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1.  Introduction

In the nearly half century since Keyfitz’s (1951) pioneering work, research on the problem of
maximizing and the related problem of minimizing overlap of sampling units has progressed in
many different directions and under several different names, such as optimal integration of surveys,
sample coordination, and overlapping maps.

A typical application of sample overlap is as follows.  Units are selected for a survey from a
stratified design with probability proportional to size (pps) without replacement.  At a later date a
new sample is to be selected using new size measures and a different stratification.  To reduce costs
it may be desirable to maximize the expected number of units common to the two samples while
preserving prespecified selection probabilities for the units in the new design, either selection
probabilities for individual units or selection probabilities for the possible sets of sample units in a
new stratum.  For example, when the units being overlapped are primary sampling units (PSUs),
which are geographic areas, an overlap maximization procedure can reduce the costs associated
with hiring a new interviewer; when the units are ultimate sampling units, such a procedure can
reduce the extra costs of an initiation interview.  Minimization of overlap, in contrast, is typically
employed as method of reducing respondent burden.

Overlap procedures have been developed for application in many different situations.  In
Section 2 we detail eight properties of overlap procedures corresponding to the columns in Table 1.
We discuss a number of key overlap procedures developed for the case when the samples to be
overlapped are selected sequentially in Section 3, and for the case when the samples are selected
simultaneously in Section 4.  The discussion includes all the overlap procedures in Table 1 and
some additional overlap procedures.

There is one class of overlap procedures that is omitted in Table 1 and which will only be
discussed briefly in Section 3.  These are procedures employing permanent random numbers
(PRNs).  An excellent discussion of these procedures is found in Ohlsson (1995).

2.  Properties

1.  Sequential or simultaneous selection.  In the redesign illustration above, the two samples
must be selected sequentially since the designs are for different points in time.  However, in some
applications samples are to be selected at the same point in time for two or more surveys, with
different measures of size and possibly different stratifications.  Although overlap procedures
developed for sequential selection can also be used in the case of simultaneous selection, some
overlap procedures have been developed specifically to be used for simultaneous selection and
generally produce a better overlap than procedures developed for sequential selection or are
computationally more efficient.

2.  Number of units (n) per stratum.  The procedures are either intended for 1, a small number
(S), or a large number (L) of units per stratum designs.  In all cases the sampling is without
replacement.  In theory, any of the procedures other than those restricted to 1 per stratum designs
can be used for any value of n.  However, those procedures developed for small n, many of which
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use linear programming (LP), typically cannot be used when n is large because the solution
algorithms become computationally infeasible.  Also, all S procedures, which are typically used for
selecting PSUs in a multistage design, most commonly for  a household survey, preserve
prespecified joint selection probabilities for units in a stratum in the new design for sequential
procedures and for all designs for simultaneous procedures.  All L procedures, which are typically
used for selecting sample units in a single stage design, most commonly for establishment surveys,
only preserve prespecified individual selection probabilities for the new design for sequential
procedures and prespecified individual selection procedures for all designs for simultaneous
procedures.  Furthermore, although it is not emphasized in this paper, n can generally vary among
strata in the same design and among the designs being overlapped, except for 1=n  procedures.

3.  Maximization/minimization.  Some procedures were developed for the maximization
problem, some for minimization, and some for both, as indicated.  Typically, the LP procedures are
easily adaptable for both problems by maximizing or minimizing the same objective function.  A
“max” or “min” in parentheses indicates that the procedure was not described for this application
but can be easily modified to apply to it.

4.  Restratification.  Some procedures allow for different stratifications (Y) in the designs
being overlapped, while others do not (N).

5.  Optimal. The procedure produces the optimal overlap (Y) or generally does not (N).
6.  Linear programming.  The procedure either does not use LP (N) or uses one of the

following types of LP: transportation problem (TP), real-valued LP (LP), or integer LP (IP).
Schrijver (1986) is a reference for LP.

7.  Independence of sampling from stratum to  stratum.  This applies to the new design in
sequential selection and to each design in simultaneous selection.  Satisfying this condition (Y) is
important for obtaining unbiased variance estimates.  However, few procedures that allow for
different stratifications in the designs overlapped satisfy it.  For, as illustrated in Ernst (1986),
consider the following situation.  Two units, denoted units 1 and 2, were in the same initial stratum
and are in different new strata, where 1=n  for both designs.  Furthermore, unit 1 was in the initial
sample.  Generally in that situation unit 1 would have a conditional selection probability for the new
design greater than its unconditional selection probability, while the opposite would be true for unit
2, and these units would not be selected independently in the new design.

In the case of sequential procedures, if this independence condition is not satisfied and the
procedure is used for two successive redesigns, then the sampling of the initial strata for the second
redesign, which were the new strata in the first redesign, would not have been done independently

Table 1.  Properties of Overlap Procedures

Procedure Seq/sim n Max/min Restrat. Optimal LP Indepen. Surveys
Keyfitz Seq 1 Max N Y N Y 2
Perkins Seq 1 Max Y N N JNR 2
K&S Seq 1 Max Y N N IR 2
Sunter Seq S Max N N N Y 2
Ohlsson Seq S Max (min) Y N N Y 2≥
CCE Seq S Both Y Y TP JR 2
Ernst86 Seq S Both Y N LP JNR 2
E&I Seq S Max Y N TP IR 2
Pollock Seq L Max (min) Y Y N JNR 2
Ernst95 Seq L Both Y N N JNR 2
M&P Sim 1 Max N ≤ 3 surveys N Y 2≥
PBI Sim L Min (max) Y N IP N 2≥
Ernst96 Sim 1 Both Y Y TP N 2
Ernst98 Sim L Both N Y TP Y 2
Ernst99 Sim S Both N Y LP Y 2≥
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from stratum to stratum.  Depending on the procedure, this can make it difficult or impossible to use
the procedure in the selection of the new units for the second redesign and still preserve the
prespecified selection probabilities in the new design.  A sequential procedure that does not satisfy
this independence can be classified into one of the following three categories in order of decreasing
desirability, and are listed in the column by the indicated abbreviation.

Selection probabilities in the new design are not conditioned on joint selection probabilities in
the initial design of units in different initial strata (JNR).
Selection probabilities in the new design are conditioned on joint selection probabilities in the
initial design of units in different initial strata (JR).
The procedure requires that the sampling of the initial strata be independent from stratum to
stratum in order to preserve selection probabilities in the new design (IR).

Thus, the IR procedures cannot be used in two successive redesigns if the selection probabilities in
the new design are to be preserved.  In practice JR procedures cannot be used then either, since it
typically is not feasible to compute these joint probabilities.

8.  The number of surveys that can be overlapped.  This is two for most sequential procedures.

3.  Sequential Procedures

We consider first the procedures developed for sequential selection.  The various procedures
for overlap maximization of two samples when the samples are selected sequentially are based on
the same general principle, namely that these procedures do not alter the unconditional probability
of selecting a unit in the new sample (or the probability of selecting a particular sample when the
joint selection probabilities are prespecified), but condition the probability of selection of a new
sample on the set of initial sample units in such a manner that the conditional probability of
selection of a unit in the new sample is in general greater than its unconditional selection
probability when the unit was in the initial sample and less otherwise.  Overlap minimization
follows the same principle with the obvious modifications.

For sequential selection, overlap procedures can be put in the following context.  Let S be a
stratum in the new design consisting of N units and let ,,...,1,, Nip ii =π  denote the probability

that the i-th unit in S is in the initial and new samples, respectively.  Let JI , denote the random sets

consisting of all units in S in the initial and new samples, respectively, and let MII ,....,1 , NJJ ′,...,1 ,

denote all possibilities for I and J, respectively.  Typically, NJJ ′,...,1  are all subsets of S consisting

of exactly n units and 







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N
N .  As for the iI ’s, a subset I* of S can be among the iI ’s only if no

more than n units from each initial stratum are in I* and at least n units in each initial stratum are
not in IS ~ .  For NjMi ′== ,...,1,,...,1 , let )( ii IIPp ==′ , )( jj JJP ==′π ,

)( ijij IIJJP ===′π , and let ijn  denote the number of units in ji JI ∩ .  Let

NjIIJjP iij ,...,1,)( ==∈=π .  Now, there are two cases.  In Case 1 there are prespecified

probabilities, jπ ′ , for each jJ .   For example, when 2=n  the jπ ′ ’s might be the Brewer-Durbin

probabilities (Cochran, 1977).  In Case 2 only the individual selection probabilities, jπ , are

prespecified.  Case 1 applies to all the small n procedures in Table 1; Case 2 applies to all the large
n procedures; and for 1=n  both cases are the same, with jj ππ =′ , ijij ππ =′ .
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subject to the constraints
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Here (1) is the expected number of units in common to the initial and new samples; (2) simply
states that the conditional selection probabilities do not alter the unconditional selection
probabilities for the jJ ’s; and (3) is required since exactly one jJ  is selected as the set of new

sample units regardless of which iI  was the set of initial sample units.  In fact, although not all

overlap procedures take this approach, maximization and minimization of overlap can be viewed as
a LP problem, that is the maximization or minimization of objective function (1) subject to the
constraints (2) and (3), where (1)-(3) are all linear functions of the only variables, the ijπ ′ ’s.  Only

an optimal procedure actually optimizes (1), but all small n sequential procedures satisfy (2) and
(3).

In Case 2, analogously, we wish to obtain a set of ijπ ’s which maximize or minimize
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(6) n
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Additionally, let K denote the number of initial strata with units in S, and for Kk ,...,1= , let

kI ′  denote the set of units that are in both the k-th such stratum and in S.

To illustrate these concepts 1, consider the following example, denoted Example 1, which we
will return to several times in this paper.

Table 2.  Unconditional Probabilities for Example 1

i
1 2 3 4 5

ip .1 .2 .2 .3 .1

iπ .1 .26 .18 .36 .1

In this example 1=n , 5=N , 2=K , }3,2,1{1 =′I , }5,4{2 =′I , and the sampling in the initial

design is assumed independent from stratum to stratum.  Since the sum of the ip ’s for units 1,2,

and 3 is less than 1, as is the sum for units 4 and 5, neither 1I ′  nor 2I ′  constitute an entire initial
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stratum.  Consequently, there are 12 iI ’s, which are listed in Table 3 with the corresponding ip′’s.

Table 3.  iI , ip′ , ijn , and Optimal ijπ ′  for Example 1

ijn ijπ ′

j j
i iI ip′ 1 2 3 4 5 1 2 3 4 5

1 {1} .06 1 0 0 0 0 1 0 0 0 0
2 {2} .12 0 1 0 0 0 0 1 0 0 0
3 {3} .12 0 0 1 0 0 0 0 1 0 0
4 {4} .15 0 0 0 1 0 0 0 0 1 0
5 {5} .05 0 0 0 0 1 0 0 0 0 1
6 {1,4} .03 1 0 0 1 0 0 0 0 1 0
7 {1,5} .01 1 0 0 0 1 0 0 0 0 1
8 {2,4} .06 0 1 0 1 0 0 0 0 1 0
9 {2,5} .02 0 1 0 0 1 0 1 0 0 0

10 {3,4} .06 0 0 1 1 0 0 0 0 1 0
11 {3,5} .02 0 0 1 0 1 0 0 1 0 0
12 ∅ .3 0 0 0 0 0 .133 .4 .133 .2 .133

As for the jJ ’s, since 1=n  we have that 5==′ NN , }{ jJ j = , and jj ππ =′  for all j.

The ijn ’s and an optimal set of ijπ ′ ’s are presented in Table 3.  Generally there can be more than

one set of optimal ijπ ′ ’s.  The maximum value of (1) and (4), that is the value for these ijπ ′ ’s, is

.700.  This compares to an overlap probability of .216 when the new sample unit is selected
independently of the initial sample.

In general, the probability that a unit i is in both samples can never exceed },min{ iip π , and

consequently the maximum value of (1) and (4) can never exceed

(7) ∑
=

N

i
iip

1

},min{ π

which is .880 for Example 1.  Analogously, the minimum value for (1) and (4) is never less than

(8) ∑
=

−+
N

i
iip

1

}0,1max{ π

In the following three subsections we consider sequential procedures for which 1=n , n is
small, and n is large, respectively.

3.1  One Per Stratum Procedures

The concept of overlap maximization was first developed by Keyfitz (1951) who presented an
optimal maximal overlap procedure, but only for 1=n  designs for which the initial and new
stratifications are identical.  Keyfitz’s conditional probabilities of selection are as follows:

(9) }1,/min{ iiii pππ =



6

(10) ( ) ij

p

p
p

N

l
ll

jj
iiij ≠

−

−
−=

∑
=

,

}0,max{

}0,max{
}1,/min{1

1

π

π
ππ

where it is understood that }{iI i =  since the stratifications in the two designs are identical.  Note

that by (9), the probability of overlap for Keyfitz’s procedure equals (7), and hence the procedure is
optimal.

Perkins (1970), and Kish and Scott (K&S) (1971) considered the more general 1=n  maximal
overlap problem in which the strata definitions change in the new design.  Perkins’ procedure is a
simple generalization of Keyfitz’s procedure and was the overlap procedure used to select sample
PSUs in the 1970s redesign of the household surveys conducted by the U.S. Bureau of the Census.
K&S is slightly more complex.  It generally yields a higher overlap than Perkins’ procedure, but is
more limited in its applicability because it is an IR procedure.

The following is the algorithm for Perkins’ procedure.  The first step is to determine from
which kI ′  the new sample unit is to be selected.  kI ′  is chosen from among KII ′′,...,1  with

probability ky , where ky  is the sum of the iπ ’s over all units i in kI ′ . If kI ′  is selected and

}{iIIk =∩′ , then the new sample unit in S is chosen from among the units in kI ′  using conditional

probabilities akin to the Keyfitz selection probabilities, with ik py  substituted for ip , and lk py

substituted for lp  in (9) and (10), and the summation in (10) only over units in kI ′ .  In addition, if

∅=∩′ IIk , then the new sample unit is chosen from among the units j in kI ′  with probability

proportional to }0,max{ jkj py−π .  To illustrate, for Example 1 we have 54.1 =y , 46.2 =y , and

iik py π≤  for all i.  Consequently, if 1I ′  is selected and unit 1, 2, or 3 was in the initial sample, then

that unit would be retained with certainty in the new sample.  If none of these three units were in the
initial sample, then one of them, j, would be selected with probability proportional to jj p54.−π .

If 2I ′  was selected, then either unit 4 or 5 would be selected in an analogous manner.  The resulting
overlap probability in this example with Perkins’ method is .443.

Although Perkins’ method does not directly produce a set of ijπ ′ ’s analogous to those in

Table 3, these conditional probabilities can be calculated.  For example, the values in the last five
columns of the first row in Table 3 for Perkins’ procedure are, respectively, .54, 0, 0, .09, .37.  This
is because if 1I ′  is selected and }1{=I , then unit 1 is selected with certainty as the new sample unit

in S; while if 2I ′  is selected, then since neither unit 4 nor 5 was in the initial sample, one of these

two units is selected with probability proportional to jj p46.−π .  Thus, if }1{=I , the probability

of retaining unit 1 in the new sample with Perkins’ method is only .54, in comparison with a
probability of 1 using the original optimal conditional probabilities in Table 3, and .1 with
independent selection.

There are several aspects of Perkins’ procedure that keep it from producing the optimal
overlap.  First, using Example 1 as an illustration, if }1{=I  but 2I ′ was selected, then Perkins’
procedure would not make use of the knowledge that I∈1 .  This cannot be helped, since if the
procedure simultaneously used information about which units in 1I ′  and 2I ′  were in the initial
sample, it would no longer be a JNR procedure.  However, two other aspects of Perkins’ procedure
could be modified to improve the expected overlap while retaining JNR.  In particular, if 2I ′ was
selected in Example 1 and neither unit 4 nor 5 was in the initial sample, then the procedure would
select one of these two units anyway as the new sample unit, even though this offers no possibility
of an overlap.  It would be better to select one of the first three units in that situation, even without
being able to use information on which, if any, of these units was in the initial sample, since this
would offer a positive probability of overlap.  Secondly, the probability, ky , of selecting kI ′  used in
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Perkins’ procedure is generally not optimal.  We return to these two issues later when discussing the
Ernst (1986) procedure, which overcomes these two drawbacks.

K&S actually present several procedures.  The authors claim that their Method II produces the
highest overlap, and we present an outline of this method only.  The kI ′  are ordered in decreasing

order of ky , where ky  is as defined for Perkins’ procedure.  An attempt is first made to retain the

unit in II ∩′1  if this set is nonempty.  If this attempt is successful, then the algorithm stops.  If this

attempt is not successful or if ∅=∩′ II1 , then an attempt is made to retain the unit in II ∩′2 , and

so forth.  For each k, if the algorithm has not stopped before reaching kI ′  and there is a unit i in

IIk ∩′ , then the probability of it being retained is given by (9) with ip  replaced by ik pQ 1− , where

10 =Q  and kQ , Kk ,...,1= , is the probability that no unit has been selected for retention from

among kII ′′,...,1 .  If no unit has been selected after passing through all of KII ′′,...,1 , then a unit is

selected from among all units j in S with probability proportional to }0,min{ 1 jkj pQ −−π , where k

satisfies kIj ′∈ .  Note that it is in the calculation of the kQ  that the IR assumption is used.  The

probability of overlap for Example 1 for this method is .688, the deviation from optimality
occurring because 9.})3{}3{( === IJP , not 1.

3.2  Small Number of Units Per Stratum Procedures

We will first discuss procedures for this type of problem which do not use LP techniques and
then discuss LP procedures.

Fellegi (1966) was the first to develop a procedure for maximizing overlap when 1>n .  He
presented two procedures for the case when 2=n , the stratifications in the initial and new designs
are identical, and a specific sampling procedure that he developed is used.  The second procedure is
readily generalized to any small value of n and any without replacement sampling procedure, which
Sunter (1989) accomplished.  Only Sunter’s procedure is listed in Table 1.  This procedure can also
be viewed as a direct generalization of Keyfitz’s to 1>n .  In fact, the conditional probabilities for
Sunter’s method can be obtained from (9) and (10) by simply replacing ijjip ππ ,,  by ijjip ππ ′′′ ,, .

Thus, for example, if 2=n  and a pair of units has a higher joint selection probability in the new
design than in the initial design and that pair was in the initial sample, then it is retained with
certainty in the new sample by the modified form of (9).  However, unlike Keyfitz’s procedure,
Sunter’s generalization to 1>n  is not optimal.  This is because if, for example, 2=n  and the pair
in the initial sample is not retained, Sunter’s procedure does not assign a higher conditional
probability to selecting a pair for the new sample with one unit in common with the initial sample,
an outcome which is better than selecting a pair with no units in common.

Recently, Ohlsson (1999) developed a procedure for the maximization problem that is
applicable when the strata definitions change in the new design, with the key feature that it selects
the units in the new design independently from stratum to stratum.  This is a generalization of the
Ohlsson (1996) procedure, which only considered the case 1=n .  Ohlsson’s methodology uses
transformed random numbers. This procedure, which he has dubbed exponential sampling, is
innovative, simple, and applicable to more than two designs.  In the 1=n  case he assigns a PRN

iX  in the interval (0,1) to each unit i in the frame.  For each design k the transformed number

ikiik pX /)]1[log( −=ξ  is assigned to unit i, where ikp  is the probability of selecting unit i in

design k.  The unit with the smallest transformed number is selected.  He also shows how to assign
a PRN iX  retrospectively if the initial sample had already been selected independently from

stratum to stratum.  (However, if the initial sample had been selected using an overlap procedure
that destroyed this independence, then Ohlsson’s procedure is not usable.)  For 2=n  he combines
his procedure for the 1=n  case with Brewer’s method for selecting two units pps by adjusting the
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draw probabilities (Cochran 1977).  Analogously, for 2>n  Ohlsson’s method for 1=n  can be
combined with Sampford’s method (Cochran 1977).  Although Ohlsson does not mention
minimization of overlap, it appears that this can be achieved for two designs by selecting units for
one of these designs exactly as Ohlsson describes, while in the second design using the set of
transformed random numbers obtained by replacing iX−1  by iX  in the formula for ikξ .  The

probability of overlap for Ohlsson’s procedure for Example 1, calculated using equation (3.3) in
Ohlsson (1996), is .607.

The remaining small n procedures employ LP techniques.  Advantages of LP approaches
include easy formulation, optimality, and flexibility in what to optimize.  As an example of this
flexibility, in Ernst (1986) the concept of partial success was incorporated into the objective
function.  This occurred when the PSUs that were being overlapped were redefined in some
situations, allowing for a PSU in the new design to partially intersect a PSU in the initial design.  In
addition, LP approaches developed for the maximization problem typically can also be applied to
the minimization problem by simply minimizing instead of maximizing the appropriate objective
function.  The main disadvantage of using LP procedures for sequential overlap problems is that
they typically require intensive use of computer resources.  For large n, the LP problems can
become impracticably large, which is why these procedures are listed as applying only to small n
problems, even though in theory they are applicable to large n problems also.

Des Raj (1956) first presented an LP approach, but only for the case considered by Keyfitz.
Arthanari and Dodge (A&D) (1981) and Causey, Cox, and Ernst (CCE) (1985) generalized this
approach to 1>n .  A&D only considered the case of identical stratifications, while CCE allowed
for restratification.  Only the most general formulation, CCE, is listed in Table 1.

CCE, which is an optimal procedure, has essentially already been discussed.  Basically, it is
the solution of the LP problem (1)-(3) above, with the ijπ ′ ’s as the variables. Table 3 provides an

illustration of CCE for Example 1.  The one difference between CCE and (1)-(3) as presented, is
that the former is a TP while the latter is not.  A TP can be viewed as a particular type of LP
problem in which the set of variables forms a two-dimensional array, with the constraints specifying
the row and column marginals.  Although (1)-(3) is not of the required form for a TP because of the

ip′  coefficients in (2), it can be easily converted to this form with the transformation ijiij px π ′′= .

There are two drawbacks to CCE.  First, because CCE is a JR procedure, it is not applicable
to a redesign of a survey for which the previous redesign used an overlap procedure that did not
preserve the independence of sampling from stratum to stratum.  The second drawback is that even
if the sample units in the initial design were selected independently from stratum to stratum, CCE
may not be usable because the TPs involved can become impracticably large even when 1=n .
That is, the computer resource issue discussed above, which can occur with all overlap procedures
using LP, is most acute for CCE.  In the extreme case when a stratum consists of N units, all of

which were in different initial strata, the number of variables in the TP is NN 2  for 1=n .  This is

because in that case there is an iI  corresponding to each of the N2  subsets of S and a jJ

corresponding to each of the N units in S, and hence there are NN 2  variables ijπ .

To overcome the first drawback, an alternative JNR, LP procedure was developed by Ernst
(1986), which generally produces a better overlap than Perkins’ procedure for 1=n , but which is
not restricted to 1=n .  It also is typically operationally feasible when 1=n  or 2=n .  This
procedure was used by the U.S. Bureau of the Census to select the sample PSUs in both the 1980s
and 1990s redesigns for two major household surveys which required a JNR procedure, the Current
Population Survey (CPS), and the National Crime Victimization Survey (NCVS).  As an example
of the results, the proportion of new sample PSUs that overlapped with the Ernst (1986) procedure
for the 1980s redesign of NCVS was .81.  Perkins’ procedure and independent selection of the new
PSUs would have produced overlap proportions of .67 and .59, respectively.

The Ernst (1986) procedure uses the basic idea of the Perkins procedure, that is, it also selects
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one of the initial strata kI ′  and conditions the selection probabilities for the jJ  on the set of units in

kII ′∩ .  Because the Ernst (1986) procedure, like the Perkins procedure, only uses information

from the selected kI ′  in determining the conditional selection probabilities for the new design, it

does not generally produce as high an overlap as CCE.   However, it takes advantage of LP to
overcome the two drawbacks of Perkins’ procedure mentioned previously.  To illustrate, we present
the results of the Ernst (1986) procedure for Example 1.  21, II ′′  are selected with probabilities

9.1 =y  and 1.2 =y , respectively.  No matter which kI ′  is selected, if there is a unit in kII ′∩ , then

that unit is the new sample unit.  If 2I ′  is selected and ∅=′∩ 2II , then unit 2 is selected with

certainty.  If 1I ′  is selected and ∅=′∩ 1II , then the conditional probabilities of selecting units 1-5
are .022, .044, 0, .733, .2, respectively.  This results in an overlap probability of .610.  The larger
overlap probability for the Ernst (1986) procedure than Perkins’ procedure is a result of the
following.  First, the larger value for 1y  with the Ernst (1986) procedure increases the overlap

probability, since there is a greater chance of there being a unit in 1II ′∩  than 2II ′∩ .  Raising 1y

above .9 reduces the overlap, however, because 331 π=py  for 9.1 =y , and hence if 9.1 >y , then

unit 3 would sometimes not be selected for the new sample when 1I ′  is selected and unit 3 was in

the initial sample.  Also, for the Ernst (1986) procedure, whenever 2I ′  is selected and ∅=′∩ 2II ,

the new sample unit is in 1I ′ , resulting in some probability of overlap; similarly, when 1I ′  is selected

and ∅=′∩ 1II , the new sample unit is in 2I ′  with high probability.
When the sample units in the initial design were chosen independently from stratum to

stratum, but CCE is still not usable because the TPs are too large, there are two general approaches
to overcoming this size problem.  The approach taken by Aragon and Pathak (1990), not listed in
Table 1, is to use the CCE transportation model, and hence retain optimality, while using an
algorithm to reduce the size of the TPs.  In the case when the stratifications of the two designs being
overlapped are identical, their algorithm reduces the size of each TP to 1/4 it original size.
However, when the stratifications are very different, which is when the size problem becomes most
acute, the percentage reductions in the size of the TPs become negligible with this approach.
Pathak and Fahimi (1992) generalized this approach.

Ernst and Ikeda (E&I) (1995), in contrast, sacrificed optimality for potentially huge
reductions in the size of the TPs by using a different TP model.  They developed this procedure for,
the 1990s redesign of a U.S. Bureau of the Census survey, the Survey of Income and Program
Participation (SIPP), with an 2=n  design for which an IR procedure was usable since the PSUs
were selected independently in the 1980s redesign.  E&I is also applicable to other values of n.  The
size of the TP for E&I is NN )1( +  for 1=n  and )2/)1()(12/)1(( −++− NNNNN  for 2=n , a
striking reduction for large N from the maximum size of the TPs for CCE.

E&I generally yields a higher overlap than the Ernst (1986) procedure, which is why it was
used in the SIPP application, but E&I is more limited in its applicability since it is an IR procedure.
The general idea of the E&I procedure for 1=n  is as follows.  The N singleton subsets of S are
ordered as detailed in the paper.  The idea is to place earlier in the ordering those units that have a
better chance of being retained in the new sample if they were selected in the initial sample.  (The
ordering has been developed only for the maximization problem, which is why E&I, unlike the
other LP procedures, is listed in Table 1 as only applying to the maximization problem even though
the TP used in this procedure is applicable to both the maximization and minimization problems.
The procedure can be used with a random ordering of the singleton subsets, but that would
generally result in a lower overlap probability.)  These N single subsets are followed in the ordering
by ∅ , resulting in a total of 1+N  subsets of S.  Then, instead of obtaining conditional probabilities

)( ii IIJJP == , the procedure conditions on the first singleton in the ordering whose unit was in

the initial sample; if there is no such unit, then the procedure conditions on ∅=I .
To illustrate, for Example 1 the ordering of the singletons is {2},{4},{1},{5},{3}.
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Consequently, if }4,3{=I , for example, then the procedure would condition on the fact that {4} is
the first element in the ordering in I, that is the procedure would attempt to retain unit 4, and would
not make use of the information that 3 is also in I.  Furthermore, if ∅≠I  for Example 1, then with
certainty the new sample unit would be the first element of I in the ordering.  Thus, the new sample
unit would always have been in the initial sample when ∅≠I , and, consequently, the overlap
when using the E&1 procedure is .700, the same as for CCE.

However, E&I does not always result in a large an overlap as CCE.  To see this, consider the
following very simple example, designated as Example 2.  In this example ,2=N  1=n , 2=K ,

8.21 == pp , 5.21 == ππ .  Then one solution for CCE is 1)}{}{( === iIiJP , 2,1=i ;

5.)or   }2,1{}{( =∅=== IIjJP , 2,1=j .  Consequently, for Example 2 there is an overlap
unless ∅=I , and hence the probability of overlap for CCE is .96.  Now for E&I, because of the
symmetry, the probability of overlap for Example 2 is the same whether {1} or {2} appears first in
the ordering, so the ordering {1},{2},∅ is assumed.  Then for E&I,

625.})2,1{or   }1{}1{( ==== IIJP , 375.})2,1{or   }1{}2{( ==== IIJP ,

0)or   }2{}1{{ =∅=== IIJP , 1)or   }2{}2{{ =∅=== IIJP . Therefore, for Example 2 the
overlap probability is .9 for E&I.  To understand why E&I produces a lower overlap than CCE for
this example, note that since 11 p<π , we must sometimes have that I∈1  but }2{=J  for both CCE
and E&I.  However, for CCE this only occurs when }2,1{=I , in which case there is an overlap, not
when }1{=I .  Since E&I cannot distinguish between }2,1{=I  and }1{=I , the conditional
probability that 2=J  for these two possibilities for I must be the same, and hence

06.})2{ and  }1{( === JIP  for E&I, which accounts for the deviation from optimality.
The following is outline of E&I for 2=n .  The 2/)1( −NN  pairs of units in S are ordered as

described in the paper, where again the general idea is to place earlier in the ordering those pairs
that have a higher probability of being retained.  These pairs are followed by the N  singleton
subsets of S in any order, and finally by ∅ .  The selection for each of the 2/)1( −NN  possible jJ

is conditioned on the first of the 12/)1( ++− NNN subsets in the ordering that is contained in I.
For 2>n  the procedure is essentially the same with the n-tuples ordered.

The proportion of  new sample PSUs overlapped in the 1990s redesign of SIPP with the E&I
procedure was .76.  This compares to an overlap proportion of .29 with independent selection and
an upper bound of .82 with CCE.  The actual overlap proportion for CCE could not be computed
because the size of the TPs for CCE would have been too large for many of the strata, but an upper
bound was calculated using a simple formula described in Ernst and Ikeda (1994).

For the 2000s SIPP redesign it as planned, as of this writing, to use the Ernst (1986)
procedure, since E&I cannot be used again.  This indicates one approach to overlapping when
periodically redesigning a survey, use E&I the first time and subsequently Ernst (1986).  An
alternative would be to use Ohlsson’s procedure, which is much simpler operationally and preserves
the independence of sampling from stratum to stratum.  As for the relative performance in terms of
expected overlap between the Ohlsson and Ernst (1986) procedures, this author is not aware of any
empirical study comparing these methods.  However, it is surmised that the Ernst (1986) procedure
would typically produce a higher overlap when the designs being overlapped have similar
stratifications, since in the case when the stratifications are identical the Ernst (1986) procedure
yields an optimal overlap.  (In fact, of all the procedures discussed so far, Ohlsson’s is the only one
that does not produce an optimal overlap when 1=n  and the stratifications are identical.  In
particular, for this type of design the other procedures always retain a unit in the initial sample if it
has a higher selection probability in the new design than in the initial design, but Ohlsson’s
procedure may not if the selection probability for another unit in the stratum increases at a faster
rate in the new design.)  However, when the stratifications are very different and K may be large,
Ohlsson’s procedure might perform better than the Ernst (1986) procedure since the latter procedure
only can use information for the selected kI ′ , which may be of limited use when K is large.
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3.3  Large Number of Units Per Stratum Procedures

Sequential overlap procedures for large n  most commonly have been used for equal
probability sampling and have employed PRNs.  Most PRN procedures that are applicable to
unequal probability sampling, such as Brewer, Early, and Joyce (BEJ) (1972) which uses Poisson
sampling, do not guarantee a fixed sample size.  The PRN procedures are described in detail in
Ohlsson (1995) and are omitted from Table 1, except for Ohlsson’s procedure, which has very
different properties that have already been discussed.

Among procedures that do not use PRNs, Pollock’s (1984) procedure is similar to BEJ in that
it is applicable to pps sampling, employs Poisson type sampling, and does not guarantee a fixed
sample size. Otherwise, Pollock’s procedure has a desirable set of properties including simplicity
and optimality.  That is, the procedure maximizes (4) subject to (5), but does not satisfy (6).  The

ijπ ’s for Pollock’s procedure for the maximization problem are quite simply defined, that is:

(11)
  if  }0),1/()max{(

 if  }1,/min{

ijjj

ijjij

Ijpp

Ijp

∉−−=

∈=

π

ππ

It follows from (11) that the expected overlap for Pollock’s procedure is equal to (7).  In particular,
the expected overlap is .880 for Example 1, higher than for CCE.  This is because with Pollock’s
procedure if two units in S were in the initial procedure, they both can be retained, while with CCE
they cannot.  That is, CCE is optimal among sequential overlap procedures with fixed n, while
Pollock’s procedure is optimal without this restriction.  Pollock discusses a modification of his
procedure to force a fixed sample size in certain situations.  He does not discusses the minimization
problem, but the same general approach can be used except that ijπ  would be defined by

(12)
  if  }1),1/(min{

 if  }0,/)1max{(

ijj

ijjjij

Ijp

Ijpp

∉−=

∈−+=

π

ππ

The procedure of Brick, Morganstein and Wolters (BMW) (1987), which is omitted from
Table1, is similar to Pollock’s, except that BMW only considers equal probability sampling.

Ernst (1995) is a fixed sample size procedure for pps sampling but, unlike the Pollock and
BMW procedures, is not optimal.  The basic idea of the procedure in the case of the maximization
problem is that ijπ  is obtained by adding a positive amount ijα  to iπ  for each iIj ∈  and

subtracting a positive amount iβ  for each unit in S.  The set of ijα , iβ  must be such that

10 ≤≤ ijπ  for all ji, , and (5), (6) are satisfied.  For the minimization problem, the only difference

is that ijα  is added to iπ  for each iI ijα ’s are chosen to be as

large as possible.  Further details are omitted here.  The overlap for Example 1 with the Ernst

4.  Simultaneous Procedures

Finally, we consider procedures developed for simultaneous selection.  Mitra and Pathak’s

surveys, although it is optimal only for the overlap of two or three surveys.  Perry, Burt and Iwig’s
(PBI) (1993) procedure has fewer restrictions in applicability than M&P but, unlike the other

algorithms for either of these procedures.
Ernst (1996, 1998) developed optimal simultaneous procedures for two different situations.
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In Ernst (1996), 1=n  but the designs may have different stratifications.  In Ernst (1998) there are
no restrictions on n but the stratifications must be identical.  These two procedures employ the
algorithm in Causey, Cox, and Ernst (1985) for solving the two-dimensional version of the
controlled selection problem developed by Goodman and Kish (1950).  This algorithm involves
solving a sequence of TPs.  (The result in Ernst (1996) had been obtained earlier by Pruhs (1989)
using a much more complex graph theory approach.)

The basic idea of the algorithm for the Ernst (1996) procedure is as follows.  A two-
dimensional controlled selection problem is a two-dimensional tabular array A, that is, an array in
which all the elements except those in the final row and column correspond to the internal elements
of an additive table.  The elements in the final row and those in the in the final column are marginal
values of the array; in particular the element in the lower right hand corner of the array is the grand
total.   Let 21, DD  denote the two designs, with 21,TT  the number of strata in 21, DD , respectively.
In Ernst (1996) a single controlled selection problem is used to select the sample for both designs
for all strata together.  A is a )2()2( 21 +×+ TT  tabular array.  For the maximization problem, the

value, ija , of cell ),( ji , 1,...,1 Ti = , ,...,1 Tj = , is obtained by letting 21, ijkijk ππ  denote the 21, DD

selection probabilities, respectively, for the k-th unit that is in both 1D  stratum i and 2D  stratum j,

and then summing },min{ 21 ijkijk ππ  over all k.  In addition, let

,1)2( 2
=+Tia  1,...,1 Ti = ;    ,1)2( 1

=+ jTa  2,...,1 Tj = ;    0)1)(1( 21
=++ TTa

and let the remaining elements, which are in rows 11 +T , column 12 +T , and the grand total cell, be
defined so that the additivity constraints of a tabular array are satisfied.

A solution to a controlled selection problem consists of a sequence of integer-valued, tabular

arrays, rlmijll ,....,1),( ==M , of the same dimensions as A, and associated probabilities *
lp

satisfying:

1<− ijijl am  for all lji ,, ;   1
1

* =∑
=

r

l
lp ;   ∑

=

=
r

l
ijijll amp

1

*  for all ji,

Such a solution can be obtained by solving a sequence of TPs of the same dimensions as A, as
described in Causey, Cox, and Ernst (1985).  A particular lM  is chosen using the associated

probabilities.  The internal elements of the array are all 0 or 1 with a single 1 in each of the first 1T

rows and each of the first 2T  columns.  A 1 in cell ),( ji , 1,...,1 Ti = , 2,...,1 Tj = , indicates a unit

which is in 1D  stratum i and 2D  stratum j is to be selected to be in both samples, in which case the
particular unit is selected from among all such units with probability proportional to

},min{ 21 ijkijk ππ .  A 1 in cell )1,( 2 +Ti , 1,...,1 Ti = , indicates that the unit to be selected in 1D

stratum i is not in the 2D  sample, with the particular unit selected from among all units in 1D

stratum i with probability proportional to },min{ 211 ijkijkijk πππ − .  Similarly, a 1 in cell ),1( 1 jT + ,

2,...,1 Tj = , indicates that the unit to be selected in 2D  stratum j is not in the 1D  sample, with the

particular unit selected from all units in 2D  stratum j with probability proportional to

},min{ 212 ijkijkijk πππ − .  The Ernst (1996) procedure for the minimization problem is identical to

that for the maximization problem except },min{ 21 ijkijk ππ  is replaced everywhere by

}0,1max{ 21 −+ ijkijk ππ .

For the Ernst (1998) procedure, in contrast to the Ernst (1996) procedure, there is a separate
controlled selection problem A for each stratum S, with A an 5)1( ×+N  array.  Each of the first N
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rows corresponds to a unit in S.  Let 21, ii ππ  denote the 1D , 2D  selection probabilities, respectively,

for unit i.  Then for the maximization problem let

},min{ 213 iiia ππ= ;   2,1,3 =−= jaa iijij π ;    15 =ia

with the remaining elements of A, which are in row 1+N  or column 4, defined so that the
additivity constraints of a tabular array are satisfied.  The selected array arising from the solution to
the controlled selection problem has a single 1 and three 0’s in the first four columns of the first N
rows.  If for row i the 1 is in the first column, then unit i is in the 1D  sample only; if the 1 is in the

second column the unit is in the 2D  sample only; if it is in the third column then the unit is in both
samples; and if it is in the fourth column the unit is in neither sample.  For the minimization
problem the only change is that }0,1max{ 213 −+= iiia ππ .

Although both the Ernst (1996) and (1998) procedures require the solution of a sequence of
TPs, the dimensions of these TPs, given above, are typically not unreasonably large, so the
procedures tend to be computationally efficient.  Also both procedures have the desirable property
that if the 1D  selection probability for each unit does not exceed the 2D  selection probability, then

the 1D  sample is a subsample of the 2D  sample.  In addition, the expected overlap for both
procedures satisfy (7) for the maximization problem and (8) for the minimization problem, and
hence both procedures are optimal.  In particular, the overlap for Example 1 for the Ernst (1996)
procedure is .880, greater than for CCE and the same as for Pollock’s procedure, even though the
Ernst (1996) procedure has the additional restriction of a fixed sample size.  Ernst (1996)
accomplishes its greater overlap than CCE in a different way than Pollock’s procedure.  For
Example 1, with the initial design designated as 1D and the new design as 2D , Ernst (1996) takes
advantage of the simultaneous selection to increase the overlap by reducing the probability that two
units in S are in the 1D  sample, since only one of them could be in the 2D  sample, while increasing

the probability that at least one unit is in the 1D  sample.  CCE, in contrast, since it is a sequential

procedure, has no control over the 1D  sample.  Thus CCE is an optimal sequential, fixed sample
size procedure, while Ernst (1996) and (1998) are optimal simultaneous, fixed sample size
procedures.

A problem for future research is to develop, if possible, an optimal procedure which combines
the features of the Ernst (1996) and Ernst (1998) procedures, that is, which can be used when the
stratifications in the two designs are different and for any n.

Finally, we present here for the first time a procedure, that we have designated as Ernst
(1999), which preserves prespecified joint selection probabilities in each stratum in each design and
is applicable to the overlap of more than two surveys.  It is essentially a generalization of CCE to
more than two surveys, but like the M&P generalization of Keyfitz’s procedure, it is only applicable
to simultaneous selection, and, additionally, only when the stratifications for all the designs are
identical.  To simplify notation we present it in terms of three designs, 321 ,, DDD , but the same

approach holds for any number of designs.   For a stratum S, let ilπ ′  denote the probability of

selecting the i-th possible sample for 3,2,1, =lDl .  Let ijkx denote the joint probability of selecting

the i-th possible 1D  sample, the j-th possible 2D  sample, and the k-th possible 3D  sample from S.

Let ijkn be obtained by multiplying each unit that is in at least one of these three samples by one

less than the number of samples that it is in, and summing the product over all such units.  (Other
values for ijkn  are possible.)  Then the LP problem is to maximize or minimize

∑
kji

ijkijk xn
,,

 subject to the constraints ∑ ′=
kj

iijkx
,

1π ,    ∑ ′=
ki

jijkx
,

2π ,    ∑ ′=
ji

kijkx
,

3π



14

REFERENCES

Brewer, K. R. W., Early, L. J., and Joyce, S. F. (1972).  Selecting Several Samples from a Single
Population.  Australian Journal of Statistics, 14, 231-239.

Brick, J. M., Morganstein, D. R., and Wolters, C. L. (1987).  Additional Uses for Keyfitz Selection.
Proceedings of the Section on Survey Research Methods, American Statistical Association, 787-
791.

Causey, B. D., Cox, L. H., and Ernst, L. R. (1985).  Applications of Transportation Theory to
Statistical Problems.  Journal of the American Statistical Association, 80, 903-909.

Cochran, W. G. (1977). Sampling Techniques, 3rd ed.  New York: John Wiley.

Ernst, L. R. (1986).  Maximizing the Overlap Between Surveys When Information Is Incomplete.
European Journal of Operational Research, 27, 192-200.

Ernst, L. R. (1995).  Maximizing and Minimizing Overlap of Ultimate Sampling Units.
Proceedings of the Section on Survey Research Methods, American Statistical Association, 706-
711.

Ernst. L. R. (1996).  Maximizing the Overlap of Sample Units for Two Designs with Simultaneous
Selection.  Journal of Official Statistics, 12, 33-45.

Ernst, L. R. (1998).  Maximizing and Minimizing Overlap When Selecting a Large Number of
Units per Stratum Simultaneously for Two Designs.  Journal of Official Statistics, 14, 297-314.

Ernst, L. R. and Ikeda, M. M. (1994).  A Reduced-Size Transportation Algorithm for Maximizing
the Overlap Between Surveys.  Bureau of the Census, Statistical Research Division, Research
Report Series, No.  RR-93/02.

Ernst, L. R. and Ikeda, M. M. (1995).  A Reduced-Size Transportation Algorithm for Maximizing
the Overlap Between Surveys.  Survey Methodology, 21, 147-157.

Fellegi, I. P. (1966).  Changing the Probabilities of Selection When Two Units Are Selected with
PPS Without Replacement.  Proceedings of the Social Statistics Section, American Statistical
Association, 434-442.

Goodman, R. and Kish, L. (1950), Controlled SelectionA Technique in Probability Sampling,
Journal of the American Statistical Association, 45, 350-372.

Keyfitz, N. (1951).  Sampling With Probabilities Proportionate to Size: Adjustment for Changes in
Probabilities.  Journal of the American Statistical Association, 46, 105-109.

Kish, L., and Scott, A. (1971).  Retaining Units After Changing Strata and Probabilities.  Journal of
the American Statistical Association, 66, 461-470.

Mitra, S. K., and Pathak, P. K. (1984).  Algorithms for Optimal Integration of Two or Three
Surveys.  Scandinavian Journal of Statistics, 11, 257-263.



15

Ohlsson, E. (1995).  Coordination of Samples Using Permanent Random Numbers.  In Business
Survey Methods, eds. B.G. Cox, D. A. Binder, D. N. Chinnappa, A. Christianson, M. J. Colledge,
and P. S. Kott.  New York: John Wiley, 153-169.

Ohlsson, E. (1996).  Methods for PPS Size One Sample Coordination.  Institute of Actuarial
Mathematics and Mathematical Statistics, Stockholm University, No. 194.

Ohlsson, E. (1999).  Comparison of PRN Techniques for Small Sample Size PPS Sample
Coordination.  Institute of Actuarial Mathematics and Mathematical Statistics, Stockholm
University, No. 210.

Pathak, P. K., and Fahimi, M. (1992).  Optimal integration of surveys.  In Essays in Honor of D.
Basu, eds.  M. Ghosh, and P. K. Pathak.  Hayward, California: Institute of Mathematical Statistics,
208-224.

Perkins, W. M. (1970).  1970 CPS Redesign: Proposed Method for Deriving Sample PSU Selection
Probabilities Within 1970 NSR Strata.  Memorandum to Joseph Waksberg, U.S. Bureau of the
Census.

Perry, C. R., Burt, J. C., and Iwig, W. C. (1993).  Methods of Selecting Samples in Multiple
Surveys to Reduce Respondent Burden.  Proceedings of the International Conference on
Establishment Surveys, American Statistical Association, 345-351.

Pollock, J. (1984).  PPES subsampling of Two Subdomains with Independent Probabilities.
Proceedings of the Section on Survey Research Methods, American Statistical Association, 223-
228.

Pruhs, K. (1989).  The Computational Complexity of Some Survey Overlap Problems.  Proceedings
of the Section on Survey Research Methods, American Statistical Association, 747-752.

Raj, D. (1956).  On the Method of Overlapping Maps in Sample Surveys.  Sankhya, 17, 89-98.

Schrijver, A. (1986).  Theory of Linear and Integer Programming.  New York: John Wiley.

Sunter, A. B. (1989).  Updating Size Measures in a PPSWOR Design.  Survey Methodology, 15,
253-260.

The views expressed in this paper are attributable to the author and do not necessarily reflect
those of the Bureau of Labor Statistics.

RÉSUMÉ

Beaucoup de procédures ont été développées pour maximiser ou réduire au minimum la
superposition des unités de prélèvement. Les propriétés des diverses procédures sont récapitulées.
Ces propriétés incluent si le procédé est pour des sélections séquentielles ou simultanées des
échantillons, le nombre d'unités des échantillons par strate, si les strates dans les conceptions
superposées peuvent différer, et si le procédé est applicable quand l'échantillon initial n'a pas été
choisi indépendamment d'une strate à l'autre.


