5 | 174.4 | 175.3 | 176.9 | 178.2 | 180.1 | 181.6 | 182.8 | 181.6 | 180.3 | 178.2 | 177.0 |
| Compensation per hour. | 170.7 | 169.4 | 170.4 | 174.4 | 176.6 | 176.3 | 177.0 | 179.6 | 181.1 | 182.7 | 185.1 | 190.3 | 196.4 |
| Real compensation per hour. | 122.5 | 120.6 | 120.2 | 123.4 | 123.7 | 122.3 | 122.0 | 122.1 | 121.7 | 121.5 | 121.2 | 127.4 | 132.3 |
| Unit labor costs................................................. | 98.9 | 98.2 | 97.7 | 99.5 | 99.8 | 99.0 | 98.2 | 98.9 | 99.1 | 100.6 | 102.7 | 106.8 | 111.0 |

NOTE: Dash indicates data not available.
48. Annual indexes of multifactor productivity and related measures, selected years
[2000 $=100$, unless otherwise indicated]

| Item | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Private business |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Productivity: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons. | 90.0 | 91.7 | 94.3 | 97.2 | 100.0 | 102.8 | 107.1 | 111.2 | 114.5 | 116.6 | 117.6 | 119.5 | 122.7 |
| Output per unit of capital services. | 105.3 | 105.3 | 103.8 | 102.3 | 100.0 | 96.0 | 94.7 | 95.5 | 97.2 | 98.1 | 98.4 | 97.7 | 95.6 |
| Multifactor productivity. | 95.3 | 96.2 | 97.4 | 98.8 | 100.0 | 100.4 | 102.5 | 105.4 | 108.2 | 109.7 | 110.3 | 110.7 | 112.0 |
| Output. | 82.8 | 87.2 | 91.5 | 96.2 | 100.0 | 100.5 | 102.0 | 105.2 | 109.7 | 113.6 | 117.1 | 119.5 | 120.4 |
| Inputs: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Labor input. | 90.8 | 94.4 | 96.5 | 98.8 | 100.0 | 98.2 | 96.2 | 95.8 | 96.9 | 98.8 | 101.2 | 102.3 | 100.3 |
| Capital services. | 78.7 | 82.9 | 88.2 | 94.1 | 100.0 | 104.6 | 107.7 | 110.2 | 112.9 | 115.8 | 119.1 | 122.3 | 125.9 |
| Combined units of labor and capital input | 86.9 | 90.7 | 93.9 | 97.4 | 100.0 | 100.0 | 99.5 | 99.9 | 101.4 | 103.6 | 106.2 | 108.0 | 107.6 |
| Capital per hour of all persons. | 85.5 | 87.1 | 90.9 | 95.0 | 100.0 | 107.0 | 113.1 | 116.5 | 117.8 | 118.9 | 119.6 | 122.3 | 128.3 |
| Private nonfarm business |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Productivity: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons.. | 90.5 | 92.0 | 94.5 | 97.3 | 100.0 | 102.7 | 107.1 | 111.1 | 114.2 | 116.1 | 117.2 | 118.9 | 122.3 |
| Output per unit of capital services | 106.1 | 105.8 | 104.2 | 102.6 | 100.0 | 96.0 | 94.5 | 95.2 | 96.9 | 97.7 | 97.9 | 97.0 | 95.1 |
| Multifactor productivity. | 95.8 | 96.5 | 97.7 | 99.0 | 100.0 | 100.4 | 102.5 | 105.2 | 108.0 | 109.3 | 109.9 | 110.1 | 111.4 |
| Output. | 82.8 | 87.2 | 91.5 | 96.3 | 100.0 | 100.5 | 102.1 | 105.2 | 109.6 | 113.5 | 117.1 | 119.4 | 120.4 |
| Inputs: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Labor input.. | 90.4 | 94.0 | 96.3 | 98.8 | 100.0 | 98.4 | 96.4 | 96.0 | 97.1 | 99.1 | 101.6 | 102.8 | 100.9 |
| Capital services. | 78.1 | 82.4 | 87.8 | 93.9 | 100.0 | 104.7 | 107.9 | 110.5 | 113.1 | 116.1 | 119.6 | 123.1 | 126.7 |
| Combined units of labor and capital input. | 86.5 | 90.4 | 93.7 | 97.3 | 100.0 | 100.2 | 99.6 | 100.0 | 101.5 | 103.8 | 106.6 | 108.4 | 108.1 |
| Capital per hour of all persons... | 85.3 | 86.9 | 90.7 | 94.8 | 100.0 | 107.0 | 113.2 | 116.7 | 117.8 | 118.9 | 119.7 | 122.6 | 128.8 |
| Manufacturing [1996 = 100] |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Productivity: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons.. | 82.7 | 87.3 | 92.0 | 96.1 | 100.0 | 101.6 | 108.6 | 115.3 | 117.9 | 123.5 | 125.0 | - | - |
| Output per unit of capital services. | 98.0 | 100.6 | 100.7 | 100.4 | 100.0 | 93.5 | 92.3 | 93.2 | 95.4 | 98.9 | 100.2 | - | - |
| Multifactor productivity. | 91.2 | 93.8 | 95.9 | 96.7 | 100.0 | 98.7 | 102.4 | 105.2 | 108.0 | 108.4 | 110.1 | - | - |
| Output.. | 83.1 | 89.2 | 93.8 | 97.4 | 100.0 | 94.9 | 94.3 | 95.2 | 96.9 | 100.4 | 102.3 | - | - |
| Inputs: |  |  |  |  |  |  |  |  |  |  |  | - | - |
| Hours of all persons.. | 100.4 | 102.2 | 101.9 | 101.3 | 100.0 | 93.5 | 86.8 | 82.6 | 82.2 | 81.3 | 81.8 | - | - |
| Capital services. | 84.8 | 88.7 | 93.2 | 97.0 | 100.0 | 101.5 | 102.1 | 102.1 | 101.6 | 101.5 | 102.0 | - | - |
| Energy... | 110.4 | 108.2 | 105.4 | 105.5 | 100.0 | 90.6 | 89.3 | 84.4 | 84.0 | 91.6 | 86.6 | - | - |
| Nonenergy materials.... | 86.0 | 92.9 | 97.7 | 102.6 | 100.0 | 93.3 | 88.4 | 87.7 | 87.3 | 92.4 | 91.5 | - | - |
| Purchased business services.. | 88.5 | 92.1 | 95.0 | 100.0 | 100.0 | 100.7 | 98.2 | 99.1 | 97.0 | 104.5 | 106.6 | - | - |
| Combined units of all factor inputs......................... | 91.1 | 95.1 | 97.8 | 100.7 | 100.0 | 96.2 | 92.1 | 90.5 | 89.7 | 92.7 | 92.9 | - | - |

NOTE: Dash indicates data not available.
49. Annual indexes of productivity, hourly compensation, unit costs, and prices, selected years
[1992 = 100]

| Item | 1963 | 1973 | 1983 | 1993 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Business |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons. | 55.0 | 73.4 | 83.0 | 100.4 | 116.1 | 119.1 | 123.9 | 128.7 | 132.4 | 134.8 | 136.1 | 138.2 | 141.9 |
| Compensation per hour. | 15.6 | 28.9 | 66.3 | 102.2 | 134.7 | 140.3 | 145.3 | 151.2 | 157.0 | 163.2 | 169.4 | 176.5 | 182.8 |
| Real compensation per hour. | 66.6 | 85.1 | 90.5 | 99.8 | 112.0 | 113.5 | 115.7 | 117.7 | 119.0 | 119.7 | 120.3 | 121.9 | 121.6 |
| Unit labor costs.. | 28.4 | 39.4 | 79.8 | 101.8 | 116.0 | 117.9 | 117.3 | 117.5 | 118.5 | 121.0 | 124.5 | 127.7 | 128.8 |
| Unit nonlabor payments. | 26.6 | 37.5 | 76.3 | 102.6 | 107.2 | 110.0 | 114.2 | 118.3 | 124.6 | 130.5 | 134.8 | 137.7 | 142.1 |
| Implicit price deflator. | 27.7 | 38.7 | 78.5 | 102.1 | 112.7 | 114.9 | 116.1 | 117.8 | 120.8 | 124.6 | 128.3 | 131.4 | 133.8 |
| Nonfarm business |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons. | 57.8 | 75.3 | 84.5 | 100.4 | 115.7 | 118.6 | 123.5 | 128.0 | 131.6 | 133.9 | 135.1 | 137.0 | 140.9 |
| Compensation per hour. | 16.1 | 29.1 | 66.6 | 102.0 | 134.2 | 139.5 | 144.6 | 150.4 | 156.0 | 162.1 | 168.3 | 175.2 | 181.7 |
| Real compensation per hour. | 68.7 | 85.5 | 91.1 | 99.5 | 111.6 | 112.8 | 115.1 | 117.1 | 118.2 | 118.9 | 119.5 | 121.0 | 120.8 |
| Unit labor costs. | 27.8 | 38.6 | 78.9 | 101.6 | 116.0 | 117.7 | 117.1 | 117.5 | 118.5 | 121.1 | 124.5 | 127.9 | 129.0 |
| Unit nonlabor payments. | 26.3 | 35.3 | 76.1 | 103.1 | 108.7 | 111.6 | 116.0 | 119.6 | 125.5 | 132.1 | 136.8 | 138.4 | 143.3 |
| Implicit price deflator. | 27.3 | 37.4 | 77.9 | 102.1 | 113.3 | 115.4 | 116.7 | 118.3 | 121.1 | 125.1 | 129.1 | 131.7 | 134.2 |
| Nonfinancial corporations |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all employees. | 62.6 | 74.8 | 85.7 | 100.3 | 122.5 | 124.7 | 129.7 | 134.6 | 139.7 | 143.4 | 146.0 | 147.1 | 151.2 |
| Compensation per hour. | 17.9 | 31.0 | 68.9 | 101.8 | 133.0 | 138.6 | 143.6 | 149.5 | 154.0 | 159.6 | 165.4 | 172.2 | 178.9 |
| Real compensation per hour. | 76.4 | 91.2 | 94.2 | 99.3 | 110.6 | 112.1 | 114.3 | 116.4 | 116.8 | 117.1 | 117.5 | 118.9 | 119.0 |
| Total unit costs. | 27.2 | 39.9 | 80.7 | 101.0 | 107.4 | 111.6 | 110.7 | 111.0 | 110.0 | 111.7 | 113.6 | 117.4 | 119.1 |
| Unit labor costs. | 28.6 | 41.4 | 80.4 | 101.4 | 108.6 | 111.2 | 110.7 | 111.0 | 110.3 | 111.3 | 113.3 | 117.1 | 118.3 |
| Unit nonlabor costs. | 23.4 | 35.7 | 81.6 | 99.9 | 104.2 | 112.6 | 110.8 | 111.1 | 109.3 | 112.7 | 114.6 | 118.3 | 121.3 |
| Unit profits. | 57.3 | 54.9 | 91.2 | 114.1 | 108.7 | 82.2 | 98.0 | 109.9 | 144.8 | 163.0 | 183.5 | 167.3 | 149.9 |
| Unit nonlabor payments. | 32.5 | 40.8 | 84.2 | 103.7 | 105.4 | 104.5 | 107.4 | 110.7 | 118.8 | 126.2 | 133.0 | 131.4 | 129.0 |
| Implicit price deflator. | 29.9 | 41.2 | 81.7 | 102.2 | 107.5 | 108.9 | 109.6 | 110.9 | 113.1 | 116.3 | 119.9 | 121.9 | 121.9 |
| Manufacturing |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Output per hour of all persons.. | - | - | - | 102.6 | 139.1 | 141.2 | 151.0 | 160.4 | 164.0 | 171.9 | 173.7 | 179.2 | 180.7 |
| Compensation per hour.. | - | - | - | 102.0 | 134.7 | 137.8 | 147.8 | 158.2 | 161.5 | 164.5 | 171.2 | 177.4 | 184.7 |
| Real compensation per hour. | - | - | - | 99.6 | 112.0 | 111.5 | 117.7 | 123.2 | 122.5 | 120.7 | 121.6 | 122.5 | 122.8 |
| Unit labor costs..... | - | - | - | 99.5 | 96.9 | 97.6 | 97.9 | 98.7 | 98.5 | 95.7 | 98.6 | 99.0 | 102.2 |
| Unit nonlabor payments.. | - | - | - | 101.1 | 103.5 | 102.0 | 100.3 | 102.9 | 110.2 | 122.2 | 126.6 | - | - |
| Implicit price deflator........................................ | - | - | - | 100.6 | 101.4 | 100.6 | 99.5 | 101.5 | 106.4 | 113.5 | 117.4 | - | - |

Dash indicates data not available.
50. Annual indexes of output per hour for selected NAICS industries

| NAICS | Industry | 1987 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mining |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | Mining. | 85.3 | 100.0 | 103.5 | 111.4 | 111.0 | 109.1 | 113.5 | 116.0 | 106.8 | 96.0 | 87.3 | 81.7 |
| 211 | Oil and gas extraction. | 80.1 | 100.0 | 101.2 | 107.9 | 119.4 | 121.6 | 123.8 | 130.1 | 111.7 | 107.8 | 100.4 | 97.0 |
| 2111 | Oil and gas extraction. | 80.1 | 100.0 | 101.2 | 107.9 | 119.4 | 121.6 | 123.8 | 130.1 | 111.7 | 107.8 | 100.4 | 97.0 |
| 212 | Mining, except oil and gas. | 69.3 | 100.0 | 104.5 | 105.8 | 106.3 | 109.0 | 110.7 | 113.8 | 116.2 | 114.2 | 111.0 | 105.2 |
| 2121 | Coal mining. | 57.8 | 100.0 | 106.5 | 110.3 | 115.8 | 114.3 | 111.7 | 113.4 | 113.4 | 107.8 | 99.8 | 101.0 |
| 2122 | Metal ore mining. | 71.0 | 100.0 | 108.9 | 112.3 | 121.5 | 132.2 | 138.2 | 142.2 | 137.1 | 129.9 | 123.1 | 104.2 |
| 2123 | Nonmetallic mineral mining and quarrying.. | 88.0 | 100.0 | 101.2 | 101.2 | 96.1 | 99.4 | 103.6 | 108.3 | 114.3 | 118.4 | 120.0 | 109.8 |
| 213 | Support activities for mining.. | 79.4 | 100.0 | 96.0 | 98.5 | 100.9 | 110.4 | 103.5 | 136.3 | 170.3 | 144.9 | 147.0 | 156.8 |
| 2131 | Support activities for mining. | 79.4 | 100.0 | 96.0 | 98.5 | 100.9 | 110.4 | 103.5 | 136.3 | 170.3 | 144.9 | 147.0 | 156.8 |
|  | Utilities |  |  |  |  |  |  |  |  |  |  |  |  |
| 2211 | Power generation and supply. | 65.6 | 100.0 | 103.7 | 103.5 | 107.0 | 106.4 | 102.9 | 105.1 | 107.5 | 114.3 | 115.4 | 113.3 |
| 2212 | Natural gas distribution.. | 67.8 | 100.0 | 99.0 | 102.7 | 113.2 | 110.1 | 115.4 | 114.1 | 118.3 | 122.2 | 119.1 | 119.7 |
|  | Manufacturing |  |  |  |  |  |  |  |  |  |  |  |  |
| 311 | Food. | 94.1 | 100.0 | 103.9 | 105.9 | 107.1 | 109.5 | 113.8 | 116.8 | 117.3 | 123.3 | 121.1 |  |
| 3111 | Animal food. | 83.6 | 100.0 | 109.0 | 110.9 | 109.7 | 131.4 | 142.7 | 165.8 | 149.5 | 165.5 | 150.4 |  |
| 3112 | Grain and oilseed milling. | 81.1 | 100.0 | 107.5 | 116.1 | 113.1 | 119.5 | 122.4 | 123.9 | 130.3 | 133.0 | 130.7 |  |
| 3113 | Sugar and confectionery products. | 87.6 | 100.0 | 103.5 | 106.5 | 109.9 | 108.6 | 108.0 | 112.5 | 118.2 | 130.7 | 129.2 |  |
| 3114 | Fruit and vegetable preserving and specialty.. | 92.4 | 100.0 | 107.1 | 109.5 | 111.8 | 121.4 | 126.9 | 123.0 | 126.2 | 132.0 | 126.9 |  |
| 3115 | Dairy products. | 82.7 | 100.0 | 100.0 | 93.6 | 95.9 | 97.1 | 105.0 | 110.5 | 107.4 | 109.6 | 110.2 |  |
| 3116 | Animal slaughtering and processing. | 97.4 | 100.0 | 100.0 | 101.2 | 102.6 | 103.7 | 107.3 | 106.6 | 108.0 | 117.4 | 116.9 |  |
| 3117 | Seafood product preparation and packaging | 123.1 | 100.0 | 120.2 | 131.6 | 140.5 | 153.0 | 169.8 | 173.2 | 162.2 | 186.1 | 203.8 |  |
| 3118 | Bakeries and tortilla manufacturing. | 100.9 | 100.0 | 103.8 | 108.6 | 108.3 | 109.9 | 108.9 | 109.3 | 113.8 | 115.4 | 110.5 |  |
| 3119 | Other food products......... | 97.5 | 100.0 | 107.8 | 111.4 | 112.6 | 106.2 | 111.9 | 118.8 | 119.3 | 116.2 | 116.3 |  |
| 312 | Beverages and tobacco products. | 78.1 | 100.0 | 97.6 | 87.3 | 88.3 | 89.5 | 82.6 | 90.9 | 94.7 | 100.5 | 94.0 |  |
| 3121 | Beverages.. | 77.1 | 100.0 | 99.0 | 90.7 | 90.8 | 92.7 | 99.4 | 108.3 | 114.1 | 120.3 | 112.0 |  |
| 3122 | Tobacco and tobacco products. | 71.9 | 100.0 | 98.5 | 91.0 | 95.9 | 98.2 | 67.0 | 78.7 | 82.4 | 93.1 | 94.9 |  |
| 313 | Textile mills. | 73.7 | 100.0 | 102.6 | 106.2 | 106.7 | 109.5 | 125.3 | 136.1 | 138.6 | 152.8 | 150.5 |  |
| 3131 | Fiber, yarn, and thread mills. | 66.5 | 100.0 | 102.1 | 103.9 | 101.3 | 109.1 | 133.3 | 148.8 | 154.1 | 143.5 | 139.7 |  |
| 3132 | Fabric mills. | 68.0 | 100.0 | 104.2 | 110.0 | 110.1 | 110.3 | 125.4 | 137.3 | 138.6 | 164.2 | 170.5 |  |
| 3133 | Textile and fabric finishing mills | 91.3 | 100.0 | 101.2 | 102.2 | 104.4 | 108.5 | 119.8 | 125.1 | 127.7 | 139.8 | 126.2 |  |
| 314 | Textile product mills. | 93.0 | 100.0 | 98.7 | 102.5 | 107.1 | 104.5 | 107.3 | 112.7 | 123.4 | 128.0 | 121.1 |  |
| 3141 | Textile furnishings mills. | 91.2 | 100.0 | 99.3 | 99.1 | 104.5 | 103.1 | 105.5 | 114.4 | 122.3 | 125.7 | 117.3 |  |
| 3149 | Other textile product mills. | 92.2 | 100.0 | 96.7 | 107.6 | 108.9 | 103.1 | 105.1 | 104.2 | 120.4 | 128.9 | 126.1 |  |
| 315 | Apparel. | 71.9 | 100.0 | 101.8 | 111.7 | 116.8 | 116.5 | 102.9 | 112.4 | 103.4 | 110.9 | 114.0 |  |
| 3151 | Apparel knitting mills. | 76.2 | 100.0 | 96.1 | 101.4 | 108.9 | 105.6 | 112.0 | 105.6 | 96.6 | 120.0 | 123.7 |  |
| 3152 | Cut and sew apparel. | 69.8 | 100.0 | 102.3 | 114.6 | 119.8 | 119.5 | 103.9 | 117.2 | 108.4 | 113.5 | 117.6 |  |
| 3159 | Accessories and other apparel. | 97.8 | 100.0 | 109.0 | 99.3 | 98.3 | 105.2 | 76.1 | 78.7 | 70.8 | 74.0 | 67.3 |  |
| 316 | Leather and allied products. | 71.6 | 100.0 | 106.6 | 112.7 | 120.3 | 122.4 | 97.7 | 99.8 | 109.5 | 123.6 | 132.5 |  |
| 3161 | Leather and hide tanning and finishing. | 94.0 | 100.0 | 100.3 | 98.1 | 100.1 | 100.3 | 81.2 | 82.2 | 93.5 | 118.7 | 118.1 |  |
| 3162 | Footwear. | 76.7 | 100.0 | 102.1 | 117.3 | 122.3 | 130.7 | 102.7 | 104.8 | 100.7 | 105.6 | 115.4 |  |
| 3169 | Other leather products. | 92.3 | 100.0 | 113.3 | 110.4 | 122.8 | 117.6 | 96.2 | 100.3 | 127.7 | 149.7 | 174.6 |  |
| 321 | Wood products. | 95.0 | 100.0 | 101.2 | 102.9 | 102.7 | 106.1 | 113.6 | 114.7 | 115.6 | 123.1 | 124.9 |  |
| 3211 | Sawmills and wood preservation. | 77.6 | 100.0 | 100.3 | 104.7 | 105.4 | 108.8 | 114.4 | 121.3 | 118.2 | 127.3 | 129.7 |  |
| 3212 | Plywood and engineered wood products. | 99.7 | 100.0 | 105.1 | 98.7 | 98.8 | 105.2 | 110.3 | 107.0 | 102.9 | 110.2 | 117.4 |  |
| 3219 | Other wood products.. | 103.0 | 100.0 | 101.0 | 104.5 | 103.0 | 104.7 | 113.9 | 113.9 | 119.6 | 126.3 | 125.3 |  |
| 322 | Paper and paper products... | 85.8 | 100.0 | 102.3 | 104.1 | 106.3 | 106.8 | 114.2 | 118.9 | 123.4 | 124.5 | 127.3 |  |
| 3221 | Pulp, paper, and paperboard mills. | 81.7 | 100.0 | 102.5 | 111.1 | 116.3 | 119.9 | 133.1 | 141.4 | 148.0 | 147.7 | 151.1 |  |
| 3222 | Converted paper products.... | 89.0 | 100.0 | 102.5 | 100.1 | 101.1 | 100.5 | 105.6 | 109.6 | 112.9 | 114.8 | 116.6 |  |
| 323 | Printing and related support activities. | 97.6 | 100.0 | 100.6 | 102.8 | 104.6 | 105.3 | 110.2 | 111.1 | 114.5 | 119.5 | 121.1 |  |
| 3231 | Printing and related support activities. | 97.6 | 100.0 | 100.6 | 102.8 | 104.6 | 105.3 | 110.2 | 111.1 | 114.5 | 119.5 | 121.1 |  |
| 324 | Petroleum and coal products.. | 71.1 | 100.0 | 102.2 | 107.1 | 113.5 | 112.1 | 118.0 | 119.2 | 123.4 | 123.8 | 122.8 |  |
| 3241 | Petroleum and coal products. | 71.1 | 100.0 | 102.2 | 107.1 | 113.5 | 112.1 | 118.0 | 119.2 | 123.4 | 123.8 | 122.8 |  |
| 325 | Chemicals.. | 85.9 | 100.0 | 99.9 | 103.5 | 106.6 | 105.3 | 114.2 | 118.4 | 125.8 | 134.1 | 137.5 |  |
| 3251 | Basic chemicals.. | 94.6 | 100.0 | 102.8 | 115.7 | 117.5 | 108.8 | 123.8 | 136.0 | 154.4 | 165.2 | 169.3 |  |
| 3252 | Resin, rubber, and artificial fibers. | 77.4 | 100.0 | 106.0 | 109.8 | 109.8 | 106.2 | 123.1 | 122.2 | 121.9 | 130.5 | 134.9 |  |
| 3253 | Agricultural chemicals.. | 80.4 | 100.0 | 98.8 | 87.4 | 92.1 | 90.0 | 99.2 | 108.4 | 117.4 | 132.5 | 130.7 |  |
| 3254 | Pharmaceuticals and medicines. | 87.3 | 100.0 | 93.8 | 95.7 | 95.6 | 99.5 | 97.4 | 101.5 | 104.1 | 110.0 | 115.0 |  |
| 3255 | Paints, coatings, and adhesives.. | 89.4 | 100.0 | 100.1 | 100.3 | 100.8 | 105.6 | 108.9 | 115.2 | 119.1 | 120.8 | 115.4 |  |
| 3256 | Soap, cleaning compounds, and toiletries.. | 84.4 | 100.0 | 98.0 | 93.0 | 102.8 | 106.0 | 124.1 | 118.2 | 135.3 | 153.1 | 162.9 |  |
| 3259 | Other chemical products and preparations.. | 75.4 | 100.0 | 99.2 | 109.3 | 119.7 | 110.4 | 120.8 | 123.0 | 121.3 | 123.5 | 118.1 |  |
| 326 | Plastics and rubber products. | 80.9 | 100.0 | 103.2 | 107.9 | 110.2 | 112.3 | 120.8 | 126.0 | 128.7 | 132.6 | 132.8 |  |
| 3261 | Plastics products. | 83.1 | 100.0 | 104.2 | 109.9 | 112.3 | 114.6 | 123.8 | 129.5 | 131.9 | 135.6 | 133.8 |  |
| 3262 | Rubber products.. | 75.5 | 100.0 | 99.4 | 100.2 | 101.7 | 102.3 | 107.1 | 111.0 | 114.4 | 118.7 | 124.9 |  |
| 327 | Nonmetallic mineral products.. | 87.6 | 100.0 | 103.7 | 104.3 | 102.5 | 100.0 | 104.6 | 111.2 | 108.7 | 115.3 | 114.6 |  |
| 3271 | Clay products and refractories. | 86.9 | 100.0 | 101.2 | 102.7 | 102.9 | 98.4 | 99.7 | 103.5 | 109.2 | 114.6 | 111.9 |  |

50. Continued - Annual indexes of output per hour for selected NAICS industries
[1997=100]

| NAICS | Industry | 1987 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3272 | Glass and glass products | 82.4 | 100.0 | 101.3 | 106.7 | 108.1 | 102.9 | 107.5 | 115.3 | 113.8 | 123.1 | 132.9 | - |
| 3273 | Cement and concrete products. | 93.6 | 100.0 | 105.1 | 105.9 | 101.6 | 98.0 | 102.4 | 108.3 | 102.8 | 106.5 | 103.1 |  |
| 3274 | Lime and gypsum products. | 88.2 | 100.0 | 114.9 | 104.4 | 98.5 | 101.8 | 99.0 | 107.1 | 104.7 | 119.3 | 116.5 |  |
| 3279 | Other nonmetallic mineral products. | 83.0 | 100.0 | 99.0 | 95.6 | 96.6 | 98.6 | 106.9 | 113.6 | 110.6 | 118.9 | 116.3 | - |
| 331 | Primary metals. | 81.0 | 100.0 | 102.0 | 102.8 | 101.3 | 101.0 | 115.2 | 118.2 | 132.0 | 135.5 | 134.3 | - |
| 3311 | Iron and steel mills and ferroalloy production | 64.8 | 100.0 | 101.3 | 104.8 | 106.0 | 104.4 | 125.1 | 130.4 | 164.9 | 163.1 | 163.5 | - |
| 3312 | Steel products from purchased steel..... | 79.7 | 100.0 | 100.6 | 93.8 | 96.4 | 97.9 | 96.8 | 93.9 | 88.6 | 90.8 | 86.1 |  |
| 3313 | Alumina and aluminum production.. | 90.5 | 100.0 | 101.5 | 103.5 | 96.6 | 96.2 | 124.5 | 126.8 | 137.3 | 154.4 | 151.7 |  |
| 3314 | Other nonferrous metal production. | 96.8 | 100.0 | 111.3 | 108.4 | 102.3 | 99.5 | 107.6 | 120.6 | 123.1 | 122.3 | 115.7 |  |
| 3315 | Foundries. | 81.4 | 100.0 | 101.2 | 104.5 | 103.6 | 107.4 | 116.7 | 116.3 | 123.9 | 128.6 | 131.8 | - |
| 332 | Fabricated metal products | 87.3 | 100.0 | 101.3 | 103.0 | 104.8 | 104.8 | 110.9 | 114.4 | 113.4 | 116.9 | 119.7 | - |
| 3321 | Forging and stamping. | 85.4 | 100.0 | 103.5 | 110.9 | 121.1 | 120.7 | 125.0 | 133.1 | 142.0 | 147.6 | 152.7 | - |
| 3322 | Cutlery and handtools. | 86.3 | 100.0 | 99.9 | 108.0 | 105.9 | 110.3 | 113.4 | 113.2 | 107.6 | 114.1 | 116.6 |  |
| 3323 | Architectural and structural metals. | 88.7 | 100.0 | 100.9 | 102.0 | 100.6 | 101.6 | 106.0 | 108.8 | 105.4 | 109.2 | 113.5 |  |
| 3324 | Boilers, tanks, and shipping containers. | 86.0 | 100.0 | 100.0 | 96.5 | 94.2 | 94.4 | 98.9 | 101.6 | 93.6 | 95.7 | 96.6 | - |
| 3325 | Hardware | 88.7 | 100.0 | 100.5 | 105.2 | 114.3 | 113.5 | 115.5 | 125.4 | 126.0 | 131.8 | 131.1 | - |
| 3326 | Spring and wire products | 82.2 | 100.0 | 110.6 | 111.4 | 112.6 | 111.9 | 125.7 | 135.3 | 133.8 | 143.2 | 140.6 |  |
| 3327 | Machine shops and threaded products. | 76.9 | 100.0 | 99.6 | 104.2 | 108.2 | 108.8 | 114.8 | 115.7 | 114.6 | 116.3 | 117.1 |  |
| 3328 | Coating, engraving, and heat treating metals | 75.5 | 100.0 | 100.9 | 101.0 | 105.5 | 107.3 | 116.1 | 118.3 | 125.3 | 136.5 | 135.5 |  |
| 3329 | Other fabricated metal products.. | 91.0 | 100.0 | 101.9 | 99.6 | 99.9 | 96.7 | 106.5 | 111.6 | 111.2 | 112.5 | 117.7 |  |
| 333 | Machinery. | 82.3 | 100.0 | 102.9 | 104.7 | 111.5 | 109.0 | 116.6 | 125.2 | 127.0 | 134.1 | 137.4 |  |
| 3331 | Agriculture, construction, and mining machiner | 74.6 | 100.0 | 103.3 | 94.3 | 100.3 | 100.3 | 103.7 | 116.1 | 125.4 | 129.4 | 129.1 | - |
| 3332 | Industrial machinery.. | 75.1 | 100.0 | 95.1 | 105.8 | 130.0 | 105.8 | 117.6 | 117.0 | 126.5 | 122.4 | 135.3 |  |
| 3333 | Commercial and service industry machinery. | 87.0 | 100.0 | 106.3 | 110.0 | 101.3 | 94.5 | 97.8 | 104.7 | 106.5 | 115.1 | 122.3 |  |
| 3334 | HVAC and commercial refrigeration equipment | 84.0 | 100.0 | 106.2 | 110.2 | 107.9 | 110.8 | 118.6 | 130.0 | 132.8 | 137.1 | 133.4 | - |
| 3335 | Metalworking machinery. | 85.1 | 100.0 | 99.1 | 100.3 | 106.1 | 103.3 | 112.7 | 115.2 | 117.1 | 127.3 | 128.3 | - |
| 3336 | Turbine and power transmission equipment | 80.2 | 100.0 | 105.0 | 110.8 | 114.9 | 126.9 | 130.7 | 143.0 | 126.4 | 132.5 | 128.5 |  |
| 3339 | Other general purpose machinery.. | 83.5 | 100.0 | 103.7 | 106.0 | 113.7 | 110.5 | 117.9 | 128.1 | 127.1 | 138.4 | 143.8 |  |
| 334 | Computer and electronic products. | 28.4 | 100.0 | 118.4 | 149.5 | 181.8 | 181.4 | 188.0 | 217.2 | 244.3 | 259.6 | 282.2 |  |
| 3341 | Computer and peripheral equipment | 11.0 | 100.0 | 140.4 | 195.9 | 235.0 | 252.2 | 297.4 | 373.4 | 415.1 | 543.3 | 715.7 | - |
| 3342 | Communications equipment. | 39.8 | 100.0 | 107.1 | 135.4 | 164.1 | 152.9 | 128.2 | 143.1 | 148.4 | 143.7 | 178.2 |  |
| 3343 | Audio and video equipment. | 61.7 | 100.0 | 105.4 | 119.6 | 126.3 | 128.4 | 150.1 | 171.0 | 239.3 | 230.2 | 240.7 |  |
| 3344 | Semiconductors and electronic components | 17.0 | 100.0 | 125.8 | 173.9 | 232.2 | 230.0 | 263.1 | 321.6 | 360.0 | 381.6 | 380.4 |  |
| 3345 | Electronic instruments. | 70.2 | 100.0 | 102.3 | 106.7 | 116.7 | 119.3 | 118.1 | 125.3 | 145.4 | 146.6 | 150.6 |  |
| 3346 | Magnetic media manufacturing and reproduction... | 85.7 | 100.0 | 106.4 | 108.9 | 105.8 | 99.8 | 110.4 | 126.1 | 142.6 | 142.1 | 137.7 | - |
| 335 | Electrical equipment and appliances | 75.5 | 100.0 | 103.9 | 106.6 | 111.5 | 111.4 | 113.4 | 117.2 | 123.3 | 130.0 | 129.4 |  |
| 3351 | Electric lighting equipment. | 91.1 | 100.0 | 104.4 | 102.8 | 102.0 | 106.7 | 112.4 | 111.4 | 122.7 | 130.3 | 136.7 |  |
| 3352 | Household appliances. | 73.3 | 100.0 | 105.2 | 104.0 | 117.2 | 124.6 | 132.3 | 146.7 | 159.6 | 164.5 | 173.2 |  |
| 3353 | Electrical equipment. | 68.7 | 100.0 | 100.2 | 98.7 | 99.4 | 101.0 | 101.8 | 103.4 | 110.8 | 118.5 | 118.1 | - |
| 3359 | Other electrical equipment and components. | 78.8 | 100.0 | 105.8 | 114.7 | 119.7 | 113.1 | 114.0 | 116.2 | 115.6 | 121.6 | 115.7 | - |
| 336 | Transportation equipment | 81.6 | 100.0 | 109.7 | 118.0 | 109.4 | 113.6 | 127.4 | 137.5 | 134.9 | 140.9 | 142.4 | - |
| 3361 | Motor vehicles.. | 75.4 | 100.0 | 113.4 | 122.6 | 109.7 | 110.0 | 126.0 | 140.7 | 142.1 | 148.4 | 163.8 |  |
| 3362 | Motor vehicle bodies and trailers | 85.0 | 100.0 | 102.9 | 103.1 | 98.8 | 88.7 | 105.4 | 109.8 | 110.7 | 114.2 | 110.9 |  |
| 3363 | Motor vehicle parts.. | 78.7 | 100.0 | 104.9 | 110.0 | 112.3 | 114.8 | 130.5 | 137.0 | 138.0 | 144.1 | 143.7 | - |
| 3364 | Aerospace products and p | 87.2 | 100.0 | 119.1 | 120.8 | 103.4 | 115.7 | 118.6 | 119.0 | 113.2 | 125.0 | 117.9 | - |
| 3365 | Railroad rolling stock. | 55.6 | 100.0 | 103.3 | 116.5 | 118.5 | 126.1 | 146.1 | 139.8 | 131.5 | 137.3 | 148.0 | - |
| 3366 | Ship and boat building.. | 95.5 | 100.0 | 99.3 | 112.0 | 122.0 | 121.5 | 131.0 | 133.9 | 138.7 | 131.7 | 127.3 | - |
| 3369 | Other transportation equipment. | 73.8 | 100.0 | 111.5 | 113.8 | 132.4 | 140.2 | 150.9 | 163.0 | 168.3 | 184.1 | 197.8 |  |
| 337 | Furniture and related products.. | 84.8 | 100.0 | 102.0 | 101.6 | 101.4 | 103.4 | 112.6 | 117.0 | 118.4 | 125.0 | 127.8 | - |
| 3371 | Household and institutional furniture | 85.2 | 100.0 | 102.2 | 103.1 | 101.9 | 105.5 | 111.8 | 114.7 | 113.6 | 120.8 | 124.0 | - |
| 3372 | Office furniture and fixtures.. | 85.8 | 100.0 | 100.0 | 98.2 | 100.2 | 98.0 | 115.9 | 125.2 | 130.7 | 134.9 | 134.4 | - |
| 3379 | Other furniture related products. | 86.3 | 100.0 | 106.9 | 102.0 | 99.5 | 105.0 | 110.2 | 110.0 | 121.3 | 128.3 | 130.8 | - |
| 339 | Miscellaneous manufacturing.. | 81.1 | 100.0 | 105.2 | 107.8 | 114.7 | 116.6 | 124.2 | 132.7 | 134.9 | 144.6 | 149.8 | - |
| 3391 | Medical equipment and supplies. | 76.3 | 100.0 | 109.0 | 111.1 | 115.5 | 120.7 | 129.1 | 138.9 | 139.5 | 148.5 | 152.8 | - |
| 3399 | Other miscellaneous manufacturing. | 85.4 | 100.0 | 102.1 | 105.0 | 113.6 | 111.8 | 118.0 | 124.7 | 128.6 | 137.8 | 143.2 | - |
|  | Wholesale trade |  |  |  |  |  |  |  |  |  |  |  |  |
| 42 | Wholesale trade. | 73.2 | 100.0 | 103.4 | 111.2 | 116.5 | 117.7 | 123.3 | 127.5 | 134.8 | 135.8 | 138.6 | 141.5 |
| 423 | Durable goods. | 62.3 | 100.0 | 107.1 | 119.2 | 125.0 | 128.9 | 140.2 | 146.6 | 161.5 | 167.4 | 174.5 | 178.4 |
| 4231 | Motor vehicles and parts.. | 74.5 | 100.0 | 106.4 | 120.4 | 116.7 | 120.0 | 133.4 | 137.6 | 143.5 | 146.5 | 162.7 | 161.8 |
| 4232 | Furniture and furnishings.. | 80.5 | 100.0 | 99.9 | 102.3 | 112.5 | 110.7 | 116.0 | 123.9 | 130.0 | 127.1 | 130.6 | 131.1 |
| 4233 | Lumber and construction supplies. | 109.1 | 100.0 | 105.4 | 109.3 | 107.7 | 116.6 | 123.9 | 133.0 | 139.4 | 140.2 | 135.4 | 124.5 |
| 4234 | Commercial equipment.. | 28.0 | 100.0 | 125.5 | 162.0 | 181.9 | 217.9 | 264.9 | 299.1 | 352.8 | 402.0 | 447.3 | 508.5 |
| 4235 | Metals and minerals. | 101.7 | 100.0 | 100.9 | 94.0 | 93.9 | 94.4 | 96.3 | 97.5 | 106.3 | 104.2 | 99.9 | 94.4 |
| 4236 | Electric goods.. | 42.8 | 100.0 | 105.9 | 127.5 | 152.8 | 147.6 | 159.5 | 165.7 | 194.1 | 204.6 | 222.1 | 235.1 |
| 4237 | Hardware and plumbing. | 82.2 | 100.0 | 101.8 | 104.4 | 103.7 | 100.5 | 102.6 | 103.9 | 107.3 | 104.5 | 105.6 | 105.8 |
| 4238 | Machinery and supplies.. | 74.1 | 100.0 | 104.3 | 102.9 | 105.5 | 102.9 | 100.3 | 103.4 | 112.4 | 117.6 | 121.2 | 121.5 |

50. Continued - Annual indexes of output per hour for selected NAICS industries

| NAICS | Industry | 1987 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4239 | Miscellaneous durable goods | 89.8 | 100.0 | 100.8 | 113.7 | 114.7 | 116.8 | 124.6 | 119.6 | 135.0 | 135.5 | 122.3 | 118.4 |
| 424 | Nondurable goods. | 91.0 | 100.0 | 99.1 | 100.8 | 105.1 | 105.1 | 105.8 | 110.5 | 113.6 | 114.3 | 113.1 | 115.0 |
| 4241 | Paper and paper products. | 85.6 | 100.0 | 98.4 | 100.1 | 100.9 | 104.6 | 116.6 | 119.7 | 130.9 | 141.7 | 136.9 | 146.5 |
| 4242 | Druggists' goods.. | 70.7 | 100.0 | 94.2 | 93.1 | 85.9 | 84.9 | 89.8 | 100.2 | 105.8 | 112.1 | 109.7 | 104.3 |
| 4243 | Apparel and piece goods. | 86.3 | 100.0 | 103.6 | 105.1 | 108.8 | 115.2 | 122.8 | 125.9 | 131.0 | 140.8 | 146.6 | 148.3 |
| 4244 | Grocery and related products | 87.9 | 100.0 | 101.1 | 101.0 | 102.4 | 101.9 | 98.6 | 104.9 | 104.1 | 103.4 | 103.8 | 109.7 |
| 4245 | Farm product raw materials. | 81.6 | 100.0 | 94.3 | 101.6 | 105.1 | 102.1 | 98.1 | 98.2 | 109.3 | 111.0 | 117.9 | 125.1 |
| 4246 | Chemicals. | 90.4 | 100.0 | 97.1 | 93.3 | 87.9 | 85.3 | 89.1 | 92.2 | 91.2 | 87.4 | 85.1 | 86.4 |
| 4247 | Petroleum | 84.4 | 100.0 | 88.5 | 102.9 | 138.1 | 140.6 | 153.6 | 151.1 | 163.2 | 153.3 | 149.4 | 149.1 |
| 4248 | Alcoholic beverages | 99.3 | 100.0 | 106.5 | 105.6 | 108.4 | 106.4 | 106.8 | 107.9 | 103.1 | 104.0 | 107.4 | 108.5 |
| 4249 | Miscellaneous nondurable goods. | 111.2 | 100.0 | 105.4 | 106.8 | 115.0 | 111.9 | 106.1 | 109.8 | 120.7 | 124.1 | 121.9 | 117.1 |
| 425 | Electronic markets and agents and brokers. | 64.3 | 100.0 | 102.4 | 112.3 | 120.1 | 110.7 | 109.8 | 104.5 | 101.6 | 91.5 | 95.0 | 98.3 |
| 4251 | Electronic markets and agents and brokers. | 64.3 | 100.0 | 102.4 | 112.3 | 120.1 | 110.7 | 109.8 | 104.5 | 101.6 | 91.5 | 95.0 | 98.3 |
|  | Retail trade |  |  |  |  |  |  |  |  |  |  |  |  |
| 44-45 | Retail trade. | 79.2 | 100.0 | 105.7 | 112.7 | 116.1 | 120.1 | 125.6 | 131.6 | 137.9 | 141.3 | 147.3 | 152.7 |
| 441 | Motor vehicle and parts dealers | 78.4 | 100.0 | 106.4 | 115.1 | 114.3 | 116.0 | 119.9 | 124.3 | 127.3 | 126.7 | 129.3 | 132.2 |
| 4411 | Automobile dealers. | 79.2 | 100.0 | 106.5 | 116.3 | 113.7 | 115.5 | 117.2 | 119.5 | 124.7 | 123.5 | 125.8 | 129.8 |
| 4412 | Other motor vehicle dealers. | 74.1 | 100.0 | 109.6 | 114.8 | 115.3 | 124.6 | 133.6 | 133.8 | 143.3 | 134.6 | 142.6 | 146.9 |
| 4413 | Auto parts, accessories, and tire stores. | 71.8 | 100.0 | 105.1 | 107.6 | 108.4 | 101.3 | 107.7 | 115.1 | 110.1 | 115.5 | 115.9 | 112.0 |
| 442 | Furniture and home furnishings store | 75.1 | 100.0 | 104.1 | 110.8 | 115.9 | 122.4 | 129.3 | 134.6 | 146.7 | 150.5 | 158.2 | 168.7 |
| 4421 | Furniture stores. | 77.3 | 100.0 | 104.3 | 107.5 | 112.0 | 119.7 | 125.2 | 128.8 | 139.2 | 142.3 | 151.1 | 156.6 |
| 4422 | Home furnishings stores. | 71.3 | 100.0 | 104.1 | 115.2 | 121.0 | 126.1 | 134.9 | 142.6 | 156.8 | 161.4 | 168.3 | 184.6 |
| 443 | Electronics and appliance store | 38.0 | 100.0 | 122.6 | 150.6 | 173.7 | 196.7 | 233.5 | 292.7 | 334.1 | 367.5 | 412.0 | 471.1 |
| 4431 | Electronics and appliance stores. | 38.0 | 100.0 | 122.6 | 150.6 | 173.7 | 196.7 | 233.5 | 292.7 | 334.1 | 367.5 | 412.0 | 471.1 |
| 444 | Building material and garden supply stores | 75.8 | 100.0 | 107.4 | 113.8 | 113.3 | 116.8 | 120.8 | 127.1 | 134.6 | 134.8 | 137.9 | 142.2 |
| 4441 | Building material and supplies dealers............... | 77.6 | 100.0 | 108.3 | 115.3 | 115.1 | 116.7 | 121.3 | 127.4 | 134.0 | 134.9 | 138.0 | 140.0 |
| 4442 | Lawn and garden equipment and supplies stores... | 66.9 | 100.0 | 102.4 | 105.5 | 103.1 | 118.4 | 118.3 | 125.7 | 140.1 | 134.7 | 138.3 | 162.1 |
| 445 | Food and beverage stores. | 110.8 | 100.0 | 99.9 | 101.9 | 101.0 | 103.8 | 104.7 | 107.2 | 112.9 | 117.9 | 120.6 | 123.8 |
| 4451 | Grocery stores.. | 111.1 | 100.0 | 99.6 | 102.5 | 101.1 | 103.3 | 104.8 | 106.7 | 112.2 | 116.8 | 118.2 | 120.6 |
| 4452 | Specialty food stores. | 138.5 | 100.0 | 100.5 | 96.4 | 98.5 | 108.2 | 105.3 | 112.2 | 120.3 | 125.3 | 139.4 | 145.4 |
| 4453 | Beer, wine, and liquor stores. | 93.6 | 100.0 | 104.6 | 99.1 | 105.7 | 107.1 | 110.1 | 117.0 | 127.8 | 139.8 | 146.1 | 156.8 |
| 446 | Health and personal care stores | 84.0 | 100.0 | 104.0 | 107.1 | 112.2 | 116.2 | 122.9 | 129.5 | 134.3 | 133.4 | 139.3 | 139.0 |
| 4461 | Health and personal care stores | 84.0 | 100.0 | 104.0 | 107.1 | 112.2 | 116.2 | 122.9 | 129.5 | 134.3 | 133.4 | 139.3 | 139.0 |
| 447 | Gasoline stations..................... | 83.9 | 100.0 | 106.7 | 110.7 | 107.7 | 112.9 | 125.1 | 119.9 | 122.2 | 124.7 | 124.9 | 129.3 |
| 4471 | Gasoline stations.. | 83.9 | 100.0 | 106.7 | 110.7 | 107.7 | 112.9 | 125.1 | 119.9 | 122.2 | 124.7 | 124.9 | 129.3 |
| 448 | Clothing and clothing accessories sto | 66.3 | 100.0 | 106.3 | 114.0 | 123.5 | 126.4 | 131.3 | 138.9 | 139.1 | 147.6 | 162.4 | 176.6 |
| 4481 | Clothing stores. | 67.1 | 100.0 | 108.7 | 114.2 | 125.0 | 130.3 | 136.0 | 141.8 | 140.9 | 153.0 | 169.4 | 186.9 |
| 4482 | Shoe stores. | 65.3 | 100.0 | 94.2 | 104.9 | 110.0 | 111.5 | 125.2 | 132.5 | 124.8 | 132.0 | 145.1 | 141.6 |
| 4483 | Jewelry, luggage, and leather goods st | 64.5 | 100.0 | 108.7 | 122.5 | 130.5 | 123.9 | 118.7 | 132.9 | 144.3 | 138.9 | 148.3 | 162.9 |
| 451 | Sporting goods, hobby, book, and music stores.. | 74.9 | 100.0 | 107.9 | 114.0 | 121.1 | 127.1 | 127.6 | 131.5 | 151.1 | 163.5 | 170.5 | 167.8 |
| 4511 | Sporting goods and musical instrument stores | 73.2 | 100.0 | 111.5 | 119.8 | 129.4 | 134.5 | 136.0 | 141.1 | 166.0 | 179.3 | 191.4 | 189.2 |
| 4512 | Book, periodical, and music stores. | 78.9 | 100.0 | 101.0 | 103.2 | 105.8 | 113.0 | 111.6 | 113.7 | 123.6 | 134.3 | 132.4 | 128.3 |
| 452 | General merchandise stores. | 73.5 | 100.0 | 105.3 | 113.4 | 120.2 | 124.8 | 129.1 | 136.9 | 140.7 | 145.0 | 149.8 | 152.5 |
| 4521 | Department stores | 87.2 | 100.0 | 100.4 | 104.5 | 106.2 | 103.8 | 102.0 | 106.8 | 109.0 | 110.0 | 112.7 | 107.0 |
| 4529 | Other general merchandise stores | 54.8 | 100.0 | 114.7 | 131.0 | 147.3 | 164.7 | 179.3 | 188.8 | 192.9 | 199.8 | 204.8 | 219.3 |
| 453 | Miscellaneous store retailers. | 65.1 | 100.0 | 108.9 | 111.3 | 114.1 | 112.6 | 119.1 | 126.1 | 130.8 | 139.2 | 155.0 | 160.8 |
| 4531 | Florists. | 77.6 | 100.0 | 102.3 | 116.2 | 115.2 | 102.7 | 113.8 | 108.9 | 103.4 | 123.7 | 145.1 | 132.9 |
| 4532 | Office supplies, stationery and gift stores. | 61.4 | 100.0 | 111.5 | 119.2 | 127.3 | 132.3 | 141.5 | 153.9 | 172.8 | 182.4 | 204.8 | 224.5 |
| 4533 | Used merchandise stores............. | 64.5 | 100.0 | 119.1 | 113.4 | 116.5 | 121.9 | 142.0 | 149.7 | 152.6 | 156.6 | 167.6 | 182.0 |
| 4539 | Other miscellaneous store retailers. | 68.3 | 100.0 | 105.3 | 103.0 | 104.4 | 96.9 | 94.4 | 99.9 | 96.9 | 101.6 | 114.0 | 115.4 |
| 454 | Nonstore retailers.. | 50.7 | 100.0 | 114.3 | 128.9 | 152.2 | 163.6 | 182.1 | 195.5 | 215.5 | 220.6 | 261.9 | 290.8 |
| 4541 | Electronic shopping and mail-order houses.. | 39.4 | 100.0 | 120.2 | 142.6 | 160.2 | 179.6 | 212.7 | 243.6 | 273.0 | 290.1 | 355.9 | 397.2 |
| 4542 | Vending machine operators. | 95.5 | 100.0 | 106.3 | 105.4 | 111.1 | 95.7 | 91.3 | 102.3 | 110.5 | 114.4 | 125.7 | 132.4 |
| 4543 | Direct selling establishments. | 70.8 | 100.0 | 101.9 | 104.3 | 122.5 | 127.9 | 135.1 | 127.0 | 130.3 | 119.6 | 127.5 | 138.4 |
| 481 | Transportation and warehousing Air transportation. | 78.0 | 100.0 | 96.4 | 95.9 | 97.7 | 92.5 | 101.7 | 112.1 | 126.3 | 135.9 | 142.9 | 145.4 |
| 482111 | Line-haul railroads. | 58.9 | 100.0 | 102.1 | 105.5 | 114.3 | 121.9 | 131.9 | 138.5 | 141.4 | 136.3 | 144.2 | 137.7 |
| 48412 | General freight trucking, long-distance.. | 85.7 | 100.0 | 99.4 | 99.1 | 101.9 | 103.2 | 107.0 | 110.7 | 110.7 | 113.3 | 113.3 | 115.3 |
| 48421 | Used household and office goods moving.. | 106.7 | 100.0 | 91.0 | 96.1 | 94.8 | 84.0 | 81.6 | 86.2 | 88.6 | 88.5 | 88.9 | 93.2 |
| 491 | U.S. Postal service..... | 90.9 | 100.0 | 101.6 | 102.8 | 105.5 | 106.3 | 106.4 | 107.8 | 110.0 | 111.2 | 111.3 | 112.0 |
| 4911 | U.S. Postal service. | 90.9 | 100.0 | 101.6 | 102.8 | 105.5 | 106.3 | 106.4 | 107.8 | 110.0 | 111.2 | 111.3 | 112.0 |
| 492 | Couriers and messengers. | 148.3 | 100.0 | 114.8 | 122.2 | 128.8 | 132.6 | 143.2 | 146.4 | 138.5 | 136.5 | 140.3 | 132.5 |
| 493 | Warehousing and storage. |  | 100.0 | 106.4 | 107.7 | 109.3 | 115.3 | 122.1 | 124.8 | 122.5 | 123.5 | 119.4 | 115.5 |
| 4931 | Warehousing and storage... |  | 100.0 | 106.4 | 107.7 | 109.3 | 115.3 | 122.1 | 124.8 | 122.5 | 123.5 | 119.4 | 115.5 |
| 49311 | General warehousing and storage....... |  | 100.0 | 112.1 | 112.9 | 115.8 | 126.3 | 136.1 | 138.9 | 130.9 | 132.0 | 130.1 | 124.2 |
| 49312 | Refrigerated warehousing and storage.. |  | 100.0 | 97.9 | 103.4 | 95.4 | 85.4 | 87.2 | 92.2 | 99.3 | 88.8 | 80.4 | 85.1 |

50. Continued - Annual indexes of output per hour for selected NAICS industries

| NAICS | Industry | 1987 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Information |  |  |  |  |  |  |  |  |  |  |  |  |
| 511 | Publishing industries, except internet | 64.1 | 100.0 | 116.1 | 116.3 | 117.1 | 116.6 | 117.2 | 126.4 | 130.7 | 136.7 | 144.3 | 150.1 |
| 5111 | Newspaper, book, and directory publishers. | 105.0 | 100.0 | 103.9 | 104.1 | 107.7 | 105.8 | 104.7 | 109.6 | 106.7 | 107.9 | 112.2 | 114.1 |
| 5112 | Software publishers. | 10.2 | 100.0 | 134.8 | 129.2 | 119.2 | 117.4 | 122.1 | 138.1 | 160.6 | 173.5 | 178.7 | 184.6 |
| 51213 | Motion picture and video exhibition. | 90.7 | 100.0 | 99.8 | 101.8 | 106.5 | 101.6 | 99.8 | 100.4 | 103.6 | 102.4 | 107.3 | 110.6 |
| 515 | Broadcasting, except internet..... | 99.5 | 100.0 | 100.8 | 102.9 | 103.6 | 99.2 | 104.0 | 107.9 | 112.5 | 116.1 | 123.1 | 132.8 |
| 5151 | Radio and television broadcasting. | 98.1 | 100.0 | 91.5 | 92.6 | 92.1 | 89.6 | 95.1 | 94.6 | 96.6 | 99.0 | 106.8 | 110.8 |
| 5152 | Cable and other subscription programming. | 105.6 | 100.0 | 136.2 | 139.1 | 141.2 | 128.1 | 129.8 | 146.0 | 158.7 | 163.7 | 168.1 | 192.5 |
| 5171 | Wired telecommunications carriers. | 56.9 | 100.0 | 107.7 | 116.7 | 122.7 | 116.7 | 124.1 | 130.5 | 131.9 | 138.3 | 142.4 | 142.2 |
| 5172 | Wireless telecommunications carriers. | 75.6 | 100.0 | 110.5 | 145.2 | 152.8 | 191.9 | 217.9 | 242.6 | 292.4 | 381.9 | 431.6 | 456.5 |
| 5175 | Cable and other program distribution. | 105.2 | 100.0 | 97.1 | 95.8 | 91.6 | 87.7 | 95.0 | 101.3 | 113.8 | 110.5 | 110.7 | 123.8 |
| 52211 | Finance and insurance Commercial banking | 73.6 | 100.0 | 97.7 | 100.8 | 104.8 | 102.4 | 106.9 | 111.7 | 117.8 | 119.3 | 122.7 | 123.8 |
|  | Real estate and rental and leasing |  |  |  |  |  |  |  |  |  |  |  |  |
| 532111 | Passenger car rental.... | 92.7 | 100.0 | 100.1 | 112.2 | 112.3 | 111.1 | 114.6 | 121.1 | 118.2 | 109.8 | 111.4 | 130.1 |
| 53212 | Truck, trailer, and $R V$ rental and leasing. | 60.3 | 100.0 | 115.4 | 121.0 | 121.8 | 113.5 | 114.0 | 116.3 | 137.7 | 147.1 | 168.9 | 173.8 |
| 53223 | Video tape and disc rental. | 77.0 | 100.0 | 113.2 | 129.4 | 134.9 | 133.3 | 130.3 | 148.5 | 154.5 | 144.2 | 176.2 | 223.0 |
|  | Professional and technical services |  |  |  |  |  |  |  |  |  |  |  |  |
| 541213 | Tax preparation services. | 82.9 | 100.0 | 107.6 | 105.8 | 100.9 | 94.4 | 111.4 | 110.0 | 99.9 | 103.7 | 103.2 | 117.4 |
| 54131 | Architectural services. | 90.0 | 100.0 | 111.4 | 106.8 | 107.6 | 111.0 | 107.6 | 112.6 | 118.3 | 119.8 | 118.9 | 124.5 |
| 54133 | Engineering services. | 90.2 | 100.0 | 98.2 | 98.0 | 102.0 | 100.1 | 100.5 | 100.5 | 107.8 | 112.3 | 113.1 | 110.0 |
| 54181 | Advertising agencies. | 95.9 | 100.0 | 89.2 | 97.9 | 107.5 | 106.9 | 113.1 | 121.1 | 133.5 | 132.9 | 134.1 | 139.1 |
| 541921 | Photography studios, portrait. | 98.1 | 100.0 | 124.8 | 109.8 | 108.9 | 102.2 | 97.6 | 104.2 | 93.1 | 93.6 | 98.8 | 104.5 |
| 56131 | Administrative and waste services Employment placement agencies. |  | 100.0 | 86.8 | 93.2 | 89.8 | 99.6 | 116.8 | 115.4 | 119.8 | 116.0 | 123.8 | 132.8 |
| 56151 | Travel agencies. | 89.3 | 100.0 | 111.4 | 115.5 | 119.4 | 115.2 | 127.6 | 147.2 | 167.2 | 179.2 | 183.4 | 190.6 |
| 56172 | Janitorial services. | 75.1 | 100.0 | 95.3 | 98.6 | 101.0 | 102.1 | 105.6 | 118.8 | 116.6 | 120.7 | 116.1 | 122.3 |
|  | Health care and social assistance |  |  |  |  |  |  |  |  |  |  |  |  |
| 6215 | Medical and diagnostic laboratories. |  | 100.0 | 118.8 | 124.7 | 131.9 | 135.3 | 137.6 | 140.8 | 140.8 | 137.8 | 139.7 | 136.0 |
| 621511 | Medical laboratories. |  | 100.0 | 117.2 | 121.4 | 127.4 | 127.7 | 123.1 | 128.6 | 130.7 | 125.8 | 127.3 | 130.0 |
| 621512 | Diagnostic imaging centers. |  | 100.0 | 121.4 | 129.7 | 139.9 | 148.3 | 163.3 | 160.0 | 153.5 | 154.1 | 156.8 | 138.9 |
|  | Arts, entertainment, and recreation |  |  |  |  |  |  |  |  |  |  |  |  |
| 71311 | Amusement and theme parks.. | 111.9 | 100.0 | 110.5 | 105.2 | 106.0 | 93.0 | 106.5 | 113.2 | 101.4 | 109.9 | 97.7 | 103.2 |
| 71395 | Bowling centers. | 106.0 | 100.0 | 89.9 | 89.4 | 93.4 | 94.3 | 96.4 | 102.4 | 107.9 | 106.5 | 102.6 | 122.8 |
|  | Accommodation and food services |  |  |  |  |  |  |  |  |  |  |  |  |
| 72 | Accommodation and food services. | 93.1 | 100.0 | 100.7 | 102.2 | 105.8 | 104.7 | 105.7 | 107.3 | 109.0 | 108.6 | 108.7 | 107.9 |
| 721 | Accommodation.. | 85.8 | 100.0 | 100.0 | 105.3 | 110.3 | 107.9 | 112.0 | 113.1 | 119.2 | 114.3 | 110.8 | 109.0 |
| 7211 | Traveler accommodation. | 84.8 | 100.0 | 99.6 | 105.4 | 111.2 | 108.4 | 112.2 | 113.2 | 119.4 | 114.9 | 110.9 | 109.0 |
| 722 | Food services and drinking places. | 96.0 | 100.0 | 101.0 | 100.9 | 103.5 | 103.8 | 104.4 | 106.3 | 107.0 | 107.9 | 109.1 | 108.7 |
| 7221 | Full-service restaurants... | 92.1 | 100.0 | 100.9 | 100.8 | 103.0 | 103.6 | 104.4 | 104.2 | 104.8 | 105.2 | 105.5 | 104.0 |
| 7222 | Limited-service eating places. | 96.5 | 100.0 | 101.2 | 100.4 | 102.0 | 102.5 | 102.7 | 105.4 | 106.8 | 107.4 | 109.1 | 109.1 |
| 7223 | Special food services. | 89.9 | 100.0 | 100.6 | 105.2 | 115.0 | 115.3 | 114.9 | 117.6 | 118.0 | 119.2 | 117.9 | 120.4 |
| 7224 | Drinking places, alcoholic beverages. | 136.7 | 100.0 | 99.7 | 98.8 | 100.6 | 97.6 | 102.9 | 118.6 | 112.2 | 120.6 | 134.2 | 137.6 |
|  | Other services |  |  |  |  |  |  |  |  |  |  |  |  |
| 8111 | Automotive repair and maintenance. | 85.9 | 100.0 | 103.6 | 106.1 | 109.4 | 108.9 | 103.7 | 104.1 | 112.0 | 112.1 | 111.4 | 110.4 |
| 81142 | Reupholstery and furniture repair... | 105.3 | 100.0 | 95.8 | 105.0 | 105.5 | 105.0 | 102.0 | 97.2 | 99.8 | 101.4 | 100.0 | 105.8 |
| 81211 | Hair, nail, and skin care services. | 83.5 | 100.0 | 108.6 | 108.6 | 108.2 | 114.6 | 110.4 | 119.7 | 125.0 | 130.0 | 129.8 | 134.5 |
| 81221 | Funeral homes and funeral services. | 103.7 | 100.0 | 106.8 | 103.3 | 94.8 | 91.8 | 94.6 | 95.7 | 92.9 | 93.1 | 99.5 | 97.0 |
| 8123 | Drycleaning and laundry services. | 97.1 | 100.0 | 100.1 | 105.0 | 107.6 | 110.9 | 112.5 | 103.8 | 110.6 | 121.1 | 119.7 | 114.6 |
| 81292 | Photofinishing... | 95.8 | 100.0 | 69.3 | 76.3 | 73.8 | 81.2 | 100.5 | 100.5 | 102.0 | 112.4 | 111.3 | 110.2 |

NOTE: Dash indicates data are not available.

## 51. Unemployment rates, approximating U.S. concepts, 10 countries, seasonally adjusted

[Percent]

| Country | 2006 | 2007 | 2006 |  |  |  | 2007 |  |  |  | 2008 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | I | II | III | IV | I | II | III | IV | I | II | III |
| United States.. | 4.6 | 4.6 | 4.7 | 4.7 | 4.7 | 4.4 | 4.5 | 4.5 | 4.7 | 4.8 | 4.9 | 5.3 | 6.0 |
| Canada...... | 5.5 | 5.3 | 5.7 | 5.4 | 5.6 | 5.4 | 5.4 | 5.3 | 5.2 | 5.2 | 5.2 | 5.3 | 5.3 |
| Australia... | 4.8 | 4.4 | 5.0 | 4.9 | 4.7 | 4.5 | 4.5 | 4.3 | 4.3 | 4.3 | 4.1 | 4.3 | 4.2 |
| Japan....... | 4.2 | 3.9 | 4.2 | 4.2 | 4.2 | 4.1 | 4.0 | 3.8 | 3.8 | 3.9 | 3.9 | 4.0 | 4.1 |
| France......... | 9.5 | 8.6 | 9.9 | 9.5 | 9.5 | 9.2 | 9.1 | 8.7 | 8.5 | 8.2 | 8.0 | 8.0 | 8.3 |
| Germany......... | 10.4 | 8.7 | 11.1 | 10.6 | 10.1 | 9.6 | 9.3 | 8.9 | 8.5 | 8.1 | 7.8 | 7.6 | 7.5 |
| Italy............. | 6.9 | 6.2 | 7.3 | 6.9 | 6.7 | 6.5 | 6.2 | 6.1 | 6.2 | 6.4 | 6.7 | 6.8 | - |
| Netherlands..... | 3.9 | 3.2 | 4.3 | 3.9 | 3.8 | 3.8 | 3.6 | 3.2 | 3.0 | 3.0 | 2.9 | 2.8 | 2.5 |
| Sweden.. | 7.0 | 6.1 | 7.3 | 7.3 | 6.7 | 6.5 | 6.4 | 6.1 | 5.8 | 5.9 | 5.8 | 5.8 | 5.9 |
| United Kingdom. | 5.5 | 5.4 | 5.3 | 5.5 | 5.5 | 5.5 | 5.5 | 5.4 | 5.3 | 5.2 | 5.3 | 5.4 | - |

NOTE: Dash indicates data not available.
Quarterly figures for France, Germany, Italy, and the Netherlands are calculated by applying annual adjustment factors to current published data and therefore should be viewed as less precise indicators of unemployment under U.S. concepts than the annual figures. Quarterly figures for Sweden are BLS seasonally adjusted estimates derived from Swedish not seasonally adjusted data. For further qualifications and historical annual data, see the BLS report International comparisons of annual labor force statistics, 10 countries (on the internet at
http://www.bls.gov/fls/flscomparelf.htm). For monthly unemployment rates, as well as the quarterly and annual rates published in this table, see the BLS report Unemployment rates in 10 countries, civilian labor force basis, approximating U.S. concepts, seasonally adjusted (on the Internet at http://www.bls.gov/fis/fisjec.pdf) Unemployment rates may differ between the two reports mentioned, because the former is updated annually, whereas the latter is updated monthly and reflects the most recent revisions in source data.
52. Annual data: employment status of the working-age population, approximating U.S. concepts, 10 countries
[Numbers in thousands]

| Employment status and country | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Civilian labor force |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 136,297 | 137,673 | 139,368 | 142,583 | 143,734 | 144,863 | 146,510 | 147,401 | 149,320 | 151,428 | 153,124 |
| Canada. | 14,884 | 15,135 | 15,403 | 15,637 | 15,891 | 16,366 | 16,733 | 16,955 | 17,108 | 17,351 | 17,696 |
| Australia. | 9,204 | 9,339 | 9,414 | 9,590 | 9,744 | 9,893 | 10,079 | 10,221 | 10,506 | 10,699 | 10,949 |
| Japan.. | 67,200 | 67,240 | 67,090 | 66,990 | 66,860 | 66,240 | 66,010 | 65,770 | 65,850 | 65,960 | 66,080 |
| France. | 25,116 | 25,434 | 25,791 | 26,099 | 26,393 | 26,646 | 26,851 | 26,937 | 27,092 | 27,322 | 27,535 |
| Germany. | 39,415 | 39,752 | 39,375 | 39,302 | 39,459 | 39,413 | 39,276 | 39,711 | 40,760 | 41,250 | 41,416 |
| Italy. | 22,753 | 23,004 | 23,176 | 23,361 | 23,524 | 23,728 | 24,020 | 24,084 | 24,179 | 24,395 | 24,459 |
| Netherlands. | 7,612 | 7,744 | 7,881 | 8,052 | 8,199 | 8,345 | 8,379 | 8,439 | 8,459 | 8,541 | 8,686 |
| Sweden.. | 4,414 | 4,401 | 4,423 | 4,482 | 4,522 | 4,537 | 4,557 | 4,571 | 4,694 | 4,748 | 4,823 |
| United Kingdom.. | 28,403 | 28,474 | 28,786 | 28,962 | 29,092 | 29,343 | 29,564 | 29,802 | 30,138 | 30,600 | 30,790 |
| Participation rate ${ }^{1}$ |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 67.1 | 67.1 | 67.1 | 67.1 | 66.8 | 66.6 | 66.2 | 66.0 | 66.0 | 66.2 | 66.0 |
| Canada.. | 65.1 | 65.4 | 65.9 | 66.0 | 66.1 | 67.1 | 67.7 | 67.7 | 67.4 | 67.4 | 67.7 |
| Australia. | 64.3 | 64.3 | 64.0 | 64.4 | 64.4 | 64.3 | 64.6 | 64.6 | 65.3 | 65.6 | 66.0 |
| Japan.. | 63.2 | 62.8 | 62.4 | 62.0 | 61.6 | 60.8 | 60.3 | 60.0 | 60.0 | 60.0 | 60.0 |
| France. | 55.6 | 56.0 | 56.3 | 56.6 | 56.7 | 56.8 | 56.8 | 56.6 | 56.5 | 56.6 | 56.7 |
| Germany.. | 57.3 | 57.7 | 56.9 | 56.7 | 56.7 | 56.4 | 56.0 | 56.4 | 57.6 | 58.2 | 58.4 |
| Italy. | 47.3 | 47.7 | 47.9 | 48.1 | 48.3 | 48.5 | 49.1 | 49.1 | 48.7 | 48.9 | 48.6 |
| Netherlands. | 61.1 | 61.8 | 62.5 | 63.4 | 64.0 | 64.7 | 64.6 | 64.8 | 64.7 | 65.1 | 65.9 |
| Sweden. | 63.2 | 62.8 | 62.7 | 63.7 | 63.6 | 63.9 | 63.8 | 63.6 | 64.8 | 64.9 | 65.3 |
| United Kingdom. | 62.5 | 62.4 | 62.8 | 62.8 | 62.7 | 62.9 | 62.9 | 63.0 | 63.1 | 63.5 | 63.4 |
| Employed |  |  |  |  |  |  |  |  |  |  |  |
| United States.. | 129,558 | 131,463 | 133,488 | 136,891 | 136,933 | 136,485 | 137,736 | 139,252 | 141,730 | 144,427 | 146,047 |
| Canada. | 13,637 | 13,973 | 14,331 | 14,681 | 14,866 | 15,223 | 15,586 | 15,861 | 16,080 | 16,393 | 16,767 |
| Australia. | 8,444 | 8,618 | 8,762 | 8,989 | 9,086 | 9,264 | 9,480 | 9,668 | 9,975 | 10,186 | 10,470 |
| Japan. | 64,900 | 64,450 | 63,920 | 63,790 | 63,460 | 62,650 | 62,510 | 62,640 | 62,910 | 63,210 | 63,510 |
| France. | 22,176 | 22,597 | 23,080 | 23,714 | 24,167 | 24,312 | 24,373 | 24,354 | 24,493 | 24,717 | 25,162 |
| Germany.. | 35,508 | 36,059 | 36,042 | 36,236 | 36,350 | 36,018 | 35,615 | 35,604 | 36,185 | 36,978 | 37,815 |
| Italy.. | 20,169 | 20,370 | 20,617 | 20,973 | 21,359 | 21,666 | 21,972 | 22,124 | 22,290 | 22,721 | 22,953 |
| Netherlands. | 7,189 | 7,408 | 7,605 | 7,813 | 8,014 | 8,114 | 8,069 | 8,052 | 8,056 | 8,205 | 8,408 |
| Sweden.. | 3,969 | 4,033 | 4,110 | 4,222 | 4,295 | 4,303 | 4,293 | 4,271 | 4,334 | 4,416 | 4,530 |
| United Kingdom. | 26,413 | 26,684 | 27,058 | 27,375 | 27,603 | 27,815 | 28,077 | 28,379 | 28,674 | 28,930 | 29,138 |
| Employment-population ratio ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 63.8 | 64.1 | 64.3 | 64.4 | 63.7 | 62.7 | 62.3 | 62.3 | 62.7 | 63.1 | 63.0 |
| Canada. | 59.6 | 60.4 | 61.3 | 62.0 | 61.9 | 62.4 | 63.1 | 63.3 | 63.4 | 63.6 | 64.2 |
| Australia. | 59.0 | 59.3 | 59.6 | 60.3 | 60.0 | 60.2 | 60.7 | 61.1 | 62.0 | 62.5 | 63.1 |
| Japan.. | 61.0 | 60.2 | 59.4 | 59.0 | 58.4 | 57.5 | 57.1 | 57.1 | 57.3 | 57.5 | 57.6 |
| France. | 49.1 | 49.7 | 50.4 | 51.4 | 51.9 | 51.8 | 51.5 | 51.1 | 51.1 | 51.2 | 51.8 |
| Germany. | 51.6 | 52.3 | 52.1 | 52.2 | 52.2 | 51.5 | 50.8 | 50.6 | 51.2 | 52.2 | 53.3 |
| Italy... | 41.9 | 42.2 | 42.6 | 43.2 | 43.8 | 44.3 | 44.9 | 45.1 | 44.9 | 45.5 | 45.6 |
| Netherlands. | 57.7 | 59.1 | 60.3 | 61.5 | 62.6 | 62.9 | 62.2 | 61.8 | 61.6 | 62.5 | 63.8 |
| Sweden.. | 56.8 | 57.6 | 58.3 | 60.0 | 60.4 | 60.6 | 60.1 | 59.4 | 59.9 | 60.4 | 61.3 |
| United Kingdom. | 58.1 | 58.5 | 59.0 | 59.4 | 59.5 | 59.6 | 59.8 | 60.0 | 60.0 | 60.1 | 60.0 |
| Unemployed |  |  |  |  |  |  |  |  |  |  |  |
| United States.. | 6,739 | 6,210 | 5,880 | 5,692 | 6,801 | 8,378 | 8,774 | 8,149 | 7,591 | 7,001 | 7,078 |
| Canada. | 1,248 | 1,162 | 1,072 | 956 | 1,026 | 1,143 | 1,147 | 1,093 | 1,028 | 958 | 929 |
| Australia. | 759 | 721 | 652 | 602 | 658 | 629 | 599 | 553 | 531 | 512 | 478 |
| Japan.. | 2,300 | 2,790 | 3,170 | 3,200 | 3,400 | 3,590 | 3,500 | 3,130 | 2,940 | 2,750 | 2,570 |
| France. | 2,940 | 2,837 | 2,711 | 2,385 | 2,226 | 2,334 | 2,478 | 2,583 | 2,599 | 2,605 | 2,374 |
| Germany. | 3,907 | 3,693 | 3,333 | 3,065 | 3,110 | 3,396 | 3,661 | 4,107 | 4,575 | 4,272 | 3,601 |
| Italy.. | 2,584 | 2,634 | 2,559 | 2,388 | 2,164 | 2,062 | 2,048 | 1,960 | 1,889 | 1,673 | 1,506 |
| Netherlands.. | 423 | 337 | 277 | 239 | 186 | 231 | 310 | 387 | 402 | 336 | 278 |
| Sweden.. | 445 | 368 | 313 | 260 | 227 | 234 | 264 | 300 | 361 | 332 | 293 |
| United Kingdom. | 1,991 | 1,790 | 1,728 | 1,587 | 1,488 | 1,528 | 1,488 | 1,422 | 1,463 | 1,670 | 1,652 |
| Unemployment rate |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 4.9 | 4.5 | 4.2 | 4.0 | 4.7 | 5.8 | 6.0 | 5.5 | 5.1 | 4.6 | 4.6 |
| Canada. | 8.4 | 7.7 | 7.0 | 6.1 | 6.5 | 7.0 | 6.9 | 6.4 | 6.0 | 5.5 | 5.3 |
| Australia. | 8.3 | 7.7 | 6.9 | 6.3 | 6.8 | 6.4 | 5.9 | 5.4 | 5.1 | 4.8 | 4.4 |
| Japan. | 3.4 | 4.1 | 4.7 | 4.8 | 5.1 | 5.4 | 5.3 | 4.8 | 4.5 | 4.2 | 9 |
| France.. | 11.7 | 11.2 | 10.5 | 9.1 | 8.4 | 8.8 | 9.2 | 9.6 | 9.6 | 9.5 | 8.6 |
| Germany.. | 9.9 | 9.3 | 8.5 | 7.8 | 7.9 | 8.6 | 9.3 | 10.3 | 11.2 | 10.4 | 8.7 |
| Italy. | 11.4 | 11.5 | 11.0 | 10.2 | 9.2 | 8.7 | 8.5 | 8.1 | 7.8 | 6.9 | 6.2 |
| Netherlands. | 5.6 | 4.4 | 3.5 | 3.0 | 2.3 | 2.8 | 3.7 | 4.6 | 4.8 | 3.9 | 3.2 |
| Sweden.. | 10.1 | 8.4 | 7.1 | 5.8 | 5.0 | 5.2 | 5.8 | 6.6 | 7.7 | 7.0 | 6.1 |
| United Kingdom................................... | 7.0 | 6.3 | 6.0 | 5.5 | 5.1 | 5.2 | 5.0 | 4.8 | 4.9 | 5.5 | 5.4 |

[^24]53. Annual indexes of manufacturing productivity and related measures, 17 economies
$[1996=100]$

| Measure and economy | 1980 | 1990 | 1993 | 1994 | 1995 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output per hour |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| United States | 58.6 | 80.1 | 88.1 | 92.7 | 96.2 | 104.2 | 111.5 | 117.1 | 126.1 | 127.4 | 140.9 | 149.8 | 159.0 | 162.2 | 169.9 | 177.8 |
| Canada. | 66.5 | 85.2 | 94.0 | 99.3 | 100.5 | 104.5 | 109.6 | 114.2 | 121.1 | 118.5 | 120.5 | 121.1 | 122.4 | 126.6 | 129.3 | 132.8 |
| Australia. | 72.5 | 91.1 | 95.8 | 98.4 | 97.1 | 102.0 | 106.9 | 108.5 | 115.1 | 117.9 | 122.9 | 125.2 | 126.8 | 127.6 | 128.8 | 131.3 |
| Japan. | 54.8 | 81.3 | 87.6 | 89.0 | 95.6 | 103.5 | 104.5 | 107.3 | 113.0 | 110.6 | 114.7 | 122.5 | 131.0 | 139.6 | 141.0 | 145.8 |
| Korea, Rep. of. | - | 58.0 | 75.9 | 82.8 | 90.9 | 112.8 | 125.7 | 139.8 | 151.7 | 150.6 | 165.3 | 176.8 | 197.2 | 212.1 | 233.5 | 253.9 |
| Singapore. | - | 68.2 | 82.3 | 89.5 | 95.5 | 103.2 | 111.2 | 122.5 | 130.8 | 122.9 | 133.8 | 138.7 | 147.3 | 149.9 | 153.5 | 147.5 |
| Taiwan. | 40.4 | 73.9 | 83.4 | 86.6 | 93.0 | 104.1 | 109.2 | 116.0 | 122.2 | 127.7 | 139.2 | 143.6 | 150.9 | 162.3 | 173.4 | 188.5 |
| Belgium. | 57.2 | 84.7 | 89.6 | 94.4 | 98.6 | 106.3 | 107.6 | 106.8 | 110.9 | 111.0 | 114.6 | 117.8 | 123.7 | 127.0 | 131.8 | 137.6 |
| Denmark. | 75.3 | 90.3 | 92.0 | 103.4 | 103.4 | 108.0 | 107.4 | 109.1 | 113.0 | 113.2 | 113.9 | 118.7 | 125.5 | 129.6 | 135.5 | 136.0 |
| France. | 56.9 | 84.2 | 90.0 | 95.9 | 99.7 | 105.9 | 111.4 | 116.2 | 124.5 | 127.0 | 132.4 | 138.4 | 142.2 | 148.7 | 154.6 | 158.5 |
| Germany | 67.1 | 86.1 | 89.1 | 95.8 | 97.3 | 105.9 | 106.3 | 108.9 | 116.5 | 119.5 | 120.7 | 125.0 | 129.7 | 137.1 | 148.6 | 155.9 |
| Italy. | 60.1 | 82.5 | 87.2 | 94.9 | 99.5 | 102.0 | 100.6 | 101.4 | 106.7 | 107.0 | 105.7 | 103.5 | 105.0 | 106.4 | 105.9 | 105.4 |
| Netherlands | 57.2 | 81.4 | 86.2 | 94.1 | 97.9 | 100.3 | 103.2 | 107.4 | 115.2 | 115.7 | 119.2 | 121.7 | 129.9 | 135.8 | 140.2 | 144.0 |
| Norway. | 77.3 | 96.8 | 98.3 | 98.3 | 97.1 | 100.2 | 97.7 | 101.1 | 104.2 | 107.1 | 110.2 | 119.7 | 126.8 | 131.2 | 128.5 | 128.2 |
| Spain. | 62.8 | 86.8 | 94.9 | 97.8 | 101.2 | 101.0 | 102.7 | 104.5 | 105.6 | 108.0 | 108.4 | 111.1 | 113.2 | 115.4 | 117.7 | 122.2 |
| Sweden | 60.0 | 73.9 | 82.6 | 91.1 | 96.8 | 109.1 | 115.6 | 126.2 | 134.8 | 131.0 | 145.3 | 157.1 | 173.9 | 184.7 | 202.0 | 203.0 |
| United Kingdom. | 55.9 | 87.8 | 100.1 | 102.7 | 101.0 | 102.0 | 102.9 | 108.0 | 115.4 | 119.4 | 123.0 | 128.2 | 136.2 | 141.9 | 149.1 | 153.0 |
| Output |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 60.5 | 80.7 | 85.7 | 92.2 | 96.4 | 106.1 | 113.2 | 118.1 | 125.5 | 118.5 | 121.8 | 123.2 | 130.1 | 131.2 | 138.4 | 142.4 |
| Canada. | 71.2 | 88.7 | 87.7 | 94.4 | 98.7 | 106.3 | 111.7 | 121.0 | 133.1 | 128.0 | 129.0 | 128.3 | 130.9 | 132.9 | 132.3 | 131.1 |
| Australia | 80.2 | 93.1 | 92.7 | 97.5 | 96.9 | 102.3 | 105.2 | 105.0 | 110.0 | 108.9 | 114.2 | 116.2 | 116.3 | 115.8 | 114.7 | 118.4 |
| Japan. | 59.0 | 94.3 | 93.5 | 92.1 | 95.9 | 102.5 | 97.1 | 96.7 | 101.8 | 96.2 | 94.7 | 99.8 | 105.6 | 111.1 | 114.9 | 119.1 |
| Korea, Rep. o | 20.5 | 63.2 | 75.5 | 84.1 | 94.0 | 104.9 | 96.6 | 117.6 | 137.6 | 140.6 | 151.2 | 159.6 | 177.3 | 189.8 | 205.9 | 219.3 |
| Singapore | - | 66.2 | 78.5 | 88.4 | 97.3 | 104.3 | 103.5 | 117.0 | 134.7 | 119.1 | 129.1 | 132.9 | 151.3 | 165.7 | 185.4 | 196.2 |
| Taiwan. | 38.2 | 76.7 | 85.0 | 90.1 | 95.0 | 105.7 | 109.1 | 117.1 | 125.7 | 116.4 | 126.7 | 133.5 | 146.5 | 156.7 | 167.9 | 185.3 |
| Belgium. | 74.8 | 96.6 | 92.8 | 97.0 | 99.6 | 104.8 | 106.5 | 106.9 | 111.6 | 111.8 | 110.9 | 109.3 | 113.2 | 113.1 | 116.3 | 119.3 |
| Denmark. | 85.6 | 94.7 | 90.3 | 100.0 | 104.8 | 108.2 | 109.1 | 110.0 | 113.9 | 114.0 | 110.7 | 107.6 | 109.3 | 109.9 | 114.5 | 118.6 |
| France. | 83.2 | 97.5 | 93.8 | 96.8 | 100.3 | 104.7 | 109.7 | 113.4 | 118.6 | 119.8 | 119.7 | 121.9 | 123.0 | 125.9 | 127.2 | 128.8 |
| Germany. | 92.3 | 107.2 | 99.9 | 103.1 | 102.1 | 104.4 | 105.6 | 106.6 | 113.9 | 115.8 | 113.4 | 114.2 | 118.3 | 122.3 | 131.2 | 139.2 |
| Italy. | 74.7 | 92.6 | 89.9 | 95.9 | 100.5 | 101.5 | 102.4 | 102.2 | 106.5 | 106.2 | 105.0 | 102.2 | 103.0 | 102.5 | 103.7 | 104.8 |
| Netherlands | 68.7 | 89.2 | 90.2 | 95.0 | 98.6 | 101.4 | 104.8 | 108.7 | 116.0 | 115.8 | 115.9 | 114.6 | 118.5 | 120.9 | 124.1 | 128.1 |
| Norway. | 96.7 | 92.9 | 93.2 | 95.7 | 96.1 | 104.3 | 103.6 | 103.5 | 102.9 | 102.2 | 101.6 | 105.0 | 111.0 | 115.9 | 119.4 | 125.7 |
| Spain. | 75.5 | 94.6 | 92.4 | 94.0 | 97.6 | 106.4 | 112.9 | 119.3 | 124.6 | 128.6 | 128.4 | 130.0 | 130.9 | 132.4 | 134.8 | 138.6 |
| Sweden | 67.1 | 80.4 | 74.1 | 85.5 | 96.8 | 107.8 | 116.7 | 127.6 | 138.1 | 134.9 | 143.4 | 150.4 | 164.2 | 171.8 | 185.3 | 189.6 |
| United Kingdom. | 80.3 | 96.9 | 93.4 | 97.8 | 99.3 | 101.8 | 102.4 | 103.6 | 105.9 | 104.5 | 102.2 | 101.9 | 104.2 | 104.0 | 105.8 | 106.5 |
| Total hours |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 103.3 | 100.7 | 97.3 | 99.5 | 100.2 | 101.8 | 101.5 | 100.9 | 99.6 | 93.0 | 86.5 | 82.2 | 81.8 | 80.9 | 81.5 | 80.1 |
| Canada. | 107.0 | 104.1 | 93.3 | 95.1 | 98.3 | 101.6 | 101.9 | 105.9 | 109.9 | 107.9 | 107.1 | 105.9 | 106.9 | 105.0 | 102.3 | 98.7 |
| Australia. | 110.6 | 102.2 | 96.9 | 99.1 | 99.8 | 100.3 | 98.4 | 96.7 | 95.6 | 92.4 | 92.9 | 92.8 | 91.7 | 90.7 | 89.1 | 90.2 |
| Japan. | 107.6 | 115.9 | 106.7 | 103.5 | 100.4 | 99.1 | 92.9 | 90.2 | 90.1 | 87.0 | 82.6 | 81.4 | 80.6 | 79.6 | 81.5 | 81.6 |
| Korea, Rep. o | - | 109.0 | 99.5 | 101.6 | 103.3 | 93.0 | 76.8 | 84.1 | 90.7 | 93.3 | 91.5 | 90.2 | 89.9 | 89.5 | 88.2 | 86.4 |
| Singapore. | - | 96.9 | 95.3 | 98.8 | 101.9 | 101.1 | 93.1 | 95.6 | 103.0 | 96.9 | 96.5 | 95.8 | 102.8 | 110.5 | 120.8 | 133.0 |
| Taiwan. | 94.5 | 103.7 | 101.9 | 104.0 | 102.2 | 101.6 | 99.9 | 101.0 | 102.9 | 91.1 | 91.1 | 92.9 | 97.1 | 96.5 | 96.8 | 98.3 |
| Belgium. | 130.9 | 114.1 | 103.5 | 102.8 | 101.0 | 98.6 | 98.9 | 100.0 | 100.7 | 100.7 | 96.8 | 92.8 | 91.5 | 89.0 | 88.2 | 86.7 |
| Denmark. | 113.7 | 104.8 | 98.1 | 96.7 | 101.4 | 100.2 | 101.5 | 100.8 | 100.8 | 100.7 | 97.2 | 90.7 | 87.1 | 84.8 | 84.5 | 87.2 |
| France. | 146.3 | 115.8 | 104.1 | 101.0 | 100.6 | 98.9 | 98.5 | 97.6 | 95.3 | 94.3 | 90.4 | 88.1 | 86.5 | 84.7 | 82.3 | 81.2 |
| Germany. | 137.4 | 124.6 | 112.1 | 107.6 | 105.0 | 98.6 | 99.4 | 97.9 | 97.7 | 96.9 | 94.0 | 91.4 | 91.2 | 89.2 | 88.3 | 89.3 |
| Italy. | 124.3 | 112.2 | 103.1 | 101.1 | 100.9 | 99.5 | 101.8 | 100.8 | 99.9 | 99.3 | 99.3 | 98.8 | 98.1 | 96.4 | 97.9 | 99.4 |
| Netherlands | 120.1 | 109.6 | 104.6 | 100.9 | 100.7 | 101.0 | 101.5 | 101.2 | 100.7 | 100.1 | 97.2 | 94.1 | 91.2 | 89.0 | 88.5 | 88.9 |
| Norway. | 125.1 | 96.0 | 94.8 | 97.3 | 99.0 | 104.1 | 106.1 | 102.4 | 98.8 | 95.4 | 92.3 | 87.7 | 87.5 | 88.4 | 92.9 | 98.0 |
| Spain. | 120.3 | 109.0 | 97.4 | 96.1 | 96.4 | 105.4 | 109.9 | 114.1 | 118.0 | 119.0 | 118.4 | 117.0 | 115.6 | 114.7 | 114.6 | 113.4 |
| Sweden. | 111.8 | 108.8 | 89.7 | 93.9 | 100.0 | 98.8 | 100.9 | 101.1 | 102.4 | 103.0 | 98.7 | 95.7 | 94.4 | 93.0 | 91.7 | 93.4 |
| United Kingdom. | 143.8 | 110.4 | 93.3 | 95.2 | 98.3 | 99.8 | 99.6 | 95.9 | 91.8 | 87.5 | 83.1 | 79.5 | 76.5 | 73.3 | 71.0 | 69.6 |
| Hourly compensation (national currency basis) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| United States.... | 51.2 | 82.7 | 93.3 | 96.3 | 98.1 | 102.6 | 108.6 | 112.9 | 123.2 | 126.1 | 135.2 | 144.7 | 147.7 | 150.5 | 156.7 | 162.2 |
| Canada. | 43.8 | 82.4 | 93.5 | 96.2 | 98.5 | 102.4 | 107.7 | 110.0 | 113.6 | 116.7 | 120.6 | 125.5 | 129.9 | 135.5 | 139.7 | 144.6 |
| Australia. | - | 79.5 | 88.9 | 90.0 | 95.6 | 102.7 | 106.9 | 111.2 | 116.1 | 123.5 | 129.0 | 134.1 | 141.1 | 150.1 | 160.2 | 168.6 |
| Japan. | 53.7 | 83.0 | 94.1 | 96.0 | 99.2 | 103.3 | 105.9 | 105.7 | 105.1 | 106.5 | 107.2 | 104.9 | 105.9 | 106.8 | 105.6 | 105.4 |
| Korea, Rep. of. | - | 36.1 | 61.6 | 70.8 | 85.9 | 108.7 | 118.4 | 119.0 | 127.1 | 131.1 | 144.4 | 151.5 | 173.0 | 186.8 | 202.9 | 218.6 |
| Singapore. | - | 64.6 | 84.3 | 89.1 | 93.1 | 104.4 | 110.5 | 101.0 | 103.7 | 111.8 | 114.9 | 115.6 | 112.5 | 111.3 | 108.7 | 104.1 |
| Taiwan. | 23.1 | 66.5 | 82.6 | 86.6 | 93.8 | 103.1 | 107.0 | 108.9 | 111.0 | 118.1 | 114.4 | 116.3 | 118.2 | 122.8 | 126.7 | 130.6 |
| Belgium. | 47.5 | 81.4 | 94.8 | 95.5 | 98.2 | 103.8 | 105.3 | 106.7 | 108.5 | 113.1 | 118.0 | 122.0 | 125.2 | 129.0 | 133.7 | 140.7 |
| Denmark. | 39.5 | 83.1 | 90.9 | 94.1 | 96.0 | 103.4 | 106.1 | 108.8 | 110.9 | 116.2 | 121.2 | 129.4 | 134.4 | 142.0 | 149.0 | 152.9 |
| France. | 34.6 | 78.9 | 91.8 | 95.3 | 98.1 | 102.9 | 103.7 | 107.0 | 112.8 | 115.8 | 122.8 | 125.7 | 129.7 | 134.4 | 140.9 | 145.0 |
| Germany. | 43.3 | 72.3 | 86.7 | 90.6 | 95.5 | 102.0 | 103.4 | 105.8 | 111.3 | 114.7 | 117.5 | 120.2 | 120.8 | 122.4 | 127.4 | 129.5 |
| Italy.. | 22.6 | 70.5 | 85.1 | 89.6 | 94.9 | 104.7 | 102.8 | 105.4 | 108.1 | 111.8 | 115.0 | 119.3 | 123.4 | 127.4 | 129.9 | 132.7 |
| Netherlands. | 52.3 | 78.8 | 91.6 | 95.6 | 98.1 | 102.6 | 106.9 | 110.5 | 115.9 | 120.8 | 127.5 | 132.6 | 138.2 | 140.3 | 144.2 | 148.5 |
| Norway.. | 34.3 | 81.2 | 89.2 | 91.9 | 96.0 | 104.5 | 110.6 | 116.9 | 123.5 | 130.9 | 138.8 | 144.5 | 149.2 | 156.2 | 165.8 | 173.7 |
| Spain. | 23.1 | 65.9 | 90.3 | 93.6 | 97.6 | 102.4 | 103.2 | 102.9 | 104.5 | 108.7 | 111.8 | 117.4 | 121.5 | 127.3 | 132.7 | 139.2 |
| Sweden. | 32.9 | 77.4 | 85.8 | 88.0 | 92.8 | 105.4 | 109.4 | 112.8 | 117.2 | 122.8 | 129.4 | 135.2 | 138.9 | 143.6 | 147.8 | 154.8 |
| United Kingdom.. | 33.4 | 82.8 | 96.2 | 98.6 | 100.3 | 104.4 | 112.3 | 118.9 | 126.2 | 131.8 | 139.1 | 146.1 | 153.2 | 163.2 | 173.7 | 174.9 |

## 53. Continued- Annual indexes of manufacturing productivity and related measures, 17 economies

[1996 = 100]

| Measure and economy | 1980 | 1990 | 1993 | 1994 | 1995 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unit labor costs (national currency basis) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 87.4 | 103.3 | 106.0 | 103.9 | 102.0 | 98.5 | 97.4 | 96.4 | 97.7 | 99.0 | 96.0 | 96.6 | 92.9 | 92.8 | 92.2 | 91.2 |
| Canada. | 65.9 | 96.7 | 99.5 | 96.9 | 98.0 | 98.0 | 98.3 | 96.3 | 93.8 | 98.5 | 100.0 | 103.6 | 106.1 | 107.1 | 108.0 | 108.9 |
| Australia. | - | 87.3 | 92.8 | 91.5 | 98.4 | 100.7 | 100.0 | 102.4 | 100.9 | 104.8 | 105.0 | 107.1 | 111.3 | 117.6 | 124.4 | 128.4 |
| Japan. | 98.0 | 102.1 | 107.5 | 107.9 | 103.8 | 99.8 | 101.3 | 98.6 | 93.0 | 96.2 | 93.5 | 85.6 | 80.8 | 76.5 | 74.9 | 72.3 |
| Korea, Rep. of. | 33.6 | 62.3 | 81.2 | 85.5 | 94.5 | 96.4 | 94.2 | 85.1 | 83.8 | 87.0 | 87.3 | 85.7 | 87.8 | 88.1 | 86.9 | 86.1 |
| Singapore. | - | 94.7 | 102.5 | 99.5 | 97.5 | 101.2 | 99.3 | 82.5 | 79.3 | 91.0 | 85.9 | 83.3 | 76.4 | 74.2 | 70.8 | 70.6 |
| Taiwan. | 57.1 | 89.9 | 99.1 | 100.0 | 100.9 | 99.0 | 97.9 | 93.9 | 90.9 | 92.5 | 82.2 | 81.0 | 78.4 | 75.7 | 73.1 | 69.2 |
| Belgium. | 83.0 | 96.1 | 105.7 | 101.2 | 99.6 | 97.6 | 97.9 | 99.9 | 97.9 | 101.9 | 103.0 | 103.5 | 101.2 | 101.5 | 101.4 | 102.3 |
| Denmark. | 52.5 | 91.9 | 98.9 | 91.0 | 92.9 | 95.7 | 98.8 | 99.7 | 98.1 | 102.7 | 106.4 | 109.0 | 107.0 | 109.6 | 109.9 | 112.4 |
| France. | 60.9 | 93.7 | 102.0 | 99.4 | 98.5 | 97.2 | 93.1 | 92.1 | 90.6 | 91.2 | 92.8 | 90.8 | 91.2 | 90.4 | 91.2 | 91.5 |
| Germany. | 64.5 | 84.0 | 97.3 | 94.6 | 98.2 | 96.3 | 97.3 | 97.1 | 95.5 | 96.0 | 97.4 | 96.1 | 93.2 | 89.3 | 85.8 | 83.1 |
| Italy. | 37.6 | 85.4 | 97.5 | 94.4 | 95.3 | 102.7 | 102.2 | 104.0 | 101.4 | 104.5 | 108.7 | 115.3 | 117.6 | 119.8 | 122.6 | 125.8 |
| Netherlands. | 91.5 | 96.8 | 106.3 | 101.6 | 100.3 | 102.3 | 103.6 | 102.9 | 100.6 | 104.4 | 106.9 | 108.9 | 106.3 | 103.3 | 102.9 | 103.1 |
| Norway. | 44.4 | 83.9 | 90.7 | 93.4 | 98.9 | 104.2 | 113.2 | 115.7 | 118.5 | 122.2 | 126.0 | 120.7 | 117.6 | 119.1 | 129.0 | 135.5 |
| Spain. | 36.8 | 76.0 | 95.1 | 95.7 | 96.5 | 101.4 | 100.4 | 98.5 | 99.0 | 100.6 | 103.1 | 105.6 | 107.3 | 110.3 | 112.7 | 113.9 |
| Sweden. | 54.9 | 104.8 | 103.9 | 96.6 | 95.8 | 96.6 | 94.7 | 89.4 | 86.9 | 93.8 | 89.1 | 86.1 | 79.9 | 77.8 | 73.2 | 76.3 |
| United Kingdom. | 59.8 | 94.3 | 96.1 | 96.0 | 99.4 | 102.4 | 109.2 | 110.1 | 109.4 | 110.4 | 113.1 | 113.9 | 112.4 | 115.1 | 116.6 | 114.3 |
| Unit labor costs (U.S. dollar basis) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| United States. | 87.4 | 103.3 | 106.0 | 103.9 | 102.0 | 98.5 | 97.4 | 96.4 | 97.7 | 99.0 | 96.0 | 96.6 | 92.9 | 92.8 | 92.2 | 91.2 |
| Canada. | 76.8 | 113.1 | 105.2 | 96.7 | 97.4 | 96.5 | 90.4 | 88.4 | 86.1 | 86.7 | 86.9 | 100.9 | 111.2 | 120.5 | 129.9 | 138.4 |
| Australia. | - | 87.1 | 80.6 | 85.5 | 93.1 | 95.7 | 80.4 | 84.5 | 75.0 | 69.2 | 72.9 | 89.3 | 104.7 | 114.6 | 119.7 | 137.6 |
| Japan. | 47.0 | 76.6 | 105.2 | 114.8 | 120.2 | 89.7 | 84.1 | 94.3 | 93.9 | 86.1 | 81.2 | 80.3 | 81.3 | 75.6 | 70.1 | 66.7 |
| Korea, Rep. of. | 44.6 | 70.5 | 81.1 | 85.3 | 98.4 | 81.9 | 54.1 | 57.6 | 59.6 | 54.2 | 56.2 | 57.9 | 61.7 | 69.3 | 73.3 | 74.6 |
| Singapore. | - | 73.7 | 89.4 | 91.9 | 97.0 | 96.0 | 83.7 | 68.6 | 64.8 | 71.6 | 67.6 | 67.4 | 63.7 | 62.9 | 62.8 | 66.1 |
| Taiwan. | 43.6 | 91.8 | 103.0 | 103.8 | 104.6 | 94.5 | 80.2 | 79.8 | 79.9 | 75.1 | 65.4 | 64.6 | 64.5 | 64.7 | 61.7 | 57.9 |
| Belgium. | 87.9 | 89.1 | 94.7 | 93.7 | 104.7 | 84.4 | 83.5 | 81.7 | 69.4 | 70.0 | 74.8 | 90.0 | 96.6 | 97.0 | 97.8 | 107.6 |
| Denmark. | 54.1 | 86.2 | 88.4 | 83.1 | 96.2 | 84.0 | 85.5 | 82.7 | 70.3 | 71.5 | 78.2 | 96.1 | 103.7 | 106.0 | 107.3 | 119.8 |
| France. | 73.7 | 88.0 | 92.1 | 91.7 | 101.0 | 85.2 | 80.7 | 76.5 | 65.2 | 63.7 | 68.4 | 80.2 | 88.5 | 87.8 | 89.3 | 97.8 |
| Germany. | 53.4 | 78.2 | 88.5 | 87.8 | 103.2 | 83.5 | 83.2 | 79.6 | 67.8 | 66.1 | 70.8 | 83.7 | 89.2 | 85.5 | 82.9 | 87.6 |
| Italy.. | 67.7 | 110.0 | 95.6 | 90.4 | 90.2 | 93.0 | 90.8 | 88.2 | 74.6 | 74.5 | 81.9 | 104.0 | 116.5 | 118.8 | 122.7 | 137.5 |
| Netherlands. | 77.7 | 89.6 | 96.4 | 94.1 | 105.4 | 88.4 | 88.0 | 83.9 | 71.1 | 71.5 | 77.4 | 94.3 | 101.2 | 98.4 | 98.9 | 108.1 |
| Norway. | 58.1 | 86.6 | 82.6 | 85.5 | 100.8 | 95.0 | 96.8 | 95.7 | 86.9 | 87.8 | 101.9 | 110.1 | 112.7 | 119.4 | 130.0 | 149.4 |
| Spain. | 65.0 | 94.4 | 94.5 | 90.5 | 98.0 | 87.6 | 85.1 | 79.9 | 69.6 | 68.6 | 74.2 | 91.1 | 101.6 | 104.5 | 107.8 | 118.9 |
| Sweden. | 87.0 | 118.7 | 89.4 | 84.0 | 90.0 | 84.7 | 79.8 | 72.5 | 63.6 | 60.8 | 61.4 | 71.5 | 72.9 | 69.8 | 66.6 | 75.7 |
| United Kingdom.. | 89.1 | 107.8 | 92.5 | 94.3 | 100.5 | 107.4 | 116.0 | 114.1 | 106.3 | 101.9 | 108.9 | 119.3 | 132.0 | 134.2 | 137.7 | 146.7 |

NOTE: Data for Germany for years before 1993 are for the former West Germany. Data for 1993 onward are for unified Germany. Dash indicates data not available.
54. Occupational injury and illness rates by industry, ${ }^{1}$ United States


See footnotes at end of table.
54. Continued-Occupational injury and illness rates by industry, ${ }^{1}$ United States

| Industry and type of case ${ }^{\mathbf{2}}$ | Incidence rates per 100 workers ${ }^{3}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1989{ }^{1}$ | 1990 | 1991 | 1992 | $1993{ }^{4}$ | $1994{ }^{4}$ | $1995{ }^{4}$ | $1996{ }^{4}$ | $1997{ }^{4}$ | $1998{ }^{4}$ | $1999{ }^{4}$ | $2000{ }^{4}$ | $2001{ }^{4}$ |
| Nondurable goods: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ......... | 11.6 | 11.7 | 11.5 | 11.3 | 10.7 | 10.5 | 9.9 | 9.2 | 8.8 | 8.2 | 7.8 | 7.8 | 6.8 |
| Lost workday cases.... | 5.5 | 5.6 | 5.5 | 5.3 | 5.0 | 5.1 | 4.9 | 4.6 | 4.4 | 4.3 | 4.2 | 4.2 | 3.8 |
| Lost workdays.......... | 107.8 | 116.9 | 119.7 | 121.8 | - | - |  |  | - |  |  | - | - |
| Food and kindred products: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ................... | 18.5 | 20.0 | 19.5 | 18.8 | 17.6 | 17.1 | 16.3 | 15.0 | 14.5 | 13.6 | 12.7 | 12.4 | 10.9 |
| Lost workday cases... | 9.3 | 9.9 | 9.9 | 9.5 | 8.9 | 9.2 | 8.7 | 8.0 | 8.0 | 7.5 | 7.3 | 7.3 | 6.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lost workday cases... | 3.4 | 3.2 | 2.8 | 2.4 | 2.3 | 2.4 | 2.6 | 2.8 | 2.7 | 3.4 | 2.2 | 3.1 | 4.2 |
| Lost workdays.......... | 64.2 | 62.3 | 52.0 | 42.9 |  | - | - | - | - | - | - | - | - |
| Textile mill products: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lost workday cases... | 4.2 | 4.0 | 4.4 | 4.2 | 4.1 | 4.0 | 4.1 | 3.6 | 3.1 | 3.4 | 3.2 | 3.2 | 2.7 |
| Lost workdays.......... | 81.4 | 85.1 | 88.3 | 87.1 |  | - | - | - |  | - | - | - | - |
| Apparel and other textile products: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ............................ | 8.6 | 8.8 | 9.2 | 9.5 | 9.0 | 8.9 | 8.2 | 7.4 | 7.0 | 6.2 | 5.8 | 6.1 | 5.0 |
| Lost workday cases... | 3.8 | 3.9 | 4.2 | 4.0 | 3.8 | 3.9 | 3.6 | 3.3 | 3.1 | 2.6 | 2.8 | 3.0 | 2.4 |
| Lost workdays...... | 80.5 | 92.1 | 99.9 | 104.6 | - |  |  | - | - |  | - | - | - |
| Paper and allied products: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ..... | 12.7 | 12.1 | 11.2 | 11.0 | 9.9 | 9.6 | 8.5 | 7.9 | 7.3 | 7.1 | 7.0 | 6.5 | 6.0 |
| Lost workday cases.... | 5.8 | 5.5 | 5.0 | 5.0 | 4.6 | 4.5 | 4.2 | 3.8 | 3.7 | 3.7 | 3.7 | 3.4 | 3.2 |
| Lost workdays.......... | 132.9 | 124.8 | 122.7 | 125.9 | - | - | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases | 6.9 | 6.9 | 6.7 | 7.3 | 6.9 | 6.7 | 6.4 | 6.0 | 5.7 | 5.4 | 5.0 | 5.1 | 4.6 |
| Lost workday cases.... | 3.3 | 3.3 | 3.2 | 3.2 | 3.1 | 3.0 | 3.0 | 2.8 | 2.7 | 2.8 | 2.6 | 2.6 | 2.4 |
| Lost workdays......... | 63.8 | 69.8 | 74.5 | 74.8 | - | - | - | - | - | - |  | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ......................... | 7.0 | 6.5 | 6.4 | 6.0 | 5.9 | 5.7 | 5.5 | 4.8 | 4.8 | 4.2 | 4.4 | 4.2 | 4.0 |
| Lost workday cases...... | 3.2 | 3.1 | 3.1 | 2.8 | 2.7 | 2.8 | 2.7 | 2.4 | 2.3 | 2.1 | 2.3 | 2.2 | 2.1 |
| Lost workdays......... | 63.4 | 61.6 | 62.4 | 64.2 | - | - | - | - | - |  |  | - | - |
| Petroleum and coal products: |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ...................... | 6.6 | 6.6 | 6.2 | 5.9 | 5.2 | 4.7 | 4.8 | 4.6 | 4.3 | 3.9 | 4.1 | 3.7 | 2.9 |
| Lost workday cases..... | 3.3 | 3.1 | 2.9 | 2.8 | 2.5 | 2.3 | 2.4 | 2.5 | 2.2 | 1.8 | 1.8 | 1.9 | 1.4 |
| Lost workdays..... | 68.1 | 77.3 | 68.2 | 71.2 | - | - | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ....................................... | 16.2 | 16.2 | 15.1 | 14.5 | 13.9 | 14.0 | 12.9 | 12.3 | 11.9 | 11.2 | 10.1 | 10.7 | 8.7 |
| Lost workday cases... | 8.0 | 7.8 | 7.2 | 6.8 | 6.5 | 6.7 | 6.5 | 6.3 | 5.8 | 5.8 | 5.5 | 5.8 | 4.8 |
| Lost workdays.... | 147.2 | 151.3 | 150.9 | 153.3 | - | - | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases .......... | 13.6 | 12.1 | 12.5 | 12.1 | 12.1 | 12.0 | 11.4 | 10.7 | 10.6 | 9.8 | 10.3 | 9.0 | 8.7 |
| Lost workday cases... | 6.5 | 5.9 | 5.9 | 5.4 | 5.5 | 5.3 | 4.8 | 4.5 | 4.3 | 4.5 | 5.0 | 4.3 | 4.4 |
| Lost workdays.... | 130.4 | 152.3 | 140.8 | 128.5 |  | - | - | - | - | - | - | - | - |
| Transportation and public utilities |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ............ | 9.2 | 9.6 | 9.3 | 9.1 | 9.5 | 9.3 | 9.1 | 8.7 | 8.2 | 7.3 | 7.3 | 6.9 | 6.9 |
| Lost workday cases...... | 5.3 | 5.5 | 5.4 | 5.1 | 5.4 | 5.5 | 5.2 | 5.1 | 4.8 | 4.3 | 4.4 | 4.3 | 4.3 |
| Lost workdays................................... | 121.5 | 134.1 | 140.0 | 144.0 | - | - | - | - | - | - | - | - | - |
| Wholesale and retail trade |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ............ | 8.0 | 7.9 | 7.6 | 8.4 | 8.1 | 7.9 | 7.5 | 6.8 | 6.7 | 6.5 | 6.1 | 5.9 | 6.6 |
| Lost workday cases.... | 3.6 | 3.5 | 3.4 | 3.5 | 3.4 | 3.4 | 3.2 | 2.9 | 3.0 | 2.8 | 2.7 | 2.7 | 2.5 |
| Lost workdays......... | 63.5 | 65.6 | 72.0 | 80.1 | - | - | - | - | - | - | - | - | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4.0 | 3.7 | 3.7 | 3.6 | 3.7 | 3.8 | 3.6 | 3.4 | 3.2 | 3.3 | 6.3 3.3 | 5.8 3.1 | 2.8 |
| Lost workdays......... | 71.9 | 71.5 | 79.2 | 82.4 | - | - | - | , | - | - | - | , | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lost workday cases....... | 3.4 | 3.4 | 3.3 | 3.4 | 3.3 | 3.3 | 3.0 | 2.8 | 2.9 | 2.7 | 2.5 | 2.5 | 2.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ............. | 2.0 | 2.4 | 2.4 | 2.9 | 2.9 | 2.7 | 2.6 | 2.4 | 2.2 | . 7 | 1.8 | 1.9 | 1.8 |
| Lost workday cases.. | . 9 | 1.1 | 1.1 | 1.2 | 1.2 | 1.1 | 1.0 | . 9 | . 9 | . 5 | 8 | . 8 | . 7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total cases ..... | 5.5 | 6.0 | 6.2 | 7.1 | 6.7 | 6.5 | 6.4 | 6.0 | 5.6 | 5.2 | 4.9 | 4.9 | 4.6 |
| Lost workday cases.................. | 2.7 | 2.8 | 2.8 | 3.0 | 2.8 | 2.8 | 2.8 | 2.6 | 2.5 | 2.4 | 2.2 | 2.2 | 2.2 |
| Lost workdays.................................................. | 51.2 | 56.4 | 60.0 | 68.6 | - | - | , | , |  | - | - | - | - |

${ }^{1}$ Data for 1989 and subsequent years are based on the Standard Industrial Class ification Manual, 1987 Edition. For this reason, they are not strictly comparable with data for the years 1985-88, which were based on the Standard Industrial Classification Manual, 1972 Edition, 1977 Supplement.
${ }^{2}$ Beginning with the 1992 survey, the annual survey measures only nonfatal injuries and illnesses, while past surveys covered both fatal and nonfatal incidents. To better address fatalities, a basic element of workplace safety, BLS implemented the Census of Fatal Occupational Injuries.
${ }^{3}$ The incidence rates represent the number of injuries and illnesses or lost workdays per 100 full-time workers and were calculated as (N/EH) X 200,000, where:
$\mathrm{N}=$ number of injuries and illnesses or lost workdays;
$\mathrm{EH}=$ total hours worked by all employees during the calendar year; and 200,000 = base for 100 full-time equivalent workers (working 40 hours per week, 50 weeks per year).
${ }^{4}$ Beginning with the 1993 survey, lost workday estimates will not be generated. As of 1992, BLS began generating percent distributions and the median number of days away from work by industry and for groups of workers sustaining similar work disabilities.
${ }^{5}$ Excludes farms with fewer than 11 employees since 1976.

NOTE: Dash indicates data not available.
55. Fatal occupational injuries by event or exposure, 1996-2005

| Event or exposure ${ }^{1}$ | $\begin{gathered} \text { 1996-2000 } \\ \text { (average) } \end{gathered}$ | 2001-2005(average) $^{2}$ | 20053 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Number | Percent |
| All events | 6,094 | 5,704 | 5,734 | 100 |
| Transportation incidents | 2,608 | 2,451 | 2,493 | 43 |
| Highway | 1,408 | 1,394 | 1,437 | 25 |
| Collision between vehicles, mobile equipment ....... | 685 | 686 | 718 | 13 |
| Moving in same direction ................................. | 117 | 151 | 175 | 3 |
| Moving in opposite directions, oncoming | 247 | 254 | 265 | 5 |
| Moving in intersection .......................... | 151 | 137 | 134 | 2 |
| Vehicle struck stationary object or equipment on side of road | 264 | 310 | 345 |  |
| Noncollision | 372 | 335 | 318 | 6 |
| Jack-knifed or overturned--no collision | 298 | 274 | 273 | 5 |
| Nonhighway (farm, industrial premises) | 378 | 335 | 340 | 6 |
| Noncollision accident | 321 | 277 | 281 | 5 |
| Overturned | 212 | 175 | 182 | 3 |
| Worker struck by vehicle, mobile equipment | 376 | 369 | 391 | 7 |
| Worker struck by vehicle, mobile equipment in roadway | 129 | 136 | 140 | 2 |
| Worker struck by vehicle, mobile equipment in parking lot or non-road area | 171 | 166 | 176 |  |
| Water vehicle ................................................ | 105 | 82 | 88 | 2 |
| Aircraft ................................................................ | 263 | 206 | 149 | 3 |
| Assaults and violent acts | 1,015 | 850 | 792 | 14 |
| Homicides | 766 | 602 | 567 | 10 |
| Shooting | 617 | 465 | 441 | 8 |
| Suicide, self-inflicted injury ...................................... | 216 | 207 | 180 | 3 |
| Contact with objects and equipment | 1,005 | 952 | 1,005 | 18 |
| Struck by object ....................... | 567 | 560 | 607 | 11 |
| Struck by falling object ................ | 364 | 345 | 385 | 7 |
| Struck by rolling, sliding objects on floor or ground level | 77 | 89 | 94 | 2 |
| Caught in or compressed by equipment or objects ....... | 293 | 256 | 278 | 5 |
| Caught in running equipment or machinery ............. | 157 | 128 | 121 | 2 |
| Caught in or crushed in collapsing materials ............... | 128 | 118 | 109 | 2 |
| Falls | 714 | 763 | 770 | 13 |
| Fall to lower level | 636 | 669 | 664 | 12 |
| Fall from ladder | 106 | 125 | 129 | 2 |
| Fall from roof | 153 | 154 | 160 | 3 |
| Fall to lower level, n.e.c. ...................................... | 117 | 123 | 117 | 2 |
| Exposure to harmful substances or environments ..... | 535 | 498 | 501 |  |
| Contact with electric current ..................................... | 290 | 265 | 251 | 4 |
| Contact with overhead power lines ........................ | 132 | 118 | 112 | 2 |
| Exposure to caustic, noxious, or allergenic substances | 112 | 114 | 136 | 2 |
| Oxygen deficiency ..................................................... | 92 | 74 | 59 | 1 |
| Fires and explosions ............................................... | 196 | 174 | 159 | 3 |
| Fires--unintended or uncontrolled ............................. | 103 | 95 | 93 | 2 |
| Explosion ............................................................ | 92 | 78 | 65 | 1 |

1 Based on the 1992 BLS Occupational Injury and IIlness Classification Manual.
2 Excludes fatalities from the Sept. 11, 2001, terrorist attacks.
3 The BLS news release of August 10, 2006, reported a total of 5,702 fatal work injuries for calendar year 2005. Since then, an additional 32 job-related fatalities were identified, bringing the total job-related fatality count for 2005 to 5,734 .
NOTE: Totals for all years are revised and final. Totals for major categories may include subcategories not shown separately. Dashes indicate no data reported or data that do not meet publication criteria. N.e.c. means "not elsewhere classified."
SOURCE: U.S. Department of Labor, Bureau of Labor Statistics, in cooperation with State, New York City, District of Columbia, and Federal agencies, Census of Fatal Occupational Injuries.


[^0]:    See footnotes at end of table.

[^1]:    ${ }^{1}$ The results of this category should be interpreted with caution because they may be affected by refinements in occupational coding procedures.

[^2]:    ${ }^{2}$ The occupations represented in these data were assigned to more than one category of education or training.

[^3]:    ${ }^{1}$ The adjustment for inflation was made using the BLS Consumer Price Index for Urban Wage Earners and Clerical Workers.
    ${ }^{2}$ Katherine Baicker and Amitabh Chandra, "The Labor Market Effects Of Rising Health Insurance Premiums," Journal of Labor Economics, July 2006, pp. 609-34.
    ${ }^{3}$ John Jones, "What do OES data have to say about increasing wage inequality?" Monthly Labor Review, June 2009, pp. 39-49.
    ${ }^{4}$ OES statistics cover part-time and full-time wage and salary workers, and do not cover the self-employed, owners and partners in unincorporated firms, household workers, or unpaid family workers.

[^4]:    ${ }^{5}$ The common coding system is the 2002 oes occupational coding structure.
    ${ }^{6}$ Mean wages for November 2002 have been adjusted for inflation to May 2007 dollars. All wages are discussed in terms of May 2007 dollars.
    ${ }^{7}$ Patrick Kilcoyne, "The Role of Occupational Composition in State Wage Differentials," Occupational Employment and Wages, May 2005, Bulletin 2585 (Bureau of Labor Statistics, May 2007).
    ${ }^{8}$ David H. Autor, Lawrence F. Katz, and Melissa S. Kearney, "The Polarization of the U.S. Labor Market," American Economic Review, May 2006, pp. 189-194.

[^5]:    ${ }^{1}$ Aaron Steelman and John A.Weinberg,"What's Driving Wage Inequality?" Economic Quarterly (Federal Reserve Bank of Richmond), summer 2005, pp. 1-17, cite this general consensus among economists.
    ${ }^{2}$ David H. Autor, Lawrence F. Katz, and Melissa S. Kearney, "The Polarization of the U.S. Labor Market," NBER Working Paper No. 11986 (National Bureau of Economic Research, January 2006), pp. 1-19ff.
    ${ }^{3}$ Steelman and Weinberg, "What's Driving Wage Inequality?"
    ${ }^{4}$ See "Occupational Projections and Training Data" (Bureau of Labor Statistics, no date), on the Internet at www.bls.gov/emp/optd (visited June 17, 2009). Data on educational attainment by occupation come from the Current Population Survey and are given in Occupational Projections and Training Data, Bulletin 2602 (Bureau of Labor Statistics, December 2007). Chapter 1, "Education and Training Classification Systems," says,

    The educational attainment cluster system sorts occupations according to the highest level of educational attainment of current workers....

    If an education level represents the highest educational attainment of at least 20 percent of workers in an occupation, that education level is included in the education category of the occupation. For example, if more than 60 percent of workers have a high school diploma or less, less than 20 percent have some college or an associate degree, and less than 20 percent have a bachelor's or higher degree, that occupation is

[^6]:    considered a high school (HS) occupation. However, if more than 20 percent have a high school degree or less, more than 20 percent have attended some college or held an associate degree, and less than 20 percent have a bachelor's or higher degree, the occupation is considered to be a high school/some college (HS/SC) occupation.
    ${ }^{5}$ For a discussion of job losses in residential construction, see the BLS news release "The Employment Situation: May 2008" (Bureau of Labor Statistics, June 6, 2008), on the Internet at www.bls.gov/news.release/archives/empsit_06062008. pdf (visited June 17, 2009). For a look at when the housing bubble burst, see "Nationally,Home Prices Began 2009 with Record Declines According to the S\&P/ Case-Shiller Home Price Indices," Standard \&o Poor's Press Release, May 26, 2009, on the Internet at www2.standardandpoors.com/spf/pdf/index/CSHomePrice_ Release_052619.pdf (visited June 17, 2009); see especially chart, p. 1.
    ${ }^{6}$ For an examination of the oil and gas industry, see "Oil Price History and Analysis," on the Internet at www.wtrg.com/prices.htm (visited June 17, 2009).
    ${ }^{7}$ Education is often linked with skill. Other influences on skill include experience, training, and individuals' abilities-for instance, creativity.
    ${ }^{8}$ The OES top wage range was $\$ 145,600$ or more for panels prior to November 2005. Currently, the top wage range is $\$ 166,400$ or more. In either case, because respondents cannot report their actual top wage, the top wage range may mask wage growth for the highest wage earners over time.

[^7]:    Denis M. McSweeney is Regional Commissioner, Boston/New York regional office, Bureau of Labor Statistics; Walter J. Marshall is a regional economist formerly with the Boston regional office. E-mail: mcsweeney. denis@bls.gov

[^8]:    ${ }^{1}$ Quarterly data seasonally adjusted
    2 Annual changes are December-to-December changes. Quarterly changes are calculated using the last month of each quarter.
    ${ }^{3}$ The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes only. Series based on NAICS and soc became the official BLS estimates starting in March 2006.

[^9]:    ${ }^{1}$ Annual changes are December-to-December changes. Quarterly changes are calculated using the last month of each quarter. Compensation and price data are not seasonally adjusted, and the price data are not compounded.
    ${ }^{2}$ Excludes Federal and private household workers.
    ${ }^{3}$ The Employment Cost Index data reflect the conversion to the 2002 North American Classification System (NAICS) and the 2000 Standard Occupational Classification (SOC) system. The NAICS and SOC data shown prior to 2006 are for informational purposes

[^10]:    NOTE: Beginning in January 2003, data reflect revised population controls used in the household survey.

[^11]:    NOTE: Some data in this table may differ from data published elsewhere because of the continual updating of the database.

[^12]:    ${ }^{\mathrm{p}}=$ preliminary

[^13]:    ${ }^{1}$ Includes other industries not shown separately.
    NOTE: See "Notes on the data" for a description of the most recent benchmark revision.
    p = preliminary

[^14]:    1 Detail will not necessarily add to totals because of the independent seasonal adjustment of the various series.
    2 Includes natural resources and mining, information, financial activities, and other services, not shown separately.
    ${ }^{3}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland,

    West Virginia; Midwest: Illinois, Indiana, lowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming. NOTE: The job openings level is the number of job openings on the last business day of the month; the job openings rate is the number of job openings on the last business day of the month as a percent of total employment plus job openings.
    ${ }^{\mathrm{P}}=$ preliminary. Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia,

[^15]:    ${ }^{1}$ Detail will not necessarily add to totals because of the independent seasonal adjustment of the various series.
    ${ }^{2}$ Includes natural resources and mining, information, financial activities, and other services, not shown separately.
    ${ }^{3}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia;

    Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

    Note: The hires level is the number of hires during the entire month; the hires rate is the number of hires during the entire month as a percent of total employment.
    ${ }^{\mathrm{p}}=$ preliminary.

[^16]:    ${ }^{1}$ Detail will not necessarily add to totals because of the independent seasonal adjustment of the various series.
    ${ }^{2}$ Includes natural resources and mining, information, financial activities, and other services, not shown separately.
    ${ }^{3}$ Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia;

    Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Wisconsin; West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming.

    Note: The quits level is the number of quits during the entire month; the quits rate is the number of quits during the entire month as a percent of total employment.
    ${ }^{\mathrm{p}}=$ preliminary

[^17]:    ${ }^{1}$ Average weekly wages were calculated using unrounded data.
    NOTE: Includes workers covered by Unemployment Insurance (UI) and Unemployment Compensation for Federal Employees (UCFE) programs. Data are preliminary.
    or the Virgin Islands.

[^18]:    ${ }^{1}$ Not strictly comparable with prior years.

[^19]:    See footnotes at end of table

[^20]:    See footnotes at end of table.

[^21]:    See footnotes at end of table.

[^22]:    See footnotes at end of table.

[^23]:    1 Agricultural and government employees are included in the total employed and total working time; private household, forestry, and fishery employees are excluded. An explanation of the measurement of idleness as a percentage of the total time

[^24]:    ${ }^{1}$ Labor force as a percent of the working-age population.
    ${ }^{2}$ Employment as a percent of the working-age population.
    NOTE: There are breaks in series for the United States (1997, 1998, 1999, 2000, 2003, 2004), Australia (2001), Germany (1999, 2005), the Netherlands $(2000,2003)$, and Sweden Internet at http://www.bls.gov/fis/flscomparelf.htm ). Unemployment rates may differ from those in the BLS report Unemployment rates in 10 countries, civilian labor force basis, approximating U.S. concepts, seasonally adjusted (on the Internet at http://www.bls.gov/fis/filsjec.pdf), because the former is updated annually, whereas (2005). For further qualifications and historical annual data, see the BLS report the latter is updated monthly and reflects the most recent revisions in source data. International comparisons of annual labor force statistics, 10 countries (on the

