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MAXIMIZING AND MINIMIZING OVERLAP OF ULTIMATE SAMPLING UNITS

Lawrence R. Ernst
Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington DC 20212

1. INTRODUCTION

There exists afairly extensive set of literature, beginning with Keyfitz (1951), on the problem
of maximizing the overlap of sampling units retained in sample when redesigning a survey for
which the units are selected with probability proportional to size. Procedures for maximizing
overlap do not alter the unconditional probability of selection for a unit in the new sample, but
condition its probability of selection on the initial sample in such amanner that it is generally
greater than its unconditional probability when the unit wasin the initial sample and less
otherwise. The more recent approaches to the overlap problem which employ linear
programming, such as Causey, Cox and Ernst (1985) and Ernst (1986), are also applicable to
the analogous problem of minimizing the overlap of sampling units.

Most of the previous work in this area has focused on the overlap of primary sampling units
(PSUs) in amultistage stratified design, with each stratum in the new design representing a
separate overlap problem. Typicaly, the motivation for maximizing the overlap of PSUsisto
reduce additional costs, such as the training of a new interviewer for a household survey,
incurred with each change of PSU. Generaly, the number of sample PSUs per stratum is
quite small, commonly either one or two, and most of the overlap procedures have the
drawback that they are usable only in such situations. In fact, the earlier procedures that do
not use linear programming, such as Keyfitz (1951), are not applicable at all to other than one
PSU per stratum designs. The linear programming procedures are at least in theory applicable
to very general designs, but the size of the linear programming problem commonly increases
so rapidly as the number of sample PSUs per stratum increases, that these procedures
generaly cannot be operationally used for designs with other than avery small number of
sample PSUs per stratum.

Overlap procedures have also been used at the ultimate sampling unit (USU) level. For
example, Brick, Morganstein and Wolter (1987) describe an application of overlap
maximization to selection of post offices for a survey conducted for the Postal Service. The
Bureau of Labor Statistics (BLS) uses such a procedure to select establishments from strata
for their Occupational Compensation Survey Program (OCSP) (Gilliland 1984). In both
applications the number of units selected per stratum istoo large for linear programming to be



aviable option. Brick, Morganstein and Wolter (1987) employ a Poisson sampling type of
procedure to perform the overlap. Their procedure is quite ssimple and optimal. However, as
is characteristic of Poisson sampling, the procedure does not guarantee a fixed sample size.
The procedure used in OCSP is also ssimple and does guarantee a fixed sample size.

However, the procedure is not optimal and is only applicable when within stratum sampling is
done with equal probability. Furthermore, in certain circumstances the method produces
conditional probabilities greater than 1, with no provision for adjusting for this Situation in an
unbiased way, that is without altering the new unconditional selection probabilities.

In this paper we present a new overlap procedure with the following properties. Itis
computationally efficient and hence is usable even when alarge number of units are to be
selected per stratum. It guarantees a fixed sample size. It is applicable whether the unitsin a
stratum are selected with equal or unequal probabilities. The procedure is unbiased in all
Situations, that is the unconditional selection probabilities for all unitsin the new design are
preserved. It can be used whether it is desired to maximize overlap or minimize overlap. It
can even be used to increase overlap for some units in a stratum, decrease overlap for other
units, and to treat athird set of unitsin a neutral fashion. On the other hand, the procedureis
not optimal.

The procedure is presented in Section 2. Actually two procedures are presented. The first
procedure, which we call the combined initial strata (CIS) procedure, computes the
conditional selection probabilities for all unitsin astratum in the new design together. The
second procedure, the separate initial strata (SIS) procedure, is a simple modification of (CIS)
in which the units in each new design stratum are partitioned into substrata, each consisting of
al units from the same initial design stratum, with the conditional probabilities computed
separately for each substratum. Neither procedure always produces a superior overlap to the
other, although there are advantages to each which are discussed later, in Section 3. In
addition, in Section 2 we demonstrate that when equal probability sampling isused in each
stratum, and overlap maximization is desired, then SIS reduces to the current overlap
procedure used for selecting establishments in OCSP with two modifications, one which in al
cases either increases the expected overlap or leaves it unchanged, while the other avoids the
problem of producing conditional probabilities greater than 1.

In Section 3 we present several examples to illustrate various aspects of the two procedures.
We aso further discuss, very briefly, some of the overlap procedures mentioned already and
some additional overlap procedures. Finaly, in the Appendix we provide proofs of the results
of Section 2.

2. THE CIS AND SIS PROCEDURES

We begin with two, single stage stratified designs, with the sample units in each stratum
selected with probability proportional to size. The designs will be referred to as the initia
design and the new design. The universe of units for the two designs must have some,



although not necessarily al, unitsin common. The sample unitsin the initial design have
previously been chosen and we wish to select the sample units for each stratum in the new
design with probabilities conditional on the set of sample unitsin theinitial design. Let A
denote a stratum of noncertainty unitsin the new design, and let B, B,, B; denote the subsets
of A consisting of units with which we wish to maximize overlap, minimize overlap, and treat
in aneutral fashion, respectively, with respect to the initial sample. Includein B3 any units
that were certainty unitsin theinitial design. Alsoincludein B, any units that were not in the
universe of units for the initial design, that is "birth units." For each unit in B; we smply set
its probability of selection in the new design conditional on the initial sample to be equd to its
unconditional new selection probability. For the units, denoted A, ..., Ay, in B, E B, we
proceed to develop conditiona selection probabilities for the new design as follows.

Let pGp;, i =1,...,M, denote theinitial and new selection probabilities for A, respectively.
Let a denote the random subset of A consisting of al units that were sample unitsin the initial
design. Let S={1,..., M}, and let s denote the random subset of S consisting of those
integersi for which we prefer to select A in the new sample given a, that is those i for which
Al (B, Ca)E(B,~a). Letp,i=1,...,M, denotethe probability thati | s, that is

p = pdif A TB,,and p =1- ptif A T B,. Notethat for each a there exists a
corresponding s. Let C denote the set of al such s.

We seek a set of probabilities p;g, i =1,..., M, for selecting A in the new sample conditional
on the random set s, satisfying the following conditions:

ap,>ap; ifAEsts, (2.1)
il's ils

é pis<épi if E1 st S, (2.2)
il s~s il S~s

aris=an. (2.3)
iTs iTs

E(Pis) =p;, iTS, (2.4)

where the expectation in (2.4) isover al sl C. Conditions (2.1), (2.2) arise from the goal of
selecting as many units A as possible in the new sample for which i T s . (2.3) isrequired

since afixed number of unitsisto be selected for the new sample from I. Findly (2.4) is
simply arestatement of the requirement that the overlap procedure must preserve the
unconditional selection probabilitiesin the new design. Note that (2.2) is a redundant
condition since it immediately follows from (2.1) and (2.3).



In Section 2.1 the basic CIS procedure is presented without the modifications necessary to
insure that no conditional probabilities are greater than 1. (It is assumed, however, evenin
this subsection that al conditional probabilities are nonnegative.) In Section 2.2 these
modifications are presented. In Section 2.3 it is explained how CIS can be easily altered to
obtain SIS. Findly, in Section 2.4 the specia case of SIS for equal probability sampling
within a stratum is presented.

2.1 The Basic CIS Procedure

To meet objectives (2.1-2.4) we proceed as follows. For eachi | S we associate a positive
number a. As part of the process of obtaining p;; we add g to p; only for thosei | s. In
order to satisfy (2.3) we compensate for this increase by subtracting an amount bp; from
eachi | S where, asindicated by the notation, b dependson s, but not i. Thus p;, takes the
form

Pis =Pi *1 isa; - byp;, (2.9)
where | =1ifil s and |  =0ifils.

To determine appropriate values for a and b we first observe that if (2.4) holds, then by
(2.5),

E(pis) =pi + pia - E(bs)pi =P,
and consequently, abbreviating d = E(b;), we would then have

=aPi 7, (2.6)
Pi

a;

We seek the largest possible value of d in order to obtain alarge value for (2.5) when i | s.
Now by (2.5), in order for p;, to always be nonnegative we must have b, £1 for al sl C,

which combined with requirements (2.3), (2.5), (2.6) yields
da P épiﬁéai'bs_é p; =0. (2.7)

Now the largest possible d for which the left hand side of the inequality in (2.7) does not
exceed O for any sl Cis



However, the denominator of this last expression is not generally, readily computable.
Instead we compute, as will be explained shortly, an upper bound, denoted u., for the
denominator and let

épi
d:iTS

Uc
We then combine this relation and (2.6) to obtain

piépj
a=—W15 s, (2.8)

I Pilc ,

Finally, we obtain b from the equality relationship in (2.7) and (2.8), that is
Pi

B

Ue

a
—ils

bs (2.9)

It is established in the Appendix that with the specified values for g and b, (2.5) does satisfy
(2.1-2.4).

To compute uc, the remaining step in the procedure, proceed asfollows. Let I, t=1,...,N,
denote the initial stratathat intersect A, and let N, denote the number of unitsin I,. Let ny
denote the sample sizefor |; andlet n, = Ny - n;. Fort=1...,N, j=12, let My denote
the number of elementsin I, C B; and m¢ =min{n;, M}. Let st beasubset of Sof size

N 2

A & mg such that st consists of mg elementsi for each t,j, with these elements

t=1j=1

corresponding to m¢ units A in Iy C B; with the largest valuesof p; / . Then let

=48 2. (2.10)
it s¢P



Clearly uc 3 rgaxé % The reason that equality may not hold isthat it is possible that
iTs M
sti C. For example, if m¢ =2 for somet, and systematic sampling was used to select the

unitsin the initial sample, then the two unitsin 1, C B; with the largest values of p; / p; might
never bein theinitial sample together, in which case st C.

For use in the next subsection, welet D, =C C{s: il s}, i1 S, and analogous to (2.10),

proceed to explain how to compute alower bound I, on miné Pi , from which it would
' SD 7. P
tjlsF]

follow that

Ip, /uc £bg ifilslcC. (2.12)

Fort=1,...,N,let m=max{ M - n», 0, mE=max{ M, - n;,0}. Foril S, j=1.2, let

mg = max{mgs 3} if AT 1, CB;, and mg = mgt otherwise. Thenforil S, let sg be asubset
N 2

of Sof size § A mg such that for each t,j for which A | I C B; there are mgt elementsk in
t=1j=1

@, corresponding to mgt units A in Iy C B; with the smallest values of p, / py ; while for

thet,j for which AT I; CB;, wehaveil st in additionto mg- 1 elementsk corresponding

tounits A in I C B; ~{A} withthesmallest valuesof p, / p,. Then let

Ip = & -X. (2.12)

2.2 Modification of CIS to Avoid Conditional Probabilities Greater than 1

The procedure described above requires modification if p; +4a, - bgp; >1 for any i, s, with
i s, sincethen p;; >1by (2.5). To avoid obtaining a conditional probability above 1 we

proceed to define p;g S=S, i=C,and ;; =p;.
ay fori by are obtained by substituting a;,, by, sCS,, S,, Cy, p§ for

a, by, s S C,p;in(28) and(2.9). Thendefine D, =C, C{s il ¢ and let:

bg =—%, il S, (2.13)



k-1
1-p;- (ajj - bEPPIr;

j=1 A
L= , | S, , 2.14
e aj - bgP & o ( )

where the summation in (2.14) isunderstood to be O for k =1,

ro =min{min{r,: il 3,13, (2.15)
Scar = S it rg =nd (2.16)
Cis1 ={SC Sy s1 C}, (2.17)
P&y =@- P, i1 Sy (2.18)

Note that in defining uc , Ip . replace S, B; inthedefinitionsof uc, Ip in Section 2.1 by
S Bj € &, respectively.

Finaly, let
k¢=min{k: r, =1lor S.,, =4, (2.19)
k =max{k: il S, KEk¢, ils, (2.20)
K
Pis =Pi ta (I isai - byP§)- (2.21)
k=1

The general idea of thisiterative procedure is that the definitions of r, , r, together with the
relation

h¢ £by foril sC S, (2.22)

(which follows from (2.11), (2.13)) keep the p; defined in (2.21) from getting above 1, while
(2.18) isused toinsure that p;; 2 0. More details are provided in the Appendix whereit is
proventhat 0 £p;, £1 for al i,s and that (2.1)-(2.4) hold.

Also note that if r; =1 then (2.21) reduces to (2.5).

2.3 The SIS Procedure



SISisan aternative to the CIS procedure, defined in the previous two subsections, for which
the conditional probabilities of selection in the new design for unitsin I, C (B E B,)are
computed separately for each t, instead of being computed for al unitsin B, E B, together.
That is, the conditional probabilities are computed using (2.5-2.21) but with SC{i: A T 1}
and sC{i: A T I} replacing Sand s, respectively. Neither CIS nor SIS dwaysyields alarger
overlap than the other. However, each approach has a specific advantage over the other that
will be discussed and illustrated in the example in Section 3.1.

2.4 SIS with Equal Probability Sampling

For overlap maximization, there is one situation where SIS provides a particularly simple set
of conditional probabilities, that is the case when equal probability sampling is used within
each initial and new stratum. We et m denote the sample size for A in the new design; m
denote the number of elementsin swhich correspond to elementsin I;; drop the subscript " 1"
from n,;, M, defined in Section 2.2; and replace the subscript "1" in r; with the subscript t to
denote dependence on |,. Then, as proven in the Appendix, we have that k¢=1, and for
eachi| S forwhich AT I,

ma& r(M-m)o

= = ifil s,
Pis= min{n,, M} @ s
(2.23)
M M Qg
M & min{n,, M} @ ’
where
= mini (M- m) min{ny, My} g (2.24)

i MM - max{M; - Ny +n, 1)’ %

The analogous formulas for the equal probability case for CIS are not presented, since we do
not always have that k¢=1 for CIS, and consequently CIS does not produce as ssmple a
formulation as SIS in this case.

The conditional selection probabilities defined by (2.23) and (2.24) differ from those currently
used in OCSP in two ways. The current OCSP overlap procedure uses n; instead of

mir{ n;, M} inthe two placesit appearsin (2.23). When these two values differ,

min{ n,, M} produces a higher conditional expected overlap. In addition, the current OCSP
procedure always sets r; =1, which can result in conditional probabilities greater than 1, a
problem avoided by (2.24).



OCSP sample selection aso involves some birth units, that is establishments that were not in
existence at the time the initial sample was chosen. The current OCSP overlap procedure
samples birth units in the same way that we would, by considering them to be elements of B, .

3. EXAMPLES

In this section we consider three examples. Thefirst exampleis an overlap maximization
problem, in which the modifications of Section 2.2 to avoid conditional probabilities greater
than 1 are not needed. The second example is an overlap minimization problem using the
same data as the first example, which aso does not require the modifications of Section 2.2.
The third example is an overlap maximization problem in which the modifications to avoid
conditiona probabilities greater than 1 are required.

3.1 Example 1

In this example, using the notation of Section2, M =5, N =2, with I, C A ={A;, A,, A;},
1, CA={A,, A:}. Wewishto maximize overlap with each of these units, that is B; = A and
p, = pdforali. Oneunit had been selected from each of 1, 1, for theinitiad sample and one

unit is to be selected from A for the new sample. Theinitial and new selection probabilities
for each unit are givenin Table 1.

Table 1. Selection Probabilities for Unitsin Example 1.

1 2 3 7 5
B 1 2 2 3 1
P, 1 26 18 36 1
a =h¢ 4 52 36 48 4
fy 25 1.923 2778 2.083 25
Picag 016 042 389 538 016
o 415 54 374 46, 383
by 769 1 692 1 833
5 2.659 2.643 3.29 6.4 3
Paa 031 08 429 46 0
Pic3 064 166 A75 23 064
o 031 08 429 36 1

i3

We first proceed to compute p;¢ for CIS for each i when a ={ A5, As} and hence s={3, 4} .
Wefirst compute u. . Wehave M1 =3, My; =2, M5 = My =0,y =ny; =1, and
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consequently mg; =mg; =1, mg, =g, =0. Therefore, s¢={2,4} and then u; =2.5 by
(2.10). Then, from (2.8) and (2.9) we obtain bz 4 =.84, and the set of g 'sin Table1l. To
compute b¢, observe that since the sum of the p, ‘s islessthan 1 for the first 3 units and for
the last 2 units, then n, 3 My, t=1,2,. Consequently, mgg=0 for al t, j. Therefore,
s@={i} fordli,andhence ¢ =a by (2.8), (2.13). Wethen obtaintheset of r;;'sin Table
1from (2.14). Since r; =1 by (2.15), the set of pj;3 4 's in Table 1 can be computed from

(2.5).

Note that for this example, the probability of overlap conditional on s={3,4} using CISis
P334 * P34 =926, in comparison with an overlap probability of p; +p, =.54 if the new
units are selected independently of the initial sample units.

For the same example the conditional probabilities were also computed for SIS. The values of
the corresponding variables, which are indicated by *'s to distinguish them from the variables

in CIS, are given in the four rows following the pj;3 4 row. We also have that Upe =13,

Upe =12 ; by 4 =692 and by 44 =1, where the first subscript in each of these variables

indicates theinitial stratum number. The conditional probability of overlap for SISis .889,
which isless than that for CIS.

For other pairs SIS produces a higher overlap than CIS for this example. To illustrate, if
s={3,5} then the conditional probability of overlapis.827 for CIS and .829 for SIS.
However, for each of the five singleton sets we have a higher overlap probability for CIS.
Thisisillustrated for the case s={3 by the last two rowsin Table 1, since pgg =.475 and

P33 =-429. A key reason for the higher value of py g isthat piig = p; > pj(z foril {4,5.

The equality part of this relationship occurs because as aresult of SIS computing the
conditional probabilities separately for each 1, it does not take into account that 31 sinthe
computation of the conditional probabilities for unitsin I,, a shortcoming not shared by CIS.

For this example, the unconditiona probability of overlap, that is the expected value of the
conditional overlap probability over al initial samples, is higher for CIS (.473) than for SIS
(.416). Independent selection of the new units in comparison yields an unconditional overlap
probability of .216.

These two procedures do not require that the initial sample unitsin 1, and 1, be selected
independently of each other. (Infact, as explained in Ernst (1986), previous use of an overlap
procedure generally destroys stratum to stratum independence.) However, if this
independence assumption does hold then the unconditional probability of overlap can be
computed for any overlap procedure. For this example, the ssmple procedure due to Perkins
(2970), which islimited to one unit per stratum designs, has an overlap probability of .443.
This is the procedure used by the Census Bureau in the 1970s in redesigning the household
surveys that they conduct, and which is still used by BLS for PSU selection for the Consumer
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Expenditure Survey. (Perkins procedure is a generaization of Keyfitz's procedure to the case
when the stratifications may be different in the initial and new designs.)

The optimal transportation problem (aform of linear programming) procedure of Causey,
Cox and Ernst (1985) has an overlap probability of .7. Thisisclearly optimal for this
example sinceit is precisely the probability that at least one of the unitsin A wasin theinitia
sample. This procedure can result in very large transportation problems, even for small
number of units per stratum, and this author is unaware of its use in sample selection for any
survey. A modified version of this procedure (Ernst and Ikeda 1994), which can result in
dramatically smaller transportation problems, also yields an overlap of .7, although it does not
always produce an optimal overlap. This procedure was used in PSU selection for the 1990s
redesign of the Census Bureau's Survey of Income and Program Participation. These last two
procedures, unlike the other procedures, require that the sample unitsin the initial sample
were selected independently from stratum to stratum. (The other procedures mentioned in
this section require this assumption only to be able to compute the overlap probability, while
these two procedures require it even to be able to meet the condition of preserving
unconditional selection probabilitiesin the new design.) A third linear programming
procedure (Ernst 1986), for use when this independence requirement is not met has been used
by the Census Bureau in the redesign of severa household surveysin the 1980s and 1990s. It
yields an overlap of .61 for this example.

Although CIS produces a higher unconditional probability of overlap than SIS for this
example, thisis not always the case. In fact, consider the same example with the only
modificationsthat p, = p$=1 and p; = p£=.03. Inthiscase, the expected overlap is.277

for CISand .297 for SIS. The reason that these changes reduce the expected overlap more
for CISthan SIS isthat they result in much larger valuesfor p; / p;, i =4,5. For CISthis

resultsin alarger value of u. and hence asmaller value of a; for i =1,2,3. However, for

SIS the change affects only the value of uy. , not u,. , and hence leaves a;, i=1,2,3,
unchanged. Thusit appears that SIS may yield a higher overlap when the values of p; / p;
vary widely acrossinitia strata

3.2 Example 2

The second example, presented in Table 2, only differs from the first in that we now wish to
minimize overlap with al unitsin A that werein theinitial sasmple, that is A= B,. Then

p =1- ptforali.Asin thefirst example, we first compute p;s for a ={ Ag, A4} , except we
now have s={1,2,5 To compute u:, we note that now mg = M; =0, t =1,2,

My, =3£n,, My, =2 £ ny,. Consequently, mg, =3, mg, =2, and hence s¢=S,

U, =1287. Wethen readily obtain by, ;5 =.425 and the set of & 'sin Table2. To compute
the h¢'s, we note that m@ = mgt =0, m@ =2, mgs =1, with theresulting s@'s, b¢'sand r;;"s
presented in Table 2. The pi;1 -5 's are then readily computable from (2.5) sincer; =1.
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For SIS the calculations are similar, with only the pi*{]qm 's presented in Table2. The

conditional overlap is.310 for CIS, .357 for SIS, and, asin Example 1, .540 for independent
selection.

Table 2. Selection Probabilities for Unitsin Example 2.
[

1 2 3 4 5
p; =1- pd 9 8 8 v 9
P i .26 18 .36 i
& .086 253 175 4 .086
s {1,3,5} {1,2,5} {1,3,5} {1,3,4} {1,3,5}
b¢ .348 425 .348 .661 .348
I 17.441 5.210 7.301 3.956 17.441
Pi{125 144 402 .103 207 144
pi*{ 125 125 354 .061 .296 164
3.3 Example 3

The assumptions of this example differ from those of the first in only one way. Two units are
now selected from A for the new design, doubling the values of the p;'s. The computations
for s={3,4}, which are presented for CIS only, proceed similarly to the first example with

Ug, Uc =5, a1 =lysq =84 andthe ay's, byy's, 1y's givenin Table 3. Now, however,
since r; =.456, we must use the recursive process (2.13)-(2.21). Wehave S, ={1,2,3,5,
and the p &' s, obtained from (2.18), given in Table 3. Then proceeding asin the first step,
with S,C,p; replaced by S,,C,,pj,, We obtain uc, =2.504, bz4, =.391, and the indicated
ai2's, Bg's, fip's. Sincer, =.553, the process continues, with S; ={1,3,5}, uc, =973,

bys 33 =45, and the other values corresponding to k =3 in Table 3. Now r3 =1, k¢=3, and

the process stops with the p,s's obtained from (2.21). The conditional expected overlap is
1.584 for CIS and 1.08 for independent selection.
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Table 3. Selection Probabilities for Unitsin Example 3

1 2 3 4 5
P 1 2 2 3 1
Pt =p; 2 52 36 72 2
a1 =g 8 1.04 72 96 8
b¢ 4 52 .36 48 4
ry 1.111 624 1.084 456 1.111
o .109 283 196 109
3o 303 394 273 303
b¢ 435 565 391 435
iy 1.846 553 1.893 1.846
P& .049 .088 .049
a3 .092 .083 .092
h¢ 5 45 5
i3 4.852 5.995 4.852
Piga 078 26 702 882 078

APPENDIX

Proof that (2.5) satisfies (2.1-2.4). To establish (2.1), we combine (2.8) and (2.9), obtaining

[} pl
a— y
o] il pi a o] 0
a (a; - bpy) =1 gaPi-apiz>0,
iM's Uc &is iis @
which we combine with (2.5) to conclude (2.1).
We obtain (2.3) smilarly, since
at e 5
Aai-abp; =" 'gapi-ap.:=0
ils  ils Uc &is iis @

(2.2) follows immediately from (2.1) and (2.3)

Finally, to establish (2.4), observe that by (2.8) and (2.9), we have

(A.1)

(A.2)
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P = E(bs)p;, (A.3)
which combined with (2.5) yields (2.4)

Proof that p;s defined by (2.21) satisfies O£ p;s £1. To establish that p; £1, where p;s isas
defined in (2.21), first let

k-1

flk:pl+é I’J(a”-blﬂ)ﬁ),kzl ..... k' +1, glk:alk-blgpﬁ’kzl ..... kl
i=1

We proceed to establish by induction on k that for k =1,...,k;, f, <1, p; >0, gy >0, and
rix >0 for jT S (and hence

r, >0 (A.4)

by (2.15)). We also show that fick, +1) £1. It will then follow from these relations and (2.21),
(2.22), that pis £ fiy 4y £1 foril s,and p;s £p; <1 foril s. Now for k =1 we have
fu =pi1 =P; <1. Toestablish that g;; >0 we observe that by (A.3),

piaip = E(bgy))P & = piE(bsl| il s)pg+-p)E(by|il s)pg,

and hence by (2.22), a; >E(by|il s)pg 2 bgpg. Finaly, for j I Swe have by (2.14) that
rp1=@-pj)/gj1>0.

To prove that if the indicated relations hold for k <k; then they hold for k +1, observe that
by (2.14),

fik+ny = fik TN < i Trlic =1, (A.5)

(where the inequality in (A.5) is strict by (2.20), (2.16)); p §x+1) >0 by (2.18) and fact that
re <1 for k <k¢ by (2.19); therelation g;+) >0 is established in the same manner as
Gir > 05 and 1y 4q) = (L= fikaa)) / Gjkany >0 FOr jT Syay- Findly f, 4 £1 followsfrom
(A.5), except "<" isreplaced by "£".
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To establish that p;s 2 O, first note that from (A.1) with a;,, by, Pi. s G S, Substituted for
aj, b, P;, s, it follows that

A (ay - byP§)® 0, k=1, ki, (A.6)
il sCsy

and that by £1 for al s,k by (2.9). We then combine these inequalities with (2.21), (2.18),
(2.15), (A.4) to conclude that

gi & gi kol O K
Pi®pi-anpt=pi&-anOe-mnNi=p;0Oe-r)o, (A7)

k=1 k=1 j=1 2 k=1

where the last equality in (A.7) can be established by substituting v for k; in this equation and
then proving by induction on v that the equation does hold for v =1,...,k: .

Proof that (2.21) satisfies (2.1-2.4). Note that (A.6) isastrict inequality by (A.1) if k =1,
snce £ s=sC St S. Thisobservation, (2.21), (A.4), (A.6) yield (2.1).

Similarly (2.3) follows from (A.2), with the appropriate substitutions, and (2.21); while (2.1)
and (2.3) immediately imply (2.2).

Finally, to establish (2.4), we note that by (A.3) with the appropriate substitutions we have for
eachi,k withil S, that p;a;, =E(bg )p &, which we combine with (2.21).

Proof of (2.23) and (2.24). Wenotethat p; =m/ M foral jI S;p;/p; =p;/p and

rjp =y forall j for which A; I I; the summation in the numerators of (2.8) (2.9) and (2.13)
for k=1 areover My, m and max{ M, - N; +n,, 1} elements, respectively; and that the
summation in the denominator of these three equationsis over min{n,, M} elements. We

then combine these relations with (2.8), (2.9), (2.13-2.16), (2.19-2.21) to obtain that k¢=1
(since S, = A) and that (2.23) and (2.24) hold.
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