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1. Introduction 
The office of Employment and Unemployment Statistics 

of the Bureau of Labor Statistics (BLS) frequently 
conducts quick response establishment surveys. These 
surveys are ~ i a l  one time surveys mandated by the 
Congress. Quick restxmse surveys are normally National 
in scope, with a sample size of 7,500 to 10,000 
establishments. Stratification for these surveys is by 
industry and size class. Quick response surveys are 
designed to measure characteristics such as the number of 
employees providing child care facilities, the number of 
employees having a drug testing program, and the number 
of employers who have job openings for specific 
occupations. 

The characteristics estimated by quick response surveys 
are, in may cases, rare. Because of its ease of use the 
random group estimator is commonly employed. It is felt, 
from years of empirical experience, that for rare 

characteristics ( p < 0 . 0 5 )  the random group variance 
estimator overestimates the variance especially when the 
relative standard error of the estimate is large. The result 
of limiting a characteristic to one or two groups is a p- 
value which is high in these random groups and zero in 
the remaining random groups. In order to determine if the 
random group variance estimator is overestimating the 
variance, we decided to compare the random group 
variance estimator with the standard stratified variance 
estimator. This paper reviews the research done to 
compare these two variance estimators. 

Section 2 details the theoretical research; Section 3 
provides a description of the data and statistics used for 
our empirical investigation; Section 4 gives the empirical 
results, and Section 5 gives our conclusions and future 
research plans. 

2. Theoretical Research 
In this section we present a theoretical background for 

our investigation of the random group variance estimator 
and the standard stratified variance estimator. We will 
assume the following stratified sampling setup. Let there 

be L strata each indexed by h such that h = l  ..... L. 
Within each strata let the population values be indexed as 

L 

X~ for i = l  ..... N h . We will let N = ~ N  h denote the 
h=l 

total population size across all strata. Within each strata 
let a simple random sample with replacement (SRSWR) 
be selected, where the sample units are arranged by 

random groups k = 1 ..... K with m h units falling in the 

k - t h  random group in stratum h. Notice that for 
convenience we are assuming that the same number of 
sample units are allocated to each random group within a 
given strata. We also assume that the sample units are 

allocated to the groups at random. We are interested in 

estimating the total T by the estimator "I" as follows, 

t. x =, t. ,¢, 

h=l k=l iffil hffil i l l  

where w h =n~tNh is the sampling weight. We are 

interested in estimating the variance of "i" by the method of 
random groups, and also by the usual stratified variance 
estimator. In order to define these two estimators with a 
common notation, it is convenient to define 

(2) a ~  = w~x~. 

In the case of simple random sampling without 

replacement (SRSWOR) we can define d~. = ~/1- fh whx~ 

where fh = N-htnh is the sampling fraction. The random 

group variance estimator VRG , and the usual stratified 

variance estimator Vs, can be written as 

K 

(3) vR~=(K-1)- 'K~_~(a+,÷-d÷.+)  2 
k=l 

L K ma 

= E ( , , , -  1) ' , , .E E(d - d..) 
h=! k=l  i=l 

where n h =Km h , and 

L m~ K 

(4) d+,+ = E Z d u /  d+.+ = K - ' Z d + k  + 
h=l i=1 k=l  

K m k 

k=l i=1 

We are interested in the joint behavior of the two 
variance estimators. We begin by defining a few 
population values. Let 

N~ 

i=l 

tv k 

- N ; ' E  
i=1 

Nlt 

i=l 

Notice that flh is the population kurtosis within stratum h 

Under the SRSWR sampling scheme, each dh~ is 

distributed independently with mean whX h , variance 

%crh2 2 , and kurtosis flh • In addition, the d ~  are 
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identically distributed within each stratum. 
SRSWR sampling scheme it follows that 

Under the 

L 

(6) V{'I'} ~ 2 2 
--- n h W h O "  h 

h=l 

We begin by presenting Result 1, which gives 
expressions for the means, as well as variances and 
covariances for the two variance estimators. 

R e s u l t  1 .  Under SRSWR, 

E{vs,} = E{vRG} = V{rF} 

L [ 2,] 
Vl:v~,} Y__, " "  = nhWhCrh (~h -- 3) + 

h=l n h - 1 

n h W h l : ~ h ( [ ~  h 3 ) + 2 ( K  1) -1 _ _ n h w h l ~  h 

h=l h=l 

C{v~, ,v .~ } = V{v~,} 

L 

Corr{vs,,V~c ] : h~nhw~a:[ (~h-3)+2n'(nh-1)-~ 

y n, w, c r ~ ( ~ , - 3 ) + 2 ( K - 1 )  n, whcr h 
ll,,1 

Proof. See Appendix. 

The expressions for the means and variances can be 
found in other sources such as Wolter, but the result on 
covariance and correlation between the two estimators 
appears to be new. It is interesting to note that the 
covariance between the two estimators is the same as the 

variance of v,, . This fact will be exploited in Result 2 

below. The correlation expression of Result 1 has some 
interesting interpretations. We begin by presenting a 
Table below which gives kurtosis values for three 
distributions. 

Table 1. Kurtosis Values for Various Distributions 
~Volter, 1985) ..... 

Distribution Kurtosis 13 Parameter 

Normal 3 

Bernoulli 

Poisson 

3 +[1-6p(1-p)] 
p(1-p) 

3+/1. -1 

p: Success 

)~:Expected 
Value 

For a normally distributed population, the kurtosis is 3 
which causes the first term in both the numerator and 
denominator of the correlation expression to disappear. In 
this case if the sample size is large then the correlation 
will be small and approach zero asymptotically. The 

situation is slightly different with the other two 
distributions. For both the Bernoulli and Poisson 
distributions the first term does not disappear from the 
numerator and denominator. In fact, if the populations are 
rare (p close to 0 for the Bernoulli, and /q. close to zero 
for the Poisson) then the kurtosis is large and the first 
term in both the numerator and denominator can dominate 
the correlation expression which causes it to approach 1. 
Therefore, the two variance estimators should be more 
highly correlated when the populations are rare. 

In the next result we express the random group variance 
estimator in terms of the usual stratified variance estimator 
plus an error. 

Result  2. Under SRSWR, we can write 

V RG - -  V St -t" error 

where 

E{error} = O, C{vst ,error  } : 0 

/ L 12 2 2 V{error} = 2 ( K -  1) -1 ~nhWhCr h 
h=l 

L 

__2 Znh2Wh4 4(nh_l)-lo.  h 
h=l 

Proof. We can write e r r o r = v R a - V s t ,  and Result 2 

follows from Result 1. 

Result 2 can be thought of as a regress ion like result. It 
says that if we were to regress the random group estimator 
on the usual stratified variance estimator that we would 
get an intercept of 0 and slope coefficient of 1. In addition 
the regression error is heteroscedastic, with a variance 
which increases with the variance of the estimated total. 

In the next result we examine the approximate 
expectation of the ratio of the two variance estimators. 

Result 3. If we approximate the ratio of variance 
estimates as 

VSt 

(~.~ - vttl)(v,,- v t t ~ ) + ~ ( ~ , , -  v{~) ~ v~{t} 
+remainder .  

Then the expectation of the approximation, ignoring the 

remainder, is E I v R G I = I  
LVs, J 

Proof. The result follows from applying Result 1. 

The interesting thing about this result is the expectation 
of the second order terms in the approximation is zero. In 
Result 4 below, we examine the approximate variance of 
the ratio of the variances. 
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Result 4. If we approximate the ratio of variance 
estimates as 

~=='+, ,, v m '" "('=-vc*~)-v~(~"-vc~) 
+remainder  

Then the variance of the approximation, ignoring the 
remainder, is 

L 

2 2 Z n ~ w : c r : ( n ' - l ) - '  vI .ol= , . ,  

[Vs, J K - 1  

Proof. The result follows by applying Result 1. 

We will have more to say about Result 4 after we 
present Result 5. In Result 5 below, we present some 
asymptotic theory about the behavior of the variance ratio. 

Result 5. Assume an infinite sequence of sample 
designs and populations such that, 

d+j,+ - K- 'T 

~K-'V{t} 
L > N(O,1), and Vs, - V{q'} P )0. 

Then, va-----q-a " > F x-' 
Vs, 

where F x-' denotes an F random variable with numerator 
degrees-of-freedom K - 1  and denominator degrees-of- 
freedom .o.  
Proof. Let 

g k  -- 
d+j,+ - K- 'T 

4K-'Vit} 
K 

then VRG = v { ' r } ( K - 1 ) - ' ~ ( R k - - R )  2. 
k=l 

By the first assumption, 

K 2 

k=l 

so the result follows from the second assumption by 
Slutsky's theorem. 

The assumptions of Result 5 are mild, and should be 
satisfied by most designs used in practice. Result 5 
implies that under the asymptotic theory, 

(7) e{vRo < Vs, } ---) P{ 2 - Zx-1 < K -  1}. 

In Table 2 below, we give some of the probability values 
for various numbers of random groups. 

Table 2. Asymptotic Values for F_,q. ~7) 

Random Groups p{vR ° < Vst} 

0.5940 
6 0 . 5 8 4 1  

7 0.5768 
8 0.5711 
9 0.5665 
10 0.5627 
11 0.5595 
12 0.5567 
13 0.5543 

Asymptotically, we would expect the random group 
variance estimator to be less than the usual stratified 
variance estimator on average, despite the fact that they 
are both unbiased. Result 5 also implies that 

(8) v ~ -  Us, - v { ~ } ( ~  -~- ~), 

where N stands f o r  approximately  distr ibuted a s .  That 

is, if we examine the difference between the two variance 
estimator, then .asymptotically the distribution of the 
difference has a skewed distribution which is a multiple of 
a translated F-distribution. This relates back to Result 2 
which gave expressions for the e r r o r ,  Result 5 tells us 
about the asymptotic behavior of the distribution of error. 

Finally, notice that an F random variable has mean and 
variance given by 

(9) E{F. x-'} = 1 V{F2- '}  = 2(K-1) - '  
We can compare these values to those of Result 3 and 
Result 4. Note that our approximate expectation and the 
mean of the asymptotic distribution are both l, but 
expressions for the variances differ slightly. In particular, 
the approximate variance is smaller than that of the 
variance of the asymptotic distribution. Later we will 
examine which variance expression holds for our 
empirical data, and we will say something about how well 
the asymptotic theory works with rare populations. 

3. ETJO Data 
At the time we began this investigation, we had recently 

completed a special survey, a pilot study on employee 
Tumover and Job Openings (ETJO). The ETJO survey 
was conducted in response to a Congressional mandate to 
the Department of Labor to study the feasibility of 
measuring national labor shortage data and the associated 
c o s t . .  

The ETJO survey employed a stratified (8 industries x 3 
employment size classes) probability sampling plan. 
These 24 strata are called ETJO sampling cells. Because 
occupations vary by industry, a separate questionnaire was 
required for each industry. Therefore, the scope of the 
survey was limited to eight industries. The sample 
consisted of approximately 3300 units selected from a 
universe of about 1.5 million establishments. The universe 
covered private establishments with one or more 
employees during the first quarter of 1989 in the 50 States 
and the District of Columbia. Prior to sample selection, 
the total national frame was sorted within each ETJO cell 
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by 4-digit SIC/ Employment/ and State. This sort 
permitted further stratification in the sample selection 
process. Once this sort was completed, a random 
systematic start sample was selected within each ETJO 
sampling cell. The total sample was divided into three 
monthly panels. Each panel was surveyed 1 month, out of 
sample 2 months, and then back in the survey 1 month (ie. 
1 -  2 - 1 ) .  Random Group assignments were made by 
systematic assignment after a random start. The reference 
data collection period for the survey was November 1990 
to April 1991. 

The data were collected by mail. There was one follow 
up mailing, after which nonrespondents were contacted 
using a Computer Assisted Telephone Interview (CATI) 
instntment. The overall usable response rate for the first 
and second collection periods, respectively, was 70 and 75 
percent. Five data items were collected by detailed 
occupation: job separations, new hires, average wage of 
new hires, job openings, and the duration of job openings. 

Estimates were produced for each of the five 
characteristics by occupation for each of the eight 
industries surveyed. Additionally, estimates were 
produced by occupation at the National level, or by 
ignoring industry and grouping by occupation only. The 
ETJO survey variance estimates were produced using a 
Random Group Variance (RGV) estimator. This estimator 
was calculated as follows 

K 2 

VRa(f(~)= ( K - 1 )  I K ~ ( X ,  - X.)  
1:=1 

where X~ is the estimate for characteristic X in industry j 

for occupation d .  In addition K refers to the number of 

random groups, and X~, is the estimate based upon the k-th 

6 3 

random group where, X k = E E Z Wi~u, NXo~k ' and 
/=1 c=l i 

K 

2". = K - I ~  X, where 1 is the month, c is the size 
k=l  

class, i is the establishment, and NX00~k = the number 

reported for characteristic X by unit i for occupation d. 

1FWo, u,~/1 fo.,(  3 ) 

where FW,~j, is the sampling weight, which is the inverse 

of the probability of selection adjusted for nonresponse 

and changes in the frame, and ( 1 - f j , ~ ) i s  the finite 

population correction factor. Notice that a divisor of 6 
was used to obtain an average over six months of data, and 
multiplied by (3/1000) to produce an estimate of monthly 
total in units of one thousand. 

The standard stratified variance estimator was computed 
as follows 

( ) (1- x.) Vs'(2~) = f nj,'- 1 
¢: i  i=l 

where hi, is the number of establishments in industry j 

and employment size class c ,  and 

) x,.:.;, x,,. . x,,. : % - - g  
i=1 

In our investigation we decided to use three of the 
characteristics from the survey. These characteristics were 
Separations, Job Openings, and New Hires. These 
statistics were produced for each SIC/Occupation group. 
Additionally, these statistics were produced using 6, 9, 
and 12 random groups. This gave us a total of 81 sets of 
statistics to review, with each set containing a varying 
number of statistics according to the number of 
occupations in the industry. In addition, the computer 
package PC CARP was used to compute the standard 
stratified variance estimates. The statistics for each set 
were grouped by size to produce frequency distributions. 
Since most of these differences were small, we decided to 
use the interval from zero to three in units of 0.2. 

4. Empirical Results 
In this section we describe our empirical research using 

the ETJO survey data. 
We begin by presenting plots of variance ratios. The 

chart labelled "Theoretical vs. Empirical Distribution" was 
constructed using Separations data for 6, 9, and 12 
random groups. This chart shows three histograms of 
ratios of variance estimates of total separations for the 8 
SICs and various occupations. The variance ratios were 

defined to be v Ra/v,, . The histograms were normalized 

by the bin width and total number of observations, so that 
they are an estimate of the density of the variance ratio. 
We also plotted the density for the associated F random 
variable. This is the density of the asymptotic distribution 
implied by Result 5. It is interesting to note that the 
empirical histogram density estimator appears to be shifted 
more to the right than the theoretical density estimator. 
This indicates that the random group estimator tends to be 
larger relative to the standard stratified estimator than the 
theory would predict. Theoretically we would expect that 
both variance estimators would be unbiased, that the 
random group variance estimator would be more variable, 
and that, on average, the random group variance estimator 
would be smaller than the standard stratified variance 
estimator. In fact, the theory says that 

P{vR~ < Vs, } = P{Z 2 < 8 ] -  0.567 . 

The empirical histogram estimator shows that for 9 
random groups 42 % of the distribution falls to the left of 
1.0 which indicates that the distribution has moved 
substantially to the right. 

The theoretical results can be made to more closely 
match the empirical results by allowing the noncentrality 
parameters to be greater than zero. In general, the 

749 



noncentrality parameters cause the distributions to move 
to the right, and pack more tightly around 1.0. 

5. Conclusions 
Our hypothesis at the beginning of this paper was that 

the random group variance estimator tends to overestimate 
the variance when the value to be estimated is a rare 
characteristic in the surveyed population. We have found 
empirical evidence that the random group variance 
estimator tends to overestimate the variance relative to the 
standard stratified variance estimator. We speculated that 
this could be caused by the sorting and systematic 
selection of sample units, as well as the systematic 
allotment of random group assignments. We performed 
small scale simulations using the sample as the sampling 
frame. Whether we used systematic sampling or random 
sampling in these simulations we still observed the 
random group variance estimator overestimating the 
variance relative to the standard stratified variance 
estimator. 

Theoretical results show that for a normal population 
E(VRG ) = E(Vst ). Our research also specified an F 
distribution for the ratio of these two estimators. This F 
distribution, for a normal population, shows that P(VRG 
< VSt) > 1/2. It was also shown that for a population with 
large kurtosis, which can be caused by rare characteristics, 
that this distribution can change shape rather dramatically. 
The theoretical section showed that for a normal 
population the kurtosis has no affect on the correlation 
between these two variance estimators. However, as the 
population begins to depart from normality (or as the 
kurtosis becomes larger than 3) the kurtosis does influence 
the correlation between the estimators. When the kurtosis 
of the population is large this figure becomes the 
dominant one in the correlation equation and the 
correlation between these variance estimators begins to 
approach 1. 

Our empirical findings revealed several interesting 
things. First, as expected, when the number of random 
groups is increased the variance of the ratio VRG/VSt 
decreases. This reduction in the variance of the ratio 
causes a larger percentage of the distribution to be close to 
1. This result is as described by previously established 
theory. 

Second, as the number of random groups is increased, it 
appears that the portion of the distribution most heavily 
affected was those observations where VRG/VSt < 1. That 
is, the observations less than 1 move towards 1 more 
rapidly than those observations greater than 1 as the 
number of random groups is increased. In cases where the 
characteristic to be measured is rare the random group 
variance estimator underestimates the variance less often 
than theory predicts. The observations where VRG/VSt > 1 
also move towards 1 as the number of random groups is 
increased. However, for the numbers of random groups 
tested this part of the distribution conforms more closely 
to the theoretical distributions than the part of the 
distribution less than 1. 

Third, the empirical results show that the random group 
variance estimator does tend to overestimate the variance, 

in cases where the characteristic to be measured is rare, 
more often than the theory would suggest. This 
overestimation tends to manifest itself by clustering 
around the point where the ratio of VRG/VSt = 1. As the 
number of random groups is increased, this clustering 
becomes more apparent. It is also apparent that most of 
these observations clustering around 1 are coming from 
the part of the distribution which theory suggests should 
be < 1. This means that in many cases, when estimating 
rare characteristics, the random group variance estimator 
is a better estimator than the theory would suggest for two 
reasons. First, in general practice we would rather have a 
conservative variance estimator than one that continually 
underestimates the variance. It appears that the random 
group variance estimator is conservative when the 
population characteristic to be estimated is rare. Secon~l, 
the estimated variance is approximately equal to the 'true' 
variance much more often than theory would suggest. 

Future research plans will include, but not be limited to, 
an investigation of this nature into the properties of the 
Jackknife variance estimator. 
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