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I.  INTRODUCTION
   The research for this paper began in connection with the need
for measuring the central tendency of hourly wage data from the
Occupational Employment Statistics (OES) survey at the Bureau
of Labor Statistics (BLS).  The OES survey is a Federal-State
establishment survey of wage and salary workers designed to
produce data on occupational employment by industry for the
Nation, each State, and selected areas within States.  The OES
survey provides employment data for approximately 700 detailed
occupations by surveyed industries.  Until recently the survey
did not provide any wage information.  The wage data that are
produced by other Federal programs are limited in the level of
occupational, industrial, and geographic coverage.   In order to
address this critical void in the Federal statistical effort, the OES
program conducted pilot studies in 1989 and 1990 to test the
feasibility of incorporating wage questions into the OES survey.
   The 1992 OES survey collects data in 15 States on
occupational hourly wage by industry in nonagricultural
establishments.  The data are collected in eleven intervals, rather
than in exact dollar amounts, with the lowest and uppermost
intervals open.
   Research was conducted by the Office of Research and
Evaluation and the Statistical Methods Division of the Office of
Employment and Unemployment Statistics to find a suitable
estimate of central tendency for the occupational wage data of
the OES survey.  It was determined that both mean and median
would be measured.  Each has advantages and disadvantages
which will be discussed.
   West (1986) discussed problems with using medians in
household survey data where the distribution of earnings has
many peaks and estimates are compared over time periods.  In
this paper, we analyze the medians of occupational wages from
establishment survey data where the resulting distributions are
not as multi-peaked as distributions of data from household
surveys.  For the most part of this paper, we investigate
alternative methods of estimating occupational wage means from
grouped data with open intervals.
   The first part of the research focused on the problem of
estimating the overall occupational wage mean for each industry,
according to the OES survey's objective.  The second part of the
research explores the best method for estimating the wage mean
of an upper open interval.  This would be useful for analyses
such as regression where interval wages are used as dependent
variables.
   The two measures of central tendency are described in Section
II.  The empirical studies and results are given in Section III.
The conclusions are presented in Section IV.  Section V contains
plans for future research.
II.  MEASURES OF CENTRAL TENDENCY
A.   MEDIANS
   In elementary theory the median has considerable claims to be
used as a measure of location for unimodal distributions.  It is
readily interpretable in terms of ordinary ideas.  What gives the
arithmetic mean the greater importance in advanced theory is its
superior mathematical tractability and certain sampling

properties.  The median has a compensating advantage in that it
is less sensitive to the configuration of the outlying parts of the
frequency distribution than is the mean.  This is especially
important with earnings data and in particular, with the censored
data, the median is a logical choice.  However, the median is
sensitive to the way the data are grouped and operating with
medians can lead to misleading results.  The latter is especially
true in the case of the many-peaked earnings distribution, such
as arises in data collected from households, where the
respondent often has to approximate the data requested.  The
earnings data considered in this paper are collected from
establishments and are, for the most part, obtained from payroll
records.  Thus, the resulting distribution should not be multi
peaked, and indeed, are not.   This paper concentrates on finding
the best estimator for the mean rather than for the median.  Only
the linear interpolation method for the median is tested.  The
method first determines the interval that contains the median,
and then linear interpolation is used to estimate the median.  The
occupational minimum wage is used as the lower limit of the
lower open interval.  If the median falls in the uppermost open
interval, all that can be said is that the median is equal to or
above the upper limit of hourly wage.
B.  MEANS
   A measure of central tendency with desirable properties is the
mean.  In addition to the usual desirable properties of means,
there is another nice feature that is proven by West (1985).  It is
that the percent difference between two means is bounded
relative to the percent difference between subgroup means, if the
proportion of units in each subgroup remains the same for the
two groups.  Since the problem considered  in this paper deals
with grouped data that have lower and upper open intervals, it is
not possible to compute an exact mean.  The problem will be
considered from the point of view of computing a population
mean from right and left censored data.  First the problem will be
formulated and two methods for computing the mean will be
discussed.  One method results in the Winsorized mean and the
other method uses a classical Pareto distribution.
FORMULATION OF PROBLEM
   The population of true earnings data are denoted by :
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Since intervals I1   and I r  are not bounded intervals,  M1  and

Mr  will need to be estimated.

I1 has a natural lower bound, either 0 or the minimum wage; for

this study the minimum occupational wage for each State, W( )1  ,

was used.  Thus the estimate for M1 is :
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Clearly, $

,Mr w  will underestimate Mr  .  With the Winsorized

mean a straight line is used for the missing values; a natural
extension, now to be considered, is to fit a curve for the missing
values.
   For the estimator of Mr  , consider fitting a theoretical

distribution to the (r-1) mid-points, and take $Mr  as the mean of
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where

f x U r( | )( )-1  is the conditional density of X , given that X  is

greater than or equal to the fixed number U r( )-1 .

   Another possibility for $Mr  is the median of the conditional

density.  Parker and Fenwick (1983) found that this estimator
performed better than the mean, but this was not the case with
the new method and data considered in West (1985).
   Many distributions have been proposed for earnings data, but it
is clear from the literature that the researchers are satisfied with
the Pareto distribution as a fit to the upper portion of the
earnings curve.  Consider the Pareto distribution:
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Note that for the mean to be positive, a >1.
   Many methods exist for estimating the parameter a .  The
method for estimating a  most used and recommended in the
literature is the quantile method, which is described next.

   Let M p  and Mq  denote the p-th and q- th

quantile respectively; that is,
  F M P M M K M pp p p( ) ( ) ( ) .= £ = - =1 a

  Similarly, for Mq.

   Letting $ $M M M Mp q p q  and   be estimators of and 
respectively, leads to the following estimator of a :

 $ ln[( ) ( )] ln[ $ $ ].a pq q pp q M M= - -1 1

   Most researchers seem to use this method with either the mid-
points of the last two bounded intervals or the last bounded
interval and the open interval.  Specifically, if the mid-points of
the last two bounded intervals are used, the estimator of a

becomes:
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The method is referred to as the quantile II method, and 
$

, ,Xg q 2

is referred to as the Qnt II estimator in this paper.  If the lower
bounds of the last bounded interval and the open interval are
used, then the estimator of a  becomes:

        $ ln[( ) ( )] ln[ ].( ) ( )a o r r r r rf f f U U= +
- - -1 1 2

This will lead to $ , ,Mr q 1  and 
$
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respectively.  The method is referred to as the quantile I method

and 
$

, ,Xg q1 is referred to as the Qnt I estimator in this paper.

In the literature the estimator, ,$a o  seems to be the one most

recommended, for example, see Shryock (1975), Parker and
Fenwick (1983).
An alternative estimator for a  is a modified maximum
likelihood estimator developed in West (1985).  A brief
description of the estimator will be given here.  Since the Pareto
distribution is considered a good fit for the distribution of higher
earnings, the parameter will be estimated from the left truncated
distribution.  Letting
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denote the left truncated mid-points of the bounded intervals,
then the modified maximum likelihood estimator is:
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Note that in the case of a Pareto distribution, truncation is
equivalent to rescaling.
   Regarding the selection of the truncated point, Ms , it was

found in West (1985) that if the earnings distribution was
truncated at the mid-point of the interval containing the
truncated mean, then the resulting estimate of a  led to the
estimate of the mean that came the closest to the true mean.  The
truncated mean is defined as the mean of the data below U r( )-1 .

   Consistency is easily verified for the quantile estimator and it
is resistant to outliers.  Quandt (1966) found that the
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performance of the quantile estimators was not much inferior to
those of the maximum likelihood estimators.  A Monte Carlo
study reported by Koutrouvelis (1981) supported that view.
However in West (1985), it was shown theoretically and
empirically  that the quantile method depends heavily on the
classification of the population, can lead to gross errors, and at
best does as well as the modified maximum likelihood estimator.
The data used in the empirical studies were relatively small
populations, based on household data.  In West (1986), the
quantile estimator and the modified maximum likelihood
estimator were compared over time on data collected from
households in the Current Population Survey (CPS).  The results
were similar to the ones in the 1985 study.  In this paper the
estimators will be compared on occupational earnings data
collected from establishments.  The Winsorized estimator, the
two quantile estimators, and the modified maximum likelihood
estimators, using four different rules for choosing Ms  will be

compared.  The four rules are to choose Ms  to be the:

1. mid-point of the interval that contains the truncated mean.
2 mid-point of the interval following the one that contains 

the truncated mean.
3. mid-point of the interval that contains the median.
4. mid-point of the interval following the one that contains the

median.
   The modified maximum likelihood estimator of a  will be
denoted by $ ,a m k , and the corresponding mid-point and grouped

mean estimators by $ , ,Mr m k and 
$

, ,Xg m k, respectively, where

k=1, 2, 3, or 4, corresponding to the above rule of truncating.
The grouped mean estimators are also referred to as Max I, Max
II, Max III, or Max IV, corresponding to the rule of truncating.
III.  EMPIRICAL STUDIES
   In this section, the methods and results of two empirical
studies are described.  The first study concentrated on the overall
industry/occupational wage mean and the second study
concentrated on the upper open interval mean.  The same
measures of evaluation as described below were used for each
study.
   We define the error of estimation to be the difference between
the estimated value and the true value, which is assumed to be
known.  The relative error is defined as the ratio of the error of
estimation to the true value.  We compare different estimators by
looking at the absolute values of the relative errors of their
estimates.  The relative errors may be expressed in percentages
and be called percent errors.  Absolute percent errors are the
absolute values of percent errors.  For example, if the true mean
is 50, the estimated mean is 48, then the relative error is -.04 and
the absolute percent error is 4 percent.
   Note that for the median, the error in estimation is due to
grouping the data; whereas, for the mean, the error is due to
grouping and to the upper open interval estimation.  Sampling
error was not considered in the studies since wage data in exact
dollar amounts were used and regarded as the population.
A.  OES RESEARCH
   This part of the research is called the OES research because it
is designed to meet the objective of the Occupational
Employment Statistics (OES) survey, that is, to find the best
estimators for the median and for the mean of occupational
hourly wage for each industry.  Estimates, therefore, were
computed for each industry/occupation level.
1.  Data

   The data used for the research are from the 1989 and 1990
White-Collar Pay (WCP) surveys.  The WCP survey collects
wage data from establishments employing 50 or more workers in
industries throughout the United States, except Alaska and
Hawaii.  The WCP survey collects actual dollar amounts for
wages.
   We selected nine industries from different major industry
groups to study.  Each industry is classified by a standard
industrial classification (SIC) code.  The nine industries and their
SIC codes were:  oil and gas extraction (SIC 13); food and
kindred products (SIC 20); chemicals and allied products (SIC
28); stone, clay, and glass products (SIC 32); transportation by
air (SIC 45); miscellaneous retail (SIC 59); security and
commodity brokers (SIC 62); hotels and other lodging places
(SIC 70); and educational services (SIC 82).
2.  Method
   We adjusted the collected WCP data by their weights and the
weighted data were considered the true population, from which
we computed the true mean and median.  We then grouped the
data into wage interval categories by industry and occupation.
For each set of grouped data, we estimated the median by the
linear interpolation method and estimated the mean by the
methods outlined in Section II.  For the modified maximum
likelihood method, we only used the interval that contained the
truncated mean as the left truncated point.  That is, the only

estimator examined was 
$

, ,Xg m1 (Max I).

   For the research, the 1989 Federal minimum wage of $3.35
was used as the lower limit of the lower open interval.
3.  Selecting the Interval Categories
The pilot OES interval categories specified $35.00 as the lower
limit of the upper open interval.  It was found that this figure was
too low to provide good estimates.  Out of a total of 792
occupations over the nine industries chosen, 81 percent (639) did
not have records in the upper open interval.  Of the 153
occupations that did have some records in this interval, as many
as 53 did not have records in any other interval.  For these 53
occupations, there were no data to fit any distribution; the
Winsorized mean was the only alternative for computing a mean.
For these cases, the Winsorized mean could underestimate the
true mean as much as 53 percent.  Many other occupations had
only a few observations in the previous bounded interval and the
rest in the upper open-interval.  For these occupations, there
were not enough data to fit a Pareto distribution.  In order to use
the Pareto distribution, the wage distribution should be a
decreasing function after a peak and should have a small "tail."
The "tail" for our purpose is the upper open-interval itself.  Of
the 153 occupations that have records in the upper open-interval,
only 29 (19%) occupations have "tails" less than ten percent; 8
(.5%) occupations have "tails" of ten to twenty percent; 24 (16%)
occupations have "tails" of twenty to fifty percent; and 92 (60%)
occupations have "tails" over fifty percent.  Attempts to fit a
Pareto distribution to these occupations of "large tails" lead to
gross errors.  In addition, there could be no median estimates for
the occupations with "tails" over fifty percent.
   Based on the above observations and on the distribution of the
true mean of the upper open interval over industries, a modified
version for the interval categories was proposed and accepted for
future OES surveys.  The modified interval categories increased
the lower limit of the upper open interval from $35 to $60 and
widened the middle ranges, while leaving the two lowest
intervals the same as before.  The number of interval categories
was kept at eleven for administrative purposes.  Now more
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Pareto distributions could be fitted, allowing different methods
for computing the mean for the upper open interval.  The pilot
versus the future interval categories are given below.
   Interval Category  Pilot  Future
       A    <5    <5
       B [5-6.5) [5-6.5)
       C [6.5-8) [6.5-9)
       D [8-10) [9-12)
       E [10-12) [12-16)
       F [12-14) [16-20)
       G [14-17) [20-25)
       H [17-21) [25-35)
        I [21-25) [35-45)
        J [25-35] [45-60)
        K    >35    ³ 60

4.  Results
   The modified interval categories gave us 23 occupations with
observations in the upper open interval.  Of these, twelve had
"tails" between ten and fifty percent, and six had "tails" of fifty
percent or more.  There were no median estimates for these six
occupations.  Four of these six occupations only had
observations in the upper open interval and did not have
alternative measures of the mean besides the Winsorized
method.
   The estimates for overall means improved significantly from
the pilot interval categories as the following tables show.  We
were able to estimate more medians using the new interval
categories.
   An error profile for all occupations using pilot interval
categories is displayed in Table I.  The numbers in the body of
the table denote the number of times a specific method resulted
in errors that fell in a specified error range.  The error ranges are
absolute percent errors (percent errors in absolute values).
   A similar error profile using the future interval categories are
displayed in Table II.
TABLE I

Error profile for all occupations using pilot interval categories

Error Range Qnt I Qnt II Max I Winsorized Median

  0 - 4.99 591 596 608 602 570
  5 - 9.99   84   81   83 108 110
 10 -14.99   21   24   20   24   18
  ³ 15.00   43   38   28   58     3
   N/A*   53   53   53     0   91

TABLE II
Error profile for all occupations using future interval categories

Error Range Qnt I Qnt II Max I Winsorized Median

  0 - 4.99 626 626 634 631 566
  5 - 9.99 112 112 113 115 156
 10 -14.99   41   41   38   40   56
  ³ 15.00     9     9     3     6     8
   N/A*     4     4     4     0     6

* Estimates could not be computed.

   The quantile I and quantile II methods performed similarly.
These estimates were not as good as the maximum likelihood or

the Winsorized estimates.  They had more errors in the "³ 15%"
range.  Additionally, the errors by the quantile methods in this
range were extremely high.  The Winsorized estimate had more
errors in the "³ 15%" range than the maximum likelihood
estimate, however most of these errors resulted in the cases in
which the maximum likelihood estimator could not be computed.
We recommended the Winsorized mean for the OES survey
since it is easy to understand and to implement.
   The median also performed well.  Under the pilot interval
categories, the median for 91 occupations could not be computed
compared to six occupations under the future interval categories.
   Empirical results also suggested that the absolute percent error
tends to be high when the number of unweighted workers in an
occupation is small.  For the median, 19 percent of the
occupations that have less than ten unweighted workers have
percent errors of the magnitude ten percent or higher compared
to three percent of the occupations that have at least ten
unweighted workers.  For the mean, the comparison is 15 percent
versus .8 percent.  Based on these results, we recommended that
publishability criteria include the provision that all published
figures come from occupations with at least ten unweighted
workers.
5.  Validation of other data sets
   The White Collar Pay surveys are not completely
representative of the OES survey.  The survey does not cover
Hawaii and Alaska and does not include small establishments of
less than 50 workers.  It does not target production workers and
therefore its wage distribution is not the same as the wage
distribution of the OES survey which includes all occupations.
   However, we feel that the mean and median estimators are
robust and should work as well on OES data.  We validated the
recommended estimators on two additional sources of wage data:
the Alaska data and the Industry Wage Survey data.
   In the State of Alaska a Wage Rate survey was conducted.  The
hourly wage data from this survey was sent to the Bureau of
Labor Statistics to be tested with the recommended procedures.
The staff in Alaska indicated that the following industries should
be tested:  metal mining (SIC 10); general building contractors
(SIC 15); food and kindred products (SIC 20); depository
institutions (SIC 60); hotels and other lodging places (SIC 70);
and engineering and management services (SIC 87).  The
minimum wage of $4.75 was given to us by the staff in Alaska
and was used in the research.
   Since we recommended that all publishable means and
medians have at least ten unweighted workers, we only
considered the percent errors of the occupations with at least ten
workers.  Out of 89 occupations, five (6%) had absolute percent
errors for the median exceeding ten percent and two (2%) had
absolute percent errors for the mean exceeding ten percent.
These numbers are thought to be small enough to be acceptable.
   The Industry Wage Survey (IWS) collects wage data for
production workers only.  Wage data from this survey do not
have as many observations in the upper interval categories.  In
order to see the effect of the future interval categories on data
sets with lower wages, we tested the procedures on two IWS data
sets using both sets of interval categories.  The data sets
available were the 1987 Men's and Boys' Shirts (SIC 2321) and
the 1984 Millwork (SIC 2431).  The Federal minimum wage of
$3.35 at that time was used as the lower limit of the lower open
interval.
   There were 31 occupations in the Millwork data and 30
occupations in the Shirts data to be tested.  For each data set, the
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two sets of interval categories basically gave the same error
distribution.
6.  Compare Percent Change Across Time or SICs
   Of interest to the OES survey is the comparison of
occupational hourly wages across time.  As mentioned in Section
II, the median or functions of median should not be used for
these purposes.  The difference in means of a characteristic of a
population was found to be bounded relative to the means of its
subpopulations when compared across time periods, provided
the proportional size of the subpopulations tend to stay the same
over time.
   Also of interest to the OES survey is the comparison of
occupational hourly wages across populations and across their
subpopulations.  The population could be a major occupational
group such as "Engineers."  The subpopulations could be
different pay levels (which reflect the different expertise and
experience levels within one major occupational group) or
different detailed occupations (which reflect the many different
but related jobs, for example, different kinds of engineers).  The
size of the subpopulations relative to the size of their parent
population may not be the same in different industries.
   We looked at the "bounded property" of true and estimated
means and of true and estimated medians in the case of
comparing different occupational pay levels.  We found that true
values or their estimates may or may not be bounded.
Furthermore, the existence or lack of "bounded property" of true
values does not carry over to their estimates.  That is, bounded
true means or bounded medians do not lead to bounded
estimated means or bounded estimated medians, and vice versa.
For these comparisons, the median as well as the mean should be
used with caution.
B.  INTERVAL MEAN RESEARCH
   This part of the research expands on the OES research by
concentrating on estimating the mean of the upper open interval.
1.  Data
   Data from the same 1989 and 1990 White-Collar Pay surveys
were used.  The following nine industries were added: coal
mining (SIC 12), special trade contractors (SIC 17), apparel and
other textile products (SIC 23), electronic and other electric
equipment (SIC 36), communications (SIC 48), wholesale trade
(SIC 50), automotive dealers and service stations (SIC 55), real
estate (SIC 65), and legal services (SIC 81).  These additional
industries allowed additional coverage of industry groups.
2.  Method
   As discussed in the OES research, the Pareto distribution is not
always suitable for industry/occupational wage data.  With
occupational data by industry, using either set of interval
categories, there is a high percentage of occupations with large
frequency in the upper open interval ("large tails" for Pareto
distributions).  In order to conduct research on estimating the
mean for the upper open interval, we need data that are more
suitable to fitting the Pareto distribution.  To bring smaller
"tails," we grouped all the industrial occupations into
professional, technical, and clerical occupational types as
described in the White-Collar Pay survey bulletin published by
the Bureau of Labor Statistics.  We estimated the median and the
mean by industry/occupational type with the methods mentioned
in Section II.  When using the maximum likelihood method on
these data sets, the four rules for choosing the left truncated
point were applied.  Since there were 18 industries, each with
three different occupational types, a total of 54 populations were
considered.

3.  Selecting the Interval Categories
   When we grouped the occupational type data according to the
future OES interval categories, there were not enough data in the
upper open interval (in percentages) to do meaningful research.
Based on the frequency distribution of workers in each
occupational type, we decided to use the pilot OES interval
categories with different lower bounds for the upper open
intervals: $35 for the professional type data, $21 for the
technical type, and $17 for the clerical type.  These lower
bounds were not chosen arbitrarily.  They were lower bounds of
the pilot OES intervals, but not necessarily of the upper open
interval.  These lower bounds were chosen with the aim for
"tails" of less than ten percent.  It was found from the research
that the Pareto distribution gives best estimates with "tails" of
this size.  This gave the percentage of workers in the upper open
interval from .4 to 6.5 percent in the professional occupations
(with one exception of 18 percent), from .05 to 7.6 percent in the
technical occupations, and from .04 to 3.4 percent in the clerical
occupations.
4.  Results
   The estimated median and estimated truncated mean usually
fell in the same interval.  Therefore, the maximum likelihood
estimator derived from using either the interval containing the
median or the interval containing the truncated mean as the left
truncated point usually was the same.  For this reason, we will
only discuss the left truncated point as in the interval containing
the estimated truncated mean (Max I) or in the interval following
the one that contains the estimated truncated mean (Max II).  For
the professional occupations, the quantile II method performed
well, followed by the maximum II method.  For the technical
occupations, the Winsorized performed well, followed by the
quantile II and maximum II methods.  For the clerical
occupations, the maximum II method is the best.  Although the
Max II estimate is not always the best over the occupational
types, it is consistently one of the best.
   A third of the 54 occupational type populations did not have
records in the upper open interval.  An error profile for the two
thirds that had upper open interval estimates is shown in Table
III.
TABLE III

Error Profile for Estimating the Mean of the Upper open Interval

Error Range Qnt I Qnt II Max I Max II Winsorized

   0-4.99 17 23 14 18   4
   5-9.99 12   7 12 15 10
 10-14.99   3   5   5   2 13
     ³ 15   4   1   5   1   9

As the table indicates, the Winsorized was not the best method.
The quantile II method could be good, but had more large errors
than the maximum II method.  The quantile I, maximum I, and
Winsorized methods were not recommended.  They seemed to be
sensitive to different data sets and gave more errors in the
"³ 15%" range.  The Max II is the one recommended.
 5.  Effects of Grouping Data
   The quantile II method uses the two bounded intervals
preceding the upper open interval in estimation.  When the
boundary point of these two closed intervals was changed from
$25 to $28 for the professional type data, the quantile II
estimator did considerably worse.  The other estimators were not
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affected much by the change.  This is in agreement with West's
findings (1986) that the quantile method is sensitive to the way
the data are grouped.
   When we lowered the lower bound of the upper open interval
of the technical type data from $21 to $17, allowing larger
"tails," there was a uniform decrease in the percent  errors in the
"0-4.99%" range and an increase in the higher percent errors
across industries.  The quantile II method was the best this time.
   The quantile I method was affected most when Pareto
distributions were fitted to "large tails."  For example, when data
of the gas and oil industry were grouped according to the pilot
OES interval categories, the largest absolute percent error was
over 400 percent for the quantile I method and just over 100
percent for the quantile II and for the maximum I methods.  Most
of these occupations have their truncated means fall in the
bounded interval preceding the upper open interval and could
not have the Max II estimates computed.
IV.  CONCLUSIONS
   When data are grouped such that there are no suitable "tails" to
the Pareto distribution, such as when the SIC/occupation wage
data were grouped according to the OES pilot interval categories,
errors of the overall mean and of the upper open interval were
large.  In particular, the maximum likelihood and quantile
methods could lead to gross errors.  Furthermore, these estimates
could not be computed when the upper open interval was the
lone interval category.  In such cases, the Winsorized estimate
may be the best (although technically, all that can be said is that
the mean is ³

-
U r( )1 ).  In our research data, while the other

estimates could have absolute percent errors in the hundreds, the
highest error for the Winsorized estimate was just over 50
percent with the pilot OES interval categories.
   When the objective is to compute an overall mean, then all
estimators produce large errors if there are "large" (10% or
more) tails, and all estimators perform satisfactorily if there are
"small" (less than 10%) tails.  When "tails" are large, the Pareto
distribution is not suitable for estimation purposes.  When "tails"
are small, the overall error is not affected much by large errors in
the small "tails."  This was the case when the wage data were
grouped according to occupational types:  professional,
technical, or clerical.  Given the nature of the occupational data
by industry and the OES's objective of computing an overall
occupational wage for each industry, the Winsorized estimator
was the one recommended with the modified interval categories.
   For the upper open interval, the Winsorized estimate is biased
downward.  Depending on the lower limit of the upper open
interval, this bias could be large or small.  The advantage of this
method is that it is simple and the direction of its bias is known.
For "small-tailed" distributions, the quantile II method performed
well most of the time.  However, when it did not perform well, it
had much larger errors than the maximum likelihood method.
Although the maximum II estimator is not always the best over
the occupational types, it is consistently one of the best.  This
estimator is recommended because it is more robust than either
the quantile I or the quantile II method.  The Winsorized
estimator does not perform well for upper open interval
estimation in "small-tailed" distributions.
V.  FUTURE RESEARCH
   Variance estimators for the mean, using the Pareto tail with the
modified maximum likelihood estimator for the parameter, will
be derived and evaluated in the next study.  Also, in this study it
had been planned to fit theoretical distributions (mixture
distributions) to the occupational  wage data.  Unfortunately the

data were too thin to accomplish this.  We hope a larger
appropriate data set will be available for future research.
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