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Abstract: A number of procedures have been developed, beginning with the work of Keyfitz,
for maximizing or minimizing the overlap of sampling units for two stratified designs. Most
of these procedures are not applicable at al, or are not feasible to implement, unless the
number of units selected per stratum is very small. The previous procedures that the author is
aware of for increasing or decreasing overlap when alarge number of units per stratum are
selected either do not generally yield an optimal overlap or do not guarantee fixed sample
sizes. Furthermore, these overlap procedures have typicaly been developed for use when the
two designs must be selected sequentidlly, asis the case when the second design is aredesign
of thefirst design. In the current paper avery different, large sample per stratum procedure is
presented for maximizing or minimizing overlap when the units can be selected for the two
designs smultaneoudly, as may be the case for two different surveys. The procedure
guarantees fixed sample sizes and also an optimal overlap if the two designs have identical
stratifications, but can still be used, with loss of optimality, if the stratifications differ. An
application of this procedure to the joint selection of samples for two Bureau of Labor

Statistics compensation surveys is discussed.
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1. Introduction

Consider the following sampling problem. Sample units are to be selected for two
designs, denoted as D, and D,, with identical universes and stratifications, with S denoting
one of the strata. The selection probabilities for each unit in Sare generdly different for the
two designs, as are the number of units to be selected from Sfor each of the designs. The
sample units are to be selected ssmultaneoudly for the two designs. We wish to maximize the

overlap of the sample units, that isto select the sample units so that:

There are a predetermined number of units, n;, selected from Sfor the D;
sample, j=1,2. That is, the sample size for each stratum and design combination
isfixed.

(1.1

Thei-th unitin Sis selected for the D; sample with its assigned probability,

denoted P ij -

(1.2)

The expected value for the number of sample units common to the two
designsis maximized.

(13)

In this paper we demonstrate how the two-dimensional controlled selection procedure
of Causey, Cox and Ernst (1985) can be used to satisfy these conditions and the additional

condition that:

The number of sample unitsin common to any D, and D, samplesis



always within one of the maximum expected value.

(1.4)

The agorithm to be described imposes no theoretical limits on the number of units,
n;, selected from Sfor the D; sample. Operational limits are discussed in Section 5.
Overlap maximization has generally been used as a technique to reduce data collection
costs, such as the costs associated with the hiring of new interviewers when the units being
overlapped are primary sampling units (PSUs), that is geographic areas, or the additional
costs of an initia interview when the units being overlapped are ultimate sampling units
(USUs). Most of the previous work on maximizing the overlap of sample units considered
the case when the two sets of sample units are PSUs that must be chosen sequentially, asis
the case when the second design is aredesign of the first design. The number of sample PSUs
chosen from each stratum is generally small. This problem was first studied by Keyfitz
(1951), who presented an overlap procedure for one unit per stratum designs in the special
case when the initial and new strata are identical, with only the selection probabilities
changing. Keyfitz's procedure is optimal in the sense of actually producing the maximal
expected overlap. (Although we refer to all the overlap procedures as procedures for
maximizing the overlap, many of these procedures do not actually produce the maximal
expected overlap, but instead merely increase the expected overlap to varying degreesin
comparison with independent selection of the two samples.) For the more genera one unit
per stratum problem, Perkins (1970), and Kish and Scott (1971) presented procedures that
are not optimal. Causey, Cox and Ernst (1985), Ernst (1986), and Ernst and Ikeda (1995)
presented linear programming procedures for overlap maximization under very general
conditions. The Causey, Cox and Ernst procedure always yields an optimal overlap, while the
other two linear programming procedures generally produce a high, although not necessarily
optimal, overlap. These linear programming procedures impose no theoretical restrictions on

changes in strata definitions or number of units per stratum, but the size of the linear



programming problem increases so rapidly as the number of sample PSUs per stratum
increases that these procedures are generally operationally feasible to implement only when
the number of sample PSUs per stratum isvery small. This operationa problem is most
severe for the Causey, Cox and Ernst procedure, which is one reason that the other two linear
programming procedures have been used even though they do not guarantee an optimal

overlap.

Overlap procedures have also been used for sequential selection at the ultimate
sampling unit (USU) level, where the number of the sample units per stratum can in some case
be fairly large and for which, consequently, none of the above procedures are usable. Brewer,
Early and Joyce (1972), Brick, Morganstein and Wolters (1987), Gilliland (1984), and Ernst
(1995b) present overlap procedures that are usable under these conditions. These first two of
these procedures are optimal but do not guarantee a fixed sample size, while the opposite is

true for the other two procedures.

In certain overlap applications it is possible to choose the samples for the two designs
simultaneously. For example, the Bureau of Labor Statistics recently planned to select new
sample establishments from industry x size class strata for the governments samples for two
compensation surveys, the Economic Cost Index (ECI) and the Occupationa Compensation
Surveys Program (OCSP). To reduce interviewing expenses we wanted the two surveys to
have as many sample establishments in common as possible. Since ECI has a much smaller
sample than OCSP we actually wanted an ultimate form of overlap, that is for the ECI
governments sample to be a subsample of the OCSP governments sample. In fact, a special
case of (1.1)-(1.4), which generally appliesin this application, occurs when p;, £ p;; for all
unitsin S in which case, as we will show, (1.3), (1.4) can be replaced with the more stringent

requirement that:



Each D, sample unit in Sisa D4 sample unit. (1.5

(Note that, as explained in Section 7, the ECI selection probabilities were not proportional to
the OCSP selection probabilities. If they had been, it would not have been necessary to use an
overlap procedure. We could ssimply have selected the OCSP sample first and then
subsampled the OCSP sample units with equal probability to obtain the ECI sample.)

Previoudy, Ernst (1996) presented an optimal solution to the overlap problem in the
context of simultaneous selection under different conditions than considered here. That
solution is limited to one unit per stratum designs, in contrast to the procedure in this paper
which has no restriction on the number of sample unitsin a stratum. On the other hand, the
procedure in Ernst (1996) applies when the two designs have different stratifications, while
the procedure in the current paper requires that the stratifications be identical to insure that
the optimal overlap is attained. The procedure of Ernst (1996) also uses the controlled
selection algorithm of Causey, Cox and Ernst (1985), although in a different way than in the
current paper. Pruhs (1989) had earlier developed a solution to the overlap problem

considered in Ernst (1996) using a much more complex graph theory approach.

In Section 2 we describe, with the aid of an example, the basic idea of the current
procedure and list a set of requirements that are sufficient to satisfy (1.1-1.4). In Section 3
the controlled selection procedure of Causey, Cox, and Ernst (1985) is presented and a
solution to our overlap problem is obtained which satisfies the set of requirementslisted in

Section 2.

In Section 4 it is shown how the procedure of Sections 2 and 3 can be easily modified
to solve the problem of minimizing the expected overlap of sample units under the same

assumptions. Overlap minimization has typically been used to reduce respondent burden.



Most, but not al, of the overlap maximization procedures previously mentioned can also be
used to minimize overlap. In addition, Perry, Burt and Iwig (1993) presented a different
approach than presented here to the minimization of overlap when the samples are selected
simultaneously. Their approach has the advantage of not being restricted to two designs.
However, their method is not optimal and assumes equal probability of selection within a

stratum.

In Section 5 we consider three separate issues. First we compare the current
procedure with the procedure in Ernst (1996), noting the similarities and differences. Next,
with regards to the “large number of units’ referred to in the title of the paper, we explain
why there are operationa upper limits on the size of Seven though there are no theoretical

limits on the number of units that can be selected using the procedure. Finaly, we discuss the
issue of joint inclusion probabilities for pairs of unitsin the D; sample.

In Section 6 we describe how our procedure can be modified, although with loss of

optimality, for use when the strata definitions are not identical in the two designs.

Finally, in Section 7 we present the results of the application of our procedure to the
selection of the ECI and OCSP governments samples. Although the controlled selection
procedure was carried far enough to report results, it was not actually used in production.
Thisis because the ECI and OCSP are currently in the process of being integrated into a
single compensation program, the National Compensation Survey (NCS). At the timethe
decision was made to use controlled selection, it was anticipated that complete sample
integration of these surveys might still be several years away. However, the integration
subsequently was moved forward dramatically in time. Under the NCS design, al sample
units, including government units, to be used in ECI estimates will be selected as a subsample

of the parent NCS sample, obviating the need for controlled selection.






2. Outline of Overlap Procedure and List of Set of Conditionsto Be Satisfied

The procedure to be described is applied separately to each stratum S. As aresult, the
sampling for each design is independent from stratum to stratum. As explained in Ernst
(1986), this independence typically does not hold when an overlap procedure is applied to
designs that do not have identical stratifications.

As we proceed to explain controlled selection and its application to the overlap
procedure of this paper, we will illustrate certain aspects of the procedure by use of the same
example, much of which is presented at the end of this section in Table 1 and Figures 1 and 2.
The basic idea of controlled selection isas follows. First, a two-dimensional, real valued,
tabular array, S= (s;) , is constructed which specifies the probability and expected value
conditions that must be satisfied for the particular problem. (A tabular array isone in which
the final row and final column are marginal values, that is each entry in a particular columnin
the last row is the sum of the other entries in that column and each entry in a particular row of
the last column is the sum of the other entriesin that row. Each of the arraysin Figures 1 and
2 aretabular arrays.) The array Sisknown as the controlled selection problem. Next, a
sequence of integer valued, tabular arrays, M1 =(m;q), M5 =(M;2), ..., M| =(m;;), withthe
same number of rows and columns as S, and associated probabilities, py,..., p,, are
constructed which satisfy certain conditions. This set of integer valued arrays and
probabilities constitute a solution to the controlled selection problem S. Findly, arandom
array, M =(m;;) , isthen chosen from among these | arrays using the indicated probabilities.
The selected array determines the sample allocation. The set of integer valued arrays and their

associated probabilities guarantee the expected value conditions specified by S are satisfied.

We proceed to describe Sand My, ..., M, for the procedure of this paper in greater

detail. In our application of controlled selection, each stratum corresponds to a separate

controlled selection problem and Sisa (N +1) * 5 array, where N is the number of unitsin



the stratum universe. Thus, there are N internal rows and 4 internal columnsin S. Each

internal row of the selected array corresponds to a unit in the stratum universe. Inthei-th

internal row, the first element is the probability that the i-th unit isin the D; sample only; the

second element is the probability that it isin the D, sample only; the third element is the

probability that it isin both samples; and the fourth element is the probability that it isin
neither sample. The marginalsin the final column of the N internal rows are all 1 since each
unit must fall in exactly one of the four categories. The marginalsin the first 4 columns of the
final row are the expected number of unitsin the corresponding category, and the grand total
isN.

We next explain how the values for the interna elements of S are computed. The key

vaueis 53, the probability that the i-th unit isin both samples. Let

S§3=min{p;y Pi2}, (2.1)

Sj =Pijj - §3, 1 =12, (2.2
3

s4=1- 4§ (2.3)

=1

Now (2.1) ismotivated by (1.2) and (1.3). That is, if (1.2) held then the probability
that the i-th unit is in both samples clearly could not exceed either p;; or p;,, and therefore

(1.3) would be satisfied if the probability that unit i isin both ssmples equals 55 for eachii.
Also (2.2) isrequired by (1.2), that is the probability that thei-th unitisin the D; sample only

issimply the probability that it isin the D; sample minus the probability that isin both

samples. Finaly, (2.3) isrequired by the fact that for each sample, every unit must bein

exactly one of the four categories determined by the four internal columns.



Toillustrate, we consider an example for which N =5, n; =3, n, =2, andthe pj;'s

aregivenin Table1. Then by (2.1)-(2.3) thearray Sisasin Figure 1.

Note that by (2.1), (2.2), al the entries in the second column of S are 0 in the specia
casewhen p, £pj; for dl unitsin S and hence each D, sample unit in Swill beaD; sample
unit, as required by (1.5), provided the sampling procedure preserves al the probability and

expected value conditions specified in S.

We next describe the conditions that must be satisfied by the sequence of integer
vaued arrays, My,..., M, , and associated probabilities, p;,..., p;, which determine the sample
alocation. In each internal row of each of these arrays, one of the four internal columns has
the value 1 and the other three have the value 0. A 1 in the first column indicates that the unit
isonly inthe D; sample; a1 in the second column indicates that the unit isonly inthe D,
sample; a1 in the third column indicates that the unit isin both samples; and a 1 in the fourth
column indicates that the unit isin neither sample. In our example, the arrays M 4,...,M 4 in
Figure 2 are the controlled selection arrays that can be selected. If, toillustrate, M ; is

selected, then units 1 and 4 are in both samples; unit 3 isin the D, sample only; and units 2

and 5 are in neither sample. The probability mechanism for selecting the integer valued array
guarantees, as will be shown in the next section, that for each unit a 1 appears in each column

with the correct probability, that is the probability determined by S. The probabilities
Py,..., Py for selecting the arrays M4,...,M 4 of our example are listed in Figure 2. (The
A, ’sand d,'s, also listed in Figure 2, are obtained as part of the controlled selection

algorithm, as will be described in Section 3.)

We next list a set of requirements which, if met by the random array M, are sufficient

to satisfy (1.1)-(1.4). Note that (1.2) will be satisfied if
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P(mij :1)+P(mi3 :1):Sij +Si3 :pij’ i:1,...,N, j:1,2.

In addition, (1.3) will be satisfied if we aso have
P(m3 :1) = 53, i ::L..., N.
Consequently, if we can establish that

|
E(mu):é pkmijk:Sij, i::l.,...,N+1, j::l.,...,5,
k=1

then (1.2) and (1.3) hold, since (2.6) implies (2.4), (2.5).

To additionally establish (1.1) we need only show that

Mn+1)jk F Mn+nyzk =Ny 1=12, k=1,...,1.

Finally, to establish (1.4) it suffices to show that

M- s <L i=1. N+ j=1..5 k=1..1,

since then, in particular,

m(N+1)3k- S(N+1)3 <1 k:].,...,l,

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

where s(y41y3 isthe maximum expected number of unitsin common to the two samples and

M(n+1)3¢ 1S the number of unitsin common to the k-th possible sample.
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Also observe that in the special case when p i, £ pj; for al unitsin S then sj, =0,

J=1...,N. Consequently, by (2.6). (2.8), we would have m;,, =0, i=1...,N, k=1,...,1,

and hence (1.5) would follow.

It isreadily verified that the set of arrays M 4,...,M , and associated probabilities
Py...., P4 iN Figure 2 satisfy (2.6)-(2.8) for the array Sin Figure 1. We demonstrate in the
next section how the controlled selection procedure of Causey, Cox and Ernst can be used to

establish (2.6)-(2.8) in general, which will complete the devel opment of the overlap

procedure.
Table 1. Selection Probabilities for Example
i
1 2 3 4 5
Pi1 .6 4 8 6 6
Pi2 8 4 2 4 2
0 2 6 2|1
0O 0 4 6|1
6 0 2 2|1
S=
2 0 4 4|1
4 0 2 41
12 2 18 18|5

Figure 1. Controlled Selection
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Array for Example
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100 0|1
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Figure 2. An Example of the Controlled Selection Algorithm
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3. Completion of the Overlap Algorithm

The concept of controlled selection was first devel oped by Goodman and Kish (1950),
but they did not present a general algorithm for solving such problems. In Causey, Cox and
Ernst (1985), an algorithm for obtaining a solution to the controlled selection problem was

obtained. We demonstrate here how their solution can be used to complete the algorithm of
this paper, that isto construct afinite set of (N +1)~ 5 nonnegative, integer valued, tabular
arrays, My,...,M,, and associated probabilities, py,..., p, satisfying (2.6)-(2.8).

The discussion of controlled selection will be limited to the two-dimensional problem.
Although the concept can be generalized to higher dimensions, Causey, Cox and Ernst (1985)
proved that solutions to controlled selection problems do not always exist for dimensions

greater than two.

The controlled selection procedure of Causey, Cox and Ernst is built upon the theory

of controlled rounding developed by Cox and Ernst (1982). In general, a controlled rounding
ofan (N+1)" (M +1) tabular array S =(sj;) to apositiveinteger base bisan
(N+1)" (M +1) tabular array M =(m;;) for which my; = gs;; / b(p or (ésij /bl]+1)b for al

I,J, where |_xJ denotes the greatest integer not exceeding x. A zero-restricted controlled

rounding to a base b is a controlled rounding that satisfies the additional condition that
m;; = s;; Whenever s;; isan integral multiple of b. 1f no base is specified, then base 1 is

understood. As an example, each of the arrays M 4,...,M 4 in Figure 2 is a zero-restricted
controlled rounding of the array Sin Figure 1, that iseach My rounds every element s;; of S
that is not an integer to either the next integer above or the next integer below s;; and leaves
integer elements of S unchanged. In addition, for the arraysin Figure 2, M, isazero-

restricted controlled rounding of A, , k=12,3,4.
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By modeling the controlled rounding problem as a transportation problem, Cox and
Ernst (1982) obtained a constructive proof that a zero-restricted controlled rounding exists
for every two-dimensional array. Thus, while conventional rounding of atabular array
commonly resultsin an array that is no longer additive, this result showsthat is possible to

always preserve additivity if the original values are alowed to be rounded either up or down.

With S as above, a solution to the controlled selection problem for this array is afinite
sequenceof (N +1)" (M +1) tabular arrays, M1 =(m;q), M, =(m;2),..., M| =(m;), and

associated probabilities, py,..., p,, satisfying:

M isazero-restricted controlled rounding of Sforal k =1,...,1, (3.1
4

a k=1 (3.2
k=1

d

amijkpk:Sij, i::l.,...,N+1, j:1,...,M+1. (33)
k=1

If S arises from a sampling problem for which s;; is the expected number of sample units

sdectedincéel (i, j), and the actua number selected in each cell is determined by choosing
one of the M "s with its associated probability, then by (3.1) the deviation of s;; from the

number of sample units actually selected from cell (i, j) islessthan 1 in absolute value,

whether (i, j) isaninternal cell or atota cell. By (3.2), (3.3) the expected number of sample
units selected is s;; . Consequently, with S as defined in Section 2, a solution to the controlled

selection problem satisfies (2.6), (2.8).
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To illustrate controlled selection, consider the example presented in Section 2. The
controlled selection problem S for this example isin Figure 1. A solution to this problemis

the set of arrays presented in Figure 2, together with their associated probabilities.

Although, as noted, any solution to a controlled selection problem satisfies (2.6),
(2.8), it requires a great deal more work to establish (2.7), including an understanding of how
solutions to controlled selection problems are obtained using the Causey Cox and Ernst

(1985) agorithm, which we proceed to present.

Causey Cox and Ernst obtained a solution to the controlled problem S by means of the

following recursive computation of the sequences My,..., M, and py,..., p;, dong with a

recursive computation of a sequence of real valued (N +1)" (M +1) tabular arrays

Ay =(ajk), k=1..,1. Let A; =S, whilefor k* 1 wedefine My, py, Ay,q intermsof

A asfollows. M isany zero-restricted controlled rounding of A, . To define p,, first

let
d = max{my - ay: i =L, N+ j=1.,M+1}, (3.4)
and then let
P = (1- dy) if k=1,
k-1 (3.5)

=(1- § p)@-dy) if k>1
i=1

If d, >0 then define A, ., by letting for al ij,
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@j(k+1) = Mijk + (@ - Mijk) / di - (3.6)

It is established in Causey, Cox and Ernst (1985) that eventually there is an integer | for which
d; =0 and that this terminates the algorithm; that is, M 4,...,M| and py,..., p; constitute a

solution to the controlled selection problem satisfying (3.1)-(3.3). It isaso established in
their paper that for al i, j,k ,

65i (1€ aijk £ @5 (Jt1 and ay = if 55 isaninteger. (3.7

Figure 2 illustrates this algorithm for the controlled selection problem of Figure 1.

Now to obtain (2.7), first note that for the array S defined by (2.1)-(2.3) we have by
(2.2) that

S(N+1)j tS(N+1)3 =Ny, 1 =12, (3.8)

Observe that (3.8) is not sufficient to guarantee that all solutions to the controlled selection

problem S obtained by the algorithm just described satisfy (2.7). To illustrate, for Sin Figure
1wehave n =3, M4y =10r2, j=13, and hence My qy1 +Mn+pyac caN equal 2, 3 or

4.

A particular solution to the controlled selection problem that does satisfy (2.7) can be
obtained, however, using the following approach. We first demonstrate that it is sufficient to

show that if

AN+ jk TN+ =N, | =12, (3.9
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for aparticular k, then there exists a zero-restricted controlled rounding M, of A, for which
MN+y jk FMN+y3k =Ny ] =12, (3.10)

Thisis sufficient because (3.9) holds for k =1 by (3.8), whileif (3.9) holds for any positive
integer k and M, satisfies (3.10) for that value of k, then (3.9) holds for k +1 by (3.6);

consequently by recursion we could obtain a zero-restricted controlled rounding M, of A,

satisfying (3.10) for each k, and thus (2.7) would hold for this set of arrays.

To establish that (3.9) implies (3.10), we observe that by (3.9) and the fact that

an+1)sk = S(N+1)5 = N, which is an integer; (3.11)

it follows that the fractional partsof a y.y)jk, J =12, are the same, as are the fractional
parts of a n+y)jk, J =3,4. Furthermore, one of two possible sets of additional conditions
must hold. The first possibility isthat a .1k isaninteger foral j=1234. Inthiscase

(3.10) holds for any zero-restricted controlled rounding of A, .

In the second case, which is assumed throughout the remainder of this section, none of
N+ jk | =12,34, areintegers, but the fractional part of a n+yjk, J =12 plusthe

fractional part of a n+qyjk, J =34 isl Inthiscase Mgk = N+ jk (| +1 for exactly two

j’samong | =1,2,34 for every zero-restricted controlled rounding M, of A, since

4 4

— — o — o -
N =mMn+psk = A MN+1)jk A AN+ jk 5
=1 =1

and that for M, to satisfy (3.10) it is sufficient that additionally either
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MmN+ jk = BN+ jk(p 1 =12, (3.12)

or
M+ jk = BN+ (T1 1=12. (3.13)

To show that we can obtain a zero-restricted controlled rounding M, of A,

satisfying (3.12) or (3.13) we proceed as follows. It is established in Cox and Ernst (1982)

that alinear programming problem which minimizes an objective function of the form

NS
a a Gj%j (3.14)
i=i j=1

where the X; 's are variables and the G; 's are constants, subject to the constraints

N
a Xj = Xn+1yjr | =15, (3.19)
i=1
g
a %j =%s i =1, N+1, (3.16)
j=1
Bak (£ xj £ gay(*L i =1...,N+L j=1..5, (3.17)
Xj = & If q isaninteger, i =1,...,N+1 j=1..5 (3.18)

can be transformed into a transportation problem for which there is an integer valued solution

M, , that is M, is a zero-restricted controlled rounding of A, . In particular, since A, aso

satisfies (3.15)-(3.18) we have
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NS NS
aasmktaa - (3.19)
i=1j=1 i=1j=1

We will show that with the appropriate choice of objective function (3.14), a zero-restricted

controlled rounding M, of A, whichisasolution to the linear programming problem (3.14)-

(3.18) will satisfy (3.12) or (3.13) and hence a solution to the controlled selection problem S
that satisfies (2.7) can be obtained.

There are three cases to consider. First if

2 2
a an+yjk <a BN+ ikt (3.20)
j=1 j=1
2
then by (3.19) a controlled rounding obtained by minimizing @ X(n+1)j Subject to (3.15-
j=1
3.18) will satisfy (3.12). Similarly, if the inequaity in (3.20) is reversed, a controlled rounding
2
satisfying (3.13) can be obtained by minimizing - é X(N+1)j » Whichis equivalent to
j=1
2

maximizing é X(n+1)j - Finally, if theinequality in (3.20) is an equality instead then, since
j=1

an+1yk 1S NOt an integer, we have by (2.2), (3.7) that 0 <ajx <1 for somei* with

1£i*£ N . Inaddition, we have that 0 <axjx <1 for somej*T {2,3,4}, since ajgy =1 by
(3.7). Furthermore, j** 2 since ajxy =0 by (2.2), (3.7). Then consider the (N+1)" 5
tabular array Ag = (aff) with internal elements agy = ajyy - €, aljx = axjx +€, aff = aj

for all other i,j, where e >0 issufficiently small that the tabular arrays Ag and A, havethe
2 2
same set of zero-restricted controlled roundings. Since § afy+g)j <a @&+l a
j:]_ j:]_

zero-restricted controlled rounding of Ag and hence of A, can be obtained which satisfies

(3.12).
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4. Minimization of Overlap

Sometimes it is considered desirable to minimize the expected number of sample units
in Scommon to two designs rather than maximize it. The procedure described in Sections 2
and 3 can very easily be modified to minimize overlap. Simply redefine
S§3=max{p;; +Pio - L G . Theremainder of the procedureisidentical to the maximization

procedure.

Therationale for the definition of 55 in the minimization case is analogous to the
rationale for the definition of 55 in the maximization case presented in Section 2. For while

min{pi; P} isthe maximum possible value for the probability that the i-th unit isin sample

for both designs, the minimum possible value for this probability is max{p;; +pi> - 1,0} .

5. Miscellaneous | ssues

We consider here the three separate issues noted in the Introduction.

5.1 Comparison of the current procedure with the procedure in Ernst (1996)

The overlap procedure just described and the overlap procedure in Ernst (1996) share
the following common features. Both procedures have been developed for use when the
samples for the two designs can be selected ssimultaneoudly. Also, both proceduresyield
optimal solutions to the maximization and aso the minimization problem under specified
conditions. In fact, both procedures take advantage of the extraflexibility in sample selection
offered by simultaneous selection to produce an overlap that is generally higher for the

maximization problem and lower for the minimization than can be produced by any overlap
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procedure that selects the two samples sequentially. Thisissueis discussed in Ernst (1996,
Sec. 5). Finally, both procedures use the controlled selection procedure of Causey, Cox and
Ernst (1985).

However, the two procedures use controlled selection in very different ways. The
procedure in Ernst (1996) allows for the D; and D, designs to have different stratifications,
but requires the two designs to be 1 unit per stratum designs. The selection of the entire
sample for both designs requires the solution of a single controlled selection problem. For this
controlled selection problem, each internal row except the final internal row correspondsto a

D, stratum and each internal column except the final internal column correspondsto a D,

stratum. Each of the row and column marginals has the value 1, and consequently the

selected array My, in the solution has asingle 1 in each internal row and column, with the
remaining internal cells having thevalue 0. If thereisalincel (i, j) of M, where neither i
isthe final internal row nor j is the final internal column, then a unit that is in both thei-th D,
stratum and j-th D, stratum is selected to be in sample for both designs from among al such
units, using the conditional probabilitiesin Ernst (1996, (18)). If thereisalin thefina
internal column of row i, then a unit is selected from among all the unitsin thei-th D,
stratum to be in sample for D; only, using the conditional probabilitiesin Ernst (1996, (26)).
Anaogoudly, if thereisal in thefina internal row of column j, then a unit is selected from
among al the unitsin thej-th D, stratum to be in sample for D, only, using the conditional
probabilities in Ernst (1996, (27)). For the maximization problem the controlled selection
array is constructed to maximize the sum of the values of internal cells that are not in the fina
interna row or column, and hence maximize the expected number of units selected that are in
sample for both designs, while for the minimization problem this array is constructed to

minimize the sum of the valuesin these célls.
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Unfortunately, this author does not know how to generalize the procedure in Ernst
(1996) to designs with more than 1 unit per stratum. The difficultiesin developing a

generalization are explained in Section 7 of that paper.

The current procedure makes use of the identical stratifications assumption for the two
designs to construct a separate controlled selection problem for each stratum. The controlled
selection array is different here, with each internal row corresponding to a unit and each

internal column to the sampling status for the unit.

Note that it in the particular case of 1 unit per stratum designs with identical
stratifications, both procedures are applicable and, since they are both optimal, yield the same
expected overlap. Furthermore, the expected overlap for the maximization problem under

these conditions is the same as produced by the origina procedure of Keyfitz (1951).

5.2. Limitations on stratum size

Thettitle of the paper refers to selecting alarge number of units per stratum. The
procedure that has been presented imposes no theoretical limits on the number of units
selected. The only limitations are operational, that is there is an upper limit to the size of the
controlled selection problem that can be solved in practice on a given computer.

Furthermore, the size of the controlled problem to solve does not depend directly on the
number of units, n;, selected from Sfor the D; sample, but instead on the stratum size, N.
The solution of a controlled selection problem requires the solution of a sequence of
controlled rounding problems, each of which requires the solution of a transportation
problem. The number of variablesin the transportation problem is of the order of the number
of internal cellsin the controlled selection array, that is 4N . If N is large enough, the number

of variables would be too large for the memory capacity of the computer. However, an N this
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large is unlikely to occur in practice. For in the application discussed in Ernst and Ikeda
(1995), the authors were able to successfully solve transportation problems with as many as 5

million variables, corresponding to an N greater than 1 million.

Of more practical concern, because it can lead excessively long CPU times, isthe
number of controlled rounding problems, |, that must be solved in the solution of a controlled

selection problem. It can be shown that 3N isan upper bound on|. (Thisis obtained by

combining the following three facts: Each A, must have at least one more integer valued cell
than the preceding member of the sequence. When 3internal cellsinarow in A, are

integers, so isthe fourth. When kis reached for which A isan integer valued array the

algorithm stops.) Furthermore, not only is this upper bound on the number of transportation
problems to be solved proportional to N, but from data presented in Ernst and I keda (1995,
Table 6), it can be surmised that the CPU time required to solve a transportation problem, is
roughly proportional to the number of variablesin the problem. Consequently, the CPU time
required for the solution of a controlled selection problem is roughly proportional to N 2 As
aresult, the procedure may not be practical to run if N exceeds a few thousand.

In the application presented in Section 7, the largest value of N was 214. Thisdid not

require a noticeable amount of CPU time.

5.3. Joint selection probabilities

For variance estimation purposes it would be desirable if the procedure presented in

Sections 2 and 3 was able not only to satisfy (1.2) for individual units, but also for the
inclusion probability, Pijiyj inthe D; samplefor each pair of unitsiy, i, in Sto satisfy a

predetermined value. Unfortunately, the procedure does not have this property. The value of
Pij,j isreadily computable, however. It may be O though for some pairs of units, which

would preclude the computation of unbiased variance estimates.
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To illustrate the computation of p;; ;, consider p34; for the solution to the controlled

selection problem in Figure 2. This pair of unitsisinthe D; sampleif either M, or M4 is
the selected array, and hence pg4; = p; + ps =.6. However, the same pair of unitsisnot in

the D, sample no matter which of M 4,...,M , is selected, and hence p34, = 0.

6. Maximization and Minimization of Overlap with Different Stratifications

In the previous sections we have assumed that the two surveys to be overlapped have
identical stratifications. We now consider arelatively simple generalization of the work in the
previous sections that is applicable when this condition does not hold. Unlike the identical

stratification case, this generaization will not guarantee that the optimal overlap is attained.

We introduce the following additional notation. For k =1,2, let M, denote the
number of D, strata; let S, , i1=1...,M,, denotethe set of D, strata, and let n; denote the
number of sample unitsto be selected for D, from §;. For i=1,...,M;, j=1...,M,, let
Sj =S1C Sjo and let N;; denote the number of unitsin S;; et ry denote the sum of the
D, selection probabilities for al unitsin Sﬁ and let ny; denote the number of sample unitsto
be chosen from Sﬁ for Dy, k=12. Now ny isaconstant. However, since f, isin genera

not an integer, ny;, must be arandom variable, which is chosen to satisfy the following

conditions:

E(ny) = i and |y - | <1 for all samplesfor all i, j k.

Foreach i =1,...,M;, andlocation ny;;, j=1,..., My, satisfying these conditions, of the
nj; units to be selected in S;; among the S,j J=1,...,M,, can be obtained by systematic

probability proportional to size sampling; similarly, for each j =1,..., M, an allocation
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Nij2, 1=1,..., My, can be obtained of the n;j, unitsto be selected in S;, among the

*

S

ijo i:1,...,M1.

Once the allocations n;q, N, are determined for each i j, the selection of specific
unitsin Sﬁ can be determined using the method of the previous sections, with each Sﬁ
corresponding to a separate controlled selection problem. In applying the procedure to Sﬁ
we do not use the unconditional D, selection probabilities, since these probabilities sum to
Kjk ot Ny . Instead we use selection probabilities conditioned on nyy , which are obtained by
multiplying the unconditional probabilitiesby ny; /1y . This approach preserves the

unconditional selection probabilities since E(nyy ) = K - (This method assumes that none of

the conditional selection probabilities exceed 1. Otherwise, the conditiona selection

probabilities must be computed in a more complex fashion that will not be discussed here.)

The amount of deviation from the optimal overlap when the two designs are not
identical and this approach is used, depends on the stratifications and the number of units
selected from each stratum for the two designs. The deviation arises from the use of

conditional selection probabilities instead of unconditional selection probabilitiesin choosing
the samples for S” If 1rij1, Ko are both large for al nonempty SG , then ny /1 will be near

1, and the deviation from optimality will be small. At the opposite extreme, if none of the SG
contain more than 1 unit then this approach does no better than independent selection, since if
SG consists of 1 unit then that unit will be in the sample for D, if n; =1 and will not bein

sampleif ny, =0 ; hence there is no overlap procedure to apply to Sﬁ in that Situation.
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7. An Application to the Selection of the OCSP and ECI Gover nments Samples

As noted in the Introduction, our controlled selection procedure was carried for the
selection of the new governments samples for OCSP and ECI, athough it was never actually

used in production. We detail this application.

The OCSP sample selection process has traditionally chosen sample establishments
with equal probability from industry x employment size class strata within sample geographic
PSUs. ECI hasin the past chosen sample establishments with probability proportional to size
from industry strata without geographic clustering. The two surveys generally have selected
their samples independently of each other. However, as part of an effort to integrate the two
surveys, all newly selected ECI samples are now selected from OCSP sample PSUs.
Furthermore, to reduce data collection expenses it was decided to have the ECI governments
sample selected, if possible, as a subsample of the much larger OCSP sample. To assist this
effort, identical industry stratifications were used in both surveys, which had not been the case
in the past. Now at the time that the government samples were originally to be drawn we had
not had sufficient time to integrate the computer systems for the two surveys, and it was
therefore necessary that OCSP and ECI maintain their separate sampling approaches within
industry strata in each sample PSU. That is, OCSP was to select its governments sample from
industry x employment size class strata, with all establishments within a size class chosen with
equal probability, while ECI was to select a single sample for the industry with establishments
selected with probability proportional to size. To further complicate matters, at the time the
OCSP sample needed to be selected, the ECI sample sizes had not yet been determined.

Consequently, controlled selection was used in the following way. The procedure was

applied separately to each OCSP industry x employment size class strata S within each sample
PSU. We designate the ECI and OCSP designs as D, and D,, respectively, and let N,n;,n,

be as defined in Section 2. In addition, welet T; denote the measure of size for thei-th
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N
establishmentin Sandlet T=§ T,. T, isthetotal employment for the i-th establishment,
i=1

obtained from unemployment insurance records. For each S the value of N was known and
n; was determined from the OCSP sample allocation program. Furthermore, pj; =n / N for
dli,while pj, =n,T; /T. Asfor n,, since the number of ECI unitsto be selected from S

was unknown, we selected the maximum number for which pj, £pi;, 1 =1,...,N; that is
n, =@ T /(Nmax{T;:i=1,...,N}){. (7.1)

Toillustrate, consider an artificial example for which N =5, n; =4 ,and Ty,...,T5 are,
respectively, 110, 110, 165, 220, 220. Then p, =8, T =825, n, = a¢8T/T,(j= 3, and the
P, sare, respectively, .4, .4, .6, .8, .8. The controlled selection array S for this problem is
givenin Figure 3. Siscomputed as described in Section 2, except that the second column,

the ECI sample units only column, is omitted, since it consists solely of O's.

o oo~
C I SR R ORI N

Gl pP kb e

1 3 1

Figure 3. Controlled Section
Array for OCSP-ECI Example

The solution to the controlled selection problem proceeded as described in Sections 2
and 3 with one major exception. Instead of computing each of the zero-restricted controlled
roundings using the transportation problem approach of Cox and Ernst (1982), we were able
to use asimplified algorithm, described in Ernst and Ponikowski (1996), because of the

specid structure of Sin this application, including the presence of only three interna columns.
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The n, ECI sample units selected from each stratum Swere denoted as the ECI
controlled selection sample for S Later, when the final allocation, denoted ns, of ECI sample
units for each Swas determined, using a systematic sampling procedure described in Ernst
(1995a), the n, ECI unitsin the controlled selection sample were to be subsampled with
equal probability to obtain the final ECI sample from Sprovided n; £n,. If n; >n, thendl
n, unitsin the ECI controlled selection sample were to be part of the final ECI sample from

S Theremaining n; - n, unitsin the final ECI sample were to be selected independently of

the controlled selection sample from among al the N units in Susing systematic, probability
proportional to size, without replacement sampling. (Note that with this approach the same
unit can be selected twice for the ECI sample, onceiif it isamong the n, ECI unitsin the
controlled selection sample and then a second time if it isamong the n; - n, unitsin the final

ECI sample selected in the supplemental sample.). The procedure was actually carried out as

far as determining n3 for each S but afina ECI sample was never selected.

We computed the expected overlap for the controlled selection procedure as follows.
For those strata for which n; £ n,, al ECl sample units would also have been OCSP sample
units and hence the expected overlap is ny. For those strata for which ny >n,, the
probability of each of the n; - n, units selected into the ECI sample as part of the

supplemental sample also being in the OCSP sampleis n; / N and, consequently, the expected

number of unitsin the ECI supplemental sample that would aso have been sample unitsin
OCSPis ny(n;- ny)/ N. Sincedl n, unitsin the ECI controlled selection sample are also

OCSP sample units, the total expected overlap is n, +ny(n; - ny,)/ N for those strata for

which nz >n,. (Notethat in this calculation, aunit that isin both the ECI controlled

selection sample and the ECI supplemental sample is counted as two overlapped units.)

There were atotal of 397 ECI sample establishments that would have been selected

using the controlled selection procedure just described. The expected number of these units
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that would also have been in the OCSP sample was 276.4. Without use of controlled
selection, that isif all ECI sample units had been selected independently of the OCSP sample
units, the expected number of sample units that would have been in sample for both surveys
would have been 256.4. Thus, the increase in expected overlap by using the controlled

selection procedure isrelatively small.

There are two reasons why the controlled selection procedure did not produce as large
an increase in overlap over independent selection as hoped. First, because the final ECI

sample size n; to be selected for an OCSP stratum was unknown at the time the OCSP

sample was selected, we were forced to use a modified form of controlled selection based on
the selection of n, units defined by (7.1), which results in asmaller overlap than if the
controlled selection procedure was based on the final ECI sample size. In addition, except for
34 units, the ECI sample units were to be selected from two categories of OCSP strata,
described below, for which the modified form of controlled selection yielded the same overlap
as independent selection. If alarger proportion of the OCSP strata had not been in these two
categories the results from using this modified controlled selection procedure would have

been better.

Of the 397 ECI sample units to be selected, 205 were to be selected from OCSP
certainty strata. The expected number of these unitsin common to both surveysis 205,
whether controlled selection is used or not. The second category of OCSP strata for which
the modified form of controlled selection did not increase overlap, from which 158 of the ECI
sample establishments were to be selected, is the set of OCSP noncertainty strata for which
ng =1. When n; =1, it follows from (7.1) that n, =0 except in the event, which never
occurred, that the measure of sizeis the same for al unitsin astratum. Thus, for the units
selected from these 158 strata the expected overlap was the same for both the controlled

selection and independent selection procedures, namely 43.2. Thisis because no units could
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be selected from these strata by controlled selection, that is all 158 sample units would have
to have been selected from the independent supplemental sample. (Although the controlled
selection procedure had no effect on the overlap for these 158 strata, we could have used the

overlap maximization procedure of Keyfitz (1951) to increase the overlap beyond 43.2.)

For the remaining 34 ECI sample units, that is those that were to be selected from
OCSP noncertainty stratawith n; >1, the expected overlap was 28.2 units for the controlled
selection procedure in comparison with 8.2 units for independent selection, and thus the gains
from using the controlled selection procedure were noteworthy in this case. For some of the

OCSP gtrata from which these 34 units were to be selected we had n; >n,, which iswhy the

controlled selection procedure did not produce a perfect expected overlap for these 34 units.

A natural question to ask regarding this application isif it is realy necessary to use the
controlled selection process at all. That is, in general, can (1.1), (1.2), (1.5) be satisfied by

first selecting the n; unitsin the D, sample from Sand then subsampling in some way these ny
units to obtain the D, sample from S? The following example illustrates that thisis generally
not possible. Let N=4,n,=2,n,=1 pj; =5 1=1....4, p1p, =Py =45,

P3 =P4p =.05. Thenif the D; sampleis selected by simple random sampling without
replacement, the probability that the D, sample would consists of units 3 and 4 would be 1/6;
if one of these two unitsis then selected to be the D, sample, either the probability that unit 3
or the probability that unit 4 is in the D, sample must be at least 1/12 and hence the

requirement p3, =p 4, =.05 cannot be met.
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