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Abstract

This paper extends previous research by LaFrance [1985, 1986, 1987] by deriving the
necessary parameter restrictions for two additional classes of incomplete demand system models
to have symmetric Slutsky substitution matrices in a local neighborhood of price and income
values. In contrast to LaFrance’s previous research, this paper considers models that treat
expenditures and expenditure shares as the dependent variables in the specified incomplete
demand systems. Along with the eight models considered by LaFrance, the sixteen alternative
specifications considered here represent a complete characterization of the implications of

Slutsky symmetry for the linear, log-linear, and semi-log incomplete demand system models.



1. Introduction

In a series of papers, LaFrance [1985, 1986, 1990] derives the necessary restrictions for
the linear, log-linear, and semi-log incomplete demand system specifications to have symmetric
Slutsky matrices in an open neighborhood of relevant price and income levels. These models
employ the quantities demanded by the individual as the dependent variables in the specified
demand equations, share a common linear-in-parameters and additive structure, and have been
extensively used in applied work (e.g., Englin, Boxall, and Watson [1998], Shonkwiler [1999]).
This paper extends LaFrance’s results by examining the implications of Slutsky symmetry for
sixteen additional incomplete demand system models. In contrast to the specifications considered
by LaFrance, these structures treat the individual’s expenditures and expenditure shares on the
goods of interest as the dependent variables. Although complete expenditure and expenditure
share demand systems models are frequently employed in empirical work, incomplete
expenditure and expenditure share systems have received far less use. This paper’s objective is to
introduce to applied researchers a menu of theoretically consistent incomplete demand system
specifications that employ expenditures and expenditure shares as the dependent variables. The
necessary parameter restrictions for the linear, log-linear, and six variations of the semi-log
expenditure and expenditure share models are derived. When closed form solutions exist, the
quasi-indirect utility functions for the restricted demand models are also derived. Along with
LaFrance’s earlier work, the new results presented in this paper give a complete characterization
of the implications of Slutsky symmetry for the linear, log-linear, and semi-log incomplete
demand system models.

The paper is organized as follows. The next section reviews the theory of incomplete
demand systems. Section Il presents the necessary parameter restrictions, the implied structure
of the expenditure and expenditure share models, and the structures of the quasi-indirect utility

functions when closed form solutions exist. For completeness, results for the eight models



considered by LaFrance are also presented. Because the necessary restrictions for Slutsky
symmetry to hold in an open neighborhood of price and income levels are generally found to be
quite restrictive, the paper concludes with a discussion of the relative merits of imposing Slutsky

symmetry in an open neighborhood versus at a single set of price and income values.

Il. Incomplete Demand Systems

Applied researchers are often interested in modeling the demand for a subset of goods
entering an individual’s preference ordering. To consistently model consumption for these goods
within a demand systems framework, the analyst may employ one of three sets of assumptions.
One approach assumes the goods of interest enter consumer preferences through a weakly
separable subfunction. In this case, the analyst models consumption for the goods of interest
conditional on total expenditures allocated to them. Alternatively, the analyst may assume that
the other goods’ prices vary proportionately across individuals and/or time. In this situation, the
other goods can be aggregated into a single Hicksian composite good, and the analyst models the
demand for the goods of interest as functions of their prices, total income, and the composite
good’s price index. A third approach involves the specification of a demand system for the goods
of interest as functions of their own prices, total income, and the other goods’ prices that are
assumed quasi-fixed. This latter strategy falls under the rubric of incomplete demand system
approaches and has been systematically investigated by Epstein [1982] and LaFrance and
Hanemann [1989].

The incomplete demand system framework assumes that consumer demand for a set of n

goods can be represented by the following system of Marshallian demand functions:

X =x(p,q,y B)i=1..,n 1)



where X; is the Marshallian consumer’s demand for good i, p is a vector of prices for the n
goods in (1), g is a vector of prices for m other goods whose demands are not explicitly
specified, y is the consumer’s income, and B is a vector of structural parameters. Following
LaFrance [1985, 1986, 1990], p, g, and y are all normalized by 77(q) , a homogenous of degree

one price index for the m other goods, to insure the demand equations are homogeneous of degree
zero in prices and income. It is because the analyst models the demand for the n goods in x as
functions of all n + m prices and income that the demand specification in (1) is incomplete.

In principle, the analyst can generate (1) by either: 1) specifying an indirect utility
function and using Roy’s Identity; or (2) specifying the system of incomplete demand equations
directly. With either approach, a significant question for analysts attempting to use (1) to
generate consistent Hicksian welfare measures for a set of price changes is whether the system is
consistent with a rational individual maximizing her utility subject to a linear budget constraint.
This is the classic integrability problem. As noted by LaFrance and Hanemann [1989], there are
at least three distinct concepts of integrability in the incomplete demand systems framework.
This paper employs LaFrance and Hanemann’s concept of weak integrability. This concept
implies that within a local neighborhood of price and income values, there exists a continuous and

increasing preference ordering that both gives rise to and is quasiconcave in X and s, where s is
defined as total expenditures on the m other goods, i.e., S=Yy— S, p;X; . Compared to other

concepts of integrability in an incomplete demand systems framework, weak integrability
represents the minimal set of assumptions that allow the analyst to construct exact welfare
measures for changes in p conditional on quasifixed values of g.

Theorem 2 in LaFrance and Hanemann states that an incomplete demand system is
weakly integrable if the following four conditions are satisfied: 1) x is homogenous of degree

zero in prices and income; 2) x is nonnegative, i.e., X =0; 3) expenditures on the n goods



included in the incomplete demand system are strictly less than income, i.e., $i p;X;, <Y; and

4) the Slutsky substitution matrix, i.e., the nxn matrix whose elements consist of:

:ai+aixj,i,jﬂl,...,n (2)
op; oy

ij

where 0x; /0p; and 0x; /dy are partial derivatives of the Marshallian demand functions with

respect to price and income, respectively, is symmetric and negative semidefinite. Symmetry is

accomplished if for each good i, jOn, i # j, Si =Sjis

whereas negative semidefiniteness
requires that the Slutsky matrix’s eigenvalues are nonpositive. The normalization of prices and

income by the price index, 77(q), implies that the first condition is satisfied, and the second and

third conditions are innocuous in many applied situations and assumed to hold in an open
neighborhood of prices and income. Thus, the necessary conditions for weak integrability that
imply added structure for (1) are the symmetry and negative semidefiniteness of the Slutsky
matrix.

In a series of papers, LaFrance derives the necessary parameter restrictions for the
Slutsky matrix to be symmetric for eight incomplete demand system specifications — the linear
model [1985], the log-linear or constant elasticity model [1986], and six alternative semi-log
models [1990]. These models or their logarithmic transformations share a common linear-in-
parameters structure and are additive in their arguments. Table 1 lists the eight demand
specifications LaFrance considers. This paper extends his results by deriving the implications of

Slutsky symmetry for two additional classes of incomplete demand system models. Sixteen
additional specifications are considered that treat either expenditures (e, = p;X;,€, >0),
expenditure shares (s, = p,X;/y,0<s, <1), or their logarithmic transformations as the

dependent variables. Tables 2 and 3 list the expenditure and expenditure share specifications

considered in this paper.



In addition to expanding the menu of specifications from which analysts can choose,
these models may be of interest to applied researchers for at least two additional reasons. Since
Stone’s [1954a, 1954b] pioneering work, it has been common in applied demand analysis for
expenditures, expenditure shares, or transformations of them to be specified as the dependent
variables in the estimated system of equations. Three of the most widely used empirical
specifications, the linear expenditure system (Klein and Rubin [1947-1948]), the Indirect
Translog (Christensen, Jorgenson, and Lau [1975]), and the Almost Ideal Demand System
(Deaton and Muellbauer [1980]), treat expenditures or expenditure shares as the system’s
dependent variables. Furthermore, many of the expenditure and expenditure share structures
explored here may be of interest to researchers estimating dual specifications of generalized
corner solution models (Bockstael, Hanemann, and Strand [1986]), i.e., demand systems that
consistently account for the presence of both interior and corner solutions. At present, empirical
specification of these models proposed by Lee and Pitt [1986] and recently implemented by
Phaneuf [1999] only consider complete or weakly separable demand systems, but these models
can also be estimated within an incomplete demand system framework.III Moreover, the
implementation of the dual models proposed by Lee and Pitt depend critically on the existence of
closed form solutions for the implied virtual price functions, i.e., the prices that would drive the
consumer’s demand for the nonconsumed goods to zero (Neary and Roberts [1980]). Because
LaFrance’s (x1)-(x4) specifications and the proposed (e1)-(e4) and (s1)-(s4) structures allow for
corner solutions and have p entering linearly or log-linearly, they can in principle be inverted to
solve for the implied virtual price functions.

For any pair of goods i, j Oi,...,n;i # j, the Slutsky symmetry restrictions require that

in an open neighborhood of prices and income, the following conditions must hold for the

demand, expenditure, and expenditure share equations, respectively:

! See von Haefen [2000] for a discussion of some practical issues associated with estimating these models.
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where all derivatives are with respect to the Marshallian demands, expenditures, and expenditure
shares, respectively. Table 4 reports the structure of these restrictions for the eight demand
specifications explored by LaFrance, and Tables 5 and 6 report the restrictions for the sixteen
expenditure and share models from Tables 2 and 3, respectively.

In addition to ascertaining the necessary parameter restrictions implied by Slutsky
symmetry, determining whether the restricted demand systems can be linked to closed form
representations of preferences may be of interest to applied researchers. For example, virtually
every recently proposed method for linking intensive and extensive margins of consumer choice
in a behaviorally consistent framework (e.g., Cameron [1992], Eom and Smith [1994]) assumes
that consumer preferences can be represented by a utility function with a closed form solution.
Without the closed form, these strategies would not be econometrically viable.

As noted by LaFrance and Hanemann [1989], a difficulty with the incomplete demand
system framework is that one cannot recover the complete structure of preferences with respect to
all n + m goods from an n-good demand system that satisfies the conditions for weak
integrability. However, one can recover what Hausman [1981] has called the quasi-indirect
utility function by solving a series of partial differential equations. For the demand, expenditure,
and expenditure share models, this can be accomplished sequentially by first solving one of the

following partial differential equations:



"aE(D]: X (1,0, E( B) ©)

P;

;IE(D] —e.(p. 0, E(J} B) @
np,

AINE( _

anl—Sl(p,q,E(DlB) (8)

where E(0)J is the expenditure function evaluated at the baseline utility, U , and good 1 is chosen
arbitrarily with no loss in generality. In some cases, the techniques of differential calculus can be

used to derive closed form solutions for E(0] (or INE(J) up to a constant of integration,

K, (U, P,q), where P is the price vector for the n — 1 remaining goods in the specified
incomplete demand system. Because the constant of integration depends on the n — 1 other
prices, one can recover additional information about the structure of the expenditure function by

sequentially solving the following differential equations fori=2,..., n:

OE(, K, ()

on  op (POEOID X
OE() +0Ki_1(01:ei(p’q’E(Dw) (10)
dlnp, alnp,

dln E(m+aKi_l(m=Si(p,q,E(mB) (11)

dlnp, JdlInp,

where K._, (O is the constant of integration arising from the evaluation of the first i — 1 partial

differential equations and E([ﬂ is the identified component of the individual’s expenditure

function (i.e., that portion of the expenditure function excluding the constant of integration).

When the analyst has solved all n differential equations, the individual’s expenditure
function is identified up to the constant of integration, Kn(U,q), which is independent of p.

The fact that the constant of integration is a function of the baseline utility as well as the other m



goods’ prices suggests that the analyst cannot identify the full structure of the expenditure

function with respect to all n + m goods from an incomplete demand system. However, one can
obtain the quasi-indirect utility function by treating K, (U,q) as the quasi-baseline utility and

inverting, i.e.:

U=K,U,q)=¢(p.q,y,B) (12)
LaFrance and Hanemann formally demonstrate that @(p,q, Y, 8) can be used to consistently

evaluate the welfare implications of one or several price changes for the n goods.

. Necessary Parameter Restrictions, the Structure of the Restricted Demand Systems, and

the Quasi-Indirect Utility Functions

Tables 7, 8, and 9 reports all possible combinations of parameter restrictions that satisfy
Slutsky symmetry for the demand, expenditure, and share specifications reported in Tables 1, 2,

and 3, respectively. The results in Table 7 were reported originally in LaFrance [1985, 1986,

1990] and are presented here mainly for completeness.EI For expositional purposes, these tables
employ some simplifying notation used by LaFrance. Let J, K, and N denote index sets satisfying

00JOKON={,2,..,n}, and let ~ denote set differences, e.g., N ~J ={iON;iJJ }.

Further assume thatif J Z20,10J ,orif K #0, 10K..
The derivation of these results follows the logic laid out in LaFrance [1985, 1986]. For

each specification, three mutually exclusive and exhaustive types of income effects for goods i

and j are considered: 1) no income effects, i.e., y; =, =0; 2) both goods having income

2 A technical appendix with the derivations for the expenditure and expenditure share parameter restrictions
can be obtained from the author upon request. The appendix also contains derivations for LaFrance’s (x2)-
(x7) models, and the interested reader can consult LaFrance [1985, 1986] for the derivations of the (x1) and
(x8) specifications.
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effects, i.e., y; #0;y; # 0; 2) only one good having income effects, (y; #0;y; =0). For each

of these possibilities, the necessary parameter restrictions for Slutsky symmetry to hold in an
open neighborhood of relevant prices and income were derived. The derivative properties of the
Slutsky symmetry conditions were used extensively to identify these parameter restrictions.
Because equations (4), (5), and (6) are assumed to hold over a range of price and income values,
they are identities that can be differentiated to generate additional restrictions. Theorem 2 in

LaFrance and Hanemann [1989]) identifies the following two equalities:

0s. 0S:
= kO # (13)
op,  0p,
0s. 0S.
— =L, j0L..,ni#j (14)
ady oy

One should note, however, that these equalities are only a subset of the restrictions that can be
generated by differentiating the Slutsky symmetry identities. In principle, one can multiply
and/or add the same functions of market prices and income to both sides of the Slutsky symmetry
conditions and still preserve the identity relationship. One can then differentiate these modified
Slutsky identities to generate additional equalities that may help to identify the necessary
parameter restrictions. Once the parameter restrictions were identified for the three distinct
income relationships, consistent combinations of the three sets of parameter restrictions were then
determined, and the results are reported in Tables 7, 8, and 9.

To help clarify the implications of the parameter restrictions reported in Tables 7, 8, and
9, Tables 10, 11, and 12 present the structure of the restricted incomplete demand systems. Not
all cross equation restrictions within sets of good can be represented in the restricted demand
specifications, so these tables should only be interpreted as suggestive of the general structure.

Tables 13, 14, and 15 also present the structure of the quasi-indirect utility functions for all

® A review of the results reported in LaFrance [1990] uncovered minor extensions for the (x5) and (x6)
specifications as well as a few typographical errors for the remaining specifications. The results reported in
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restricted models with closed form solutions. These tables suggest that roughly one-half of the
restricted models can be linked to closed form representation of consumer preferences.
Collectively, the results reported in Tables 7 through 15 imply that none of the twenty-
four structures considered in this paper allow for both flexible income and Marshallian cross-
price effects, and some do not allow for either. Perhaps the most general specifications are the
(s3-1) and (s4-1) models that allow for general cross price effects but restrictively assume that all
consumer demand equations are homothetic in income. Collectively, these findings suggest that
strong and in many cases implausible assumptions about the structure of consumer preferences
are required for analysts employing linear, semi-log, and log-linear incomplete demand system

models.

1. Discussion

This paper has extended LaFrance’s earlier research by identifying the necessary
parameter restrictions for systems of linear-in-parameters incomplete expenditure and
expenditure share equations to satisfy the integrability condition of Slutsky symmetry. Although
Slutsky symmetry is a necessary condition for the existence of a rational underlying preference
ordering, it is not sufficient. As noted in Section Il, integrability also requires that the Slutsky
matrix must be negative semidefinite, i.e., the matrix’s eigenvalues must be nonpositive.
Imposing this later condition is confounded because the Slutsky matrix’s elements are in general
nonlinear functions of prices, income, and the demand system’s structural parameters. As a
result, the Slutsky matrix may not be negative semidefinite over the full range of relevant price
and income values for the welfare scenarios under consideration.

Existing approaches to imposing curvature restrictions on systems of equations can be

grouped into two broad categories: 1) those that impose negative semidefiniteness of the Slutsky

Tables 7, 10, and 13 incorporate these extensions and correct for the errors.
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matrix at a single point (such as the each individual’s observed prices and income or the sample
average of these values); and 2) those that impose negative semidefiniteness globally over the full
range of relevant price and income values through parameter restrictions (see Pitt and Millimet
[2000] and Diewert and Wales [1987] for discussions of existing approaches). Although the
latter approach is similar in spirit to the strategy for insuring Slutsky symmetry described in this
paper, the former suggests a conceptually different strategy. In principle, the analyst could use
the conditions in Tables 4, 5, and 6 as binding nonlinear constraints evaluated at the observed
market price and income values when estimating the structural parameters of the demand
equations. Although estimation of a system of equations subject to side constraints can be
computationally burdensome, the approach has some precedence in the existing literature
(LaFrance [1991]) and has both advantages and drawbacks. On the one hand, the results
presented in the previous sections strongly suggest that imposing Slutsky symmetry on linear-in-
parameters demand, expenditure, and expenditure share systems greatly limits the analyst’s
ability to allow for flexible income and Marshallian cross price effects. Imposing symmetry on
the Slutsky matrix at a single point allows the analyst to incorporate these effects while
preserving some degree of theoretical consistency. On the other hand, economists interested in
using the estimated system of equations to evaluate the welfare implications of nonmarginal price
changes may find it troubling that the model is capable of generating only approximate Hicksian
values. Moreover, because symmetry of the Slutsky matrix is not preserved over the entire range
of the relevant price changes, the approximate welfare measures are not independent of the
ordering of the price changes.EI Although these factors suggest that imposing Slutsky symmetry at
a single point does not strictly dominate the approach pursued in this paper, it may be preferable

with some applications.

* See LaFrance [1991] for a possible resolution to this problem.
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Table 1
Incomplete Demand System Models*

() % =a @+ Bup +yy
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08) % =a,@e0Ty Bup +yy
(x6) % =a, (q)expﬁz By P gy
x7) X =a, (q)lj pf exp(y,y)

(x8) X =q, (q)lj Py

! The (x1) model is considered by LaFrance [1985], the (x2)-(x7) models are considered by LaFrance
[1990] and coincide with models (m3), (m1), (m2), (m4), (m5), and (m6), respectively, and the (x8) model
is studied in LaFrance [1985].



Table 2
Incomplete Expenditure System Models

(e1)

(€2)

(€3)

(e4)

(€5)

(€6)

(€7)

(€8)

@D

D

@D

@D

@D

@D

@

@

=a;(q) + Zﬁik P +ViY
=a;(q) + Zﬁik P +Yilny
=a;(q) + Zﬁik Inp, +y;y
=a,@+Y B np, +yIny
=a; (q)expéz Bi Pt yé
=ai(q)exp§2 Bic Py ENV‘
=, @[ ] pf* exp(1,Y)

=ai(q)|j P y”




Table 3
Incomplete Expenditure Share System Models

(s1)

(s2)

(s3)

(s4)

(s5)

(s6)

(s7)

(s8)

[%2]

w

[%2]

[%2]

[%2]

[72]

v

o

=a;(q) + Zﬁik P +ViY
=a;(q) + Zﬁik P +Yilny
=a;(q) + Zﬁik Inp, +y;y
=a,@+Y B np, +yIny
=a; (q)expéz Bi Pt yé
=ai(q)exp§2 Bic Py ENV‘
=, @[ ] pf* exp(1,Y)

=ai(q)|j P y”




Table 4
Slutsky Symmetry Conditions for Incomplete Demand System Models
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Table 5
Slutsky Symmetry Conditions for Incomplete Expenditure System Models
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Table 6
Slutsky Symmetry Conditions for Incomplete Expenditure Share Models
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Table 7

Slutsky Symmetry Restrictions for Incomplete Demand System Models
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y, =0,iON
-0 O
ai(q)=ﬁml(q)+ﬁ—ﬁmim
Yi 0O Y1 Yi O
Bi =i /y))By;,i0J, jON
Bij =:Bji'i’jDN
y, =0,iON
ﬁij =0,i, JON,i # ]
.y, =0,iON
a; (@) =(B; / Bi)ay(q) >0,i00J
Y =y ik
. [3” :ﬁjj,i,jDJ
a; (@) =(B; / By)ay(q) >0,i0J
.Y =y, 10N
. [3” :ﬁjj,i,jDJ
.Bij =0,i0J,jON ~ J;

ION~J,JON,i# ]
a; (@) =(B; ! By)a,(q)>0,i0J

a;(q) :al(q)%§> 0,i00J
By =1+B;,1,j0J,i#j

By =B, i0K,jON~K

Vi =y, 10K

2c. sgn(y;) =sgn(y,) #0,i0J
2d. B; =0,iO0N ~J, JON
2e.y;, =0,iON~J

2f. a,(q)=-B;/y, >0,iON ~J

[«})

2a. a;(q) = (v; /y,)a.(q),iON

2b. By =(viy;/yi)Bu, i, jON

2c. sgn(y,) =sgn(y;) #0,iON

2a. B; =0,i, jON

2b. a;(q) = (y; /yy)a,(q),iON

2c. sgn(y;) =sgn(y,) #0,i ON

1d. B; =0,i0J, jOK ~ J;i0K ~ J,
jOK,i#j;iON~K,jON

le. y, =0,iON~K

if. a,(q)=-B,/y, >0,iON ~ K

2b. y, =y,,iOK

2¢. B; =By, j07

2d. B; =0,i0J,jOK~J;i0K~ ],
jOK,iz j;iON~K,jON

2e. y, =Li0ON~K

2f. a,(q) =B, >0,iON ~K

le. B; =0,i0J, jOK ~ J;iOK ~J,
jOK,iz j;iON~K,jON,i#j

1f. y, =0,i0ON ~ K

1g. B, =-LiON ~K

1h. a,(@)=-B;/y, >0,iON ~K

o

! LaFrance [1985] notes that an additional restriction arising from the negative semi-definiteness of the

Slutsky matrix assumption is 3, +y,x, < 0 for the J subset.

Z Note that the N~K subset is empty if y, =0.
% For the (x5-1) and (x6-2) restricted models, LaFrance [1990] further decomposes the K~J subset into one
set with B,, = 0 and another with 8, # 0. Similarly for the (x6-1) restricted model, LaFrance

decomposes the N~J subset into one set with B, = 0 and another with B, # 0.



Table 7 (cont.)
Slutsky Symmetry Restrictions for Incomplete Demand System Models

4 _ -
(8) la. a;(q) = al(q)m: gﬂ §> 0,i0J ;Z C; (S)O,_i g “K> 010N ~ K
1b. B, =1+ B, 0,j0J,i# ] 2e.y; =LiON ~K
lc. y, =y,,iON 2f'Bij:B1j1iDK’jDN~K
1d. B, =0,i0J, jON ~ J; 29. B; =-LiON~K
iON~J, jON,i # j 2h. B; =0,i0J,jOK ~J;

m+p 0 iOK~J,jOK,i#j;
2a. ai(q)—al(q)mgm'm iON ~ K, jON,i # ]
2b. By =1+ B,i0,j0J,i# ]

jj!ll

* For the (x7-1) and (x8-2) restricted models, LaFrance [1990] further decomposes the K~J subset into one
set with B,, = -1 and another with B, # -1. Similarly for the (x8-1) restricted model, LaFrance

decomposes the N~J subset into one set with 3, = -1 and another with 3, # -1.



Table 8

Slutsky Symmetry Restrictions for Incomplete Expenditure System Models

(e1)

(€2)

(€3)

(e4)

(€5)
(€6)
(e7)"

1a.

1b.
2a.
2b.
2cC.
2d.
2e.

2f.

la.

1b.

1a.

1b.
2a.
2b.

la.
.y, =0,iON

a;(a) =(y; /y)ay(a),iON
By =0,i, JON,i # ]

By =0,i, JUN,i # ]

- 0;(q) =(B;i / Bi)a, (@) >0,i0J
By =By, 1,107

. By =By, 10K, jON~K

Y =0k

B; =0,i, JOUN,i # ]

y, =0,i0N

y, =1i0J

B.=0,i0J

a; (@) = /y)a,(q),i 0K

y, 20,Li0K ~J

B =viB; Iy, -1,i0K, jOK ~J

Bi =i ly;)B, 1, iIDK, KON,
kK#i,j

B; =0,i, JON,i # ]

y, =0,i0N

Bij :Bji’i7jDN

y, =0,i0N

Bij :(yi/yl),Blj,i,jDJ
Bij =0,iON~J,jON

B; =B, i, jON

29.
2h.

B; =0,iON~K,jON,i#j
y, =0,i0ON ~K

2i.a,(q)=0,iON~K

2j.

3a.
3b.
3c.
3d.
3e.
2a.
2b.
2cC.
2cC.
2d.

2e.

2f.
2b.
2C.

1b.
1b.

le.

1f.

1g.

Bi ==Bily,>0,iN ~K
y, =1
y, =0,i0ON,i#1
By =0,i,JON,iz1 j#il
Bi =—By,iON,izl
a;(@)=0,idN,izl
B; =0,i,jON
a; (@) =(vi/y)a,(a),iON
sgn(y;) =sgn(y,) # 0,iUN
sgn(y;) #0,i0J
y, =0,i0N ~J
N , L O
ai(q):ﬁml(q)—&+&mlm\]
1 [ Yi Yi [l
ai(q):—ﬁli/yl >0,i0N~1J
Bij =(yiyj/y12)B111i’jDN
sgn(y;) =sgn(y,) # 0,i0N

yV; =Y., 10N

V; =Y., 10N

B; =0,i00J, jOK ~J;i0K ~J,
JOK, iz iON~K,jON

y, =0,i0N ~ K

a;(q)=-B;/y, >0,iON ~K

! Note that the N~K subset is empty if y, =0.



Table 8 (cont.)
Slutsky Symmetry Restrictions for Incomplete Expenditure System Models

(€8)

la. a;(q) = (B; / By)a,(q)>0,i00J 2c. a;(q) =B, >0,i0ON ~K

1b. B, =B, i,j03d 2d. y, =0,i 0K

1c. y, =y,,iON 2e. y; =Li0ON ~K

1d. B, =0,i0J, jON ~ J; 2f. B; =By, 10K, jON ~K
iON~J,jON,i#j 29. B; =0,i0J, jOK ~J;

2a. a;(q) =(B; / Bu)a, (@) >0,i0J iO0K~J,jOK,i#j

2b. B, =B, i, j 0 iON ~K, jON




Table 9
Slutsky Symmetry Restrictions for Incomplete Expenditure Share System Models

(s1) 1la y, =0,iON 2b. B; =0,i,jON
1b. B; =0,i, JON,i # j 2c. sgn(y;) =sgn(y,) #0,iON
2a. a; () = (y;/y) ay(q), iON
(s2) 1la.y,=0,iON 29. By =i 1y;)Bj, 1, JOK, KON,
1b. B; =0,i, jON,i # j K#i,j
2a. y, =1,i0J 2h. B; =0,i0N ~ K, jJON,i # ]
2b.y, 20Li0K ~J 2i.a,(q)=0,iON~K
2c.y,=0,iON~K 2j. B, =B, 1y, >0,i0ON ~K
2d. a;(q) =(y; /y,)ay(q),i0K 3a. y, =1
2e. B, =0,i0J 3b.y, =0,iON,i #1
B. 3c. B; =0,i, jON,izL j#il
ZtBr:%B”JDKJDK~JJ¢j Py J_ _ :
: -1 3d. B, =-B,,i0ON,i#1

j

3e.a,(q)=0,i0ON,i 1

(53) la. Bij :Bji'i'jDN 2b. :Bij :(yiyj/ylz)Bll’i'jDN
1b. y; =0,i0N 2c. sgn(y;) =sgn(y;) #0,i 0N
2a. o;(q) =(y; /yy)ay(a),iON

(s4) la. B; =By, i, jON 2b. By =(vi1y,)By;,10J, jON
1b. y, =0,iO0N 2c.a,(q)=-pB;/y,>0,i0ON~J
2.a,(@) =V P P ffing 20 P 0iEN 3 IER

yi OVYi Yi O 2e.y;,=0,iON~J
2f. sgn(y,) #0,i0J

(s5) la. B; =0,i, JOUN,i # ] 1b. y, =y,,iON

(s6) la. B; =0,i, JOUN,i # ] 1b. y, =y,,iON

(s7) 1la ai(Q) :(Biilﬁll)al(q) >0,i0] 1d. Bij =0,i0J, JON~J;

Ib. B; =By, i, j0J iON~J,jON,i#j

lc. y, =y,,iON




Table 9 (cont.)
Slutsky Symmetry Restrictions for Incomplete Expenditure Share System Models

(s8)

la. a;(q) = (B / By)a,(q) >0,i00J

1b. B =By, 1,j0J

lc. y, =y,,iON

1d. B; =0,i00J, jON ~ J;
ION~J,JON,i £ ]

2a. o;(q) = (B / By)a, (@) >0,i00J

2b. B, =By, 1,07

2c.a,(q)=p6,>0,i0N~K

2d. y, =-1i0K

2e.y,=0,iON~K

2f. By =B,;,i0K, JON ~K

29. B; =0,i0J, jOK ~J;
IiOK~J,j0OK,i# J;
ION~K,jON




Table 10
Restricted Incomplete Demand System Models

(x1)

(x2)

(x3)

(x4)

(x5)

(x6)

(x7)

BN RN e

1!

>

X

X.

=ai(q)+%ﬁikpk,iDN

y| Bl Bli D
() + 2 -+ 5 B,p +y,ygidd

V1D1 Y1 i k% H ' O
=Py !y, iON~J
=ai(q)+%ﬁikpk,iDN

0.
——ml(q)+ﬁ“ VP +y.InygiON
Vi O Y1 ¥ U

=a,(q)+ B, Inp,,iON

=(y; /'y )a,(q) +y,y),iON
=a;(@)+B;Inp;,i0N

=(y; /y)a,(q) +y,Iny),i0ON
_g_al(q)e)(pg; Bu Py + Egﬁlk Py +V1YD|DJ

11

:ai(Q)eXpEBii p; + Blk Py +V1yD|DK ~J

kO

==By !y, iON~K

g—al(q)expgz B P, D’“ igdJ

11

=a;(a)exp(B; p;)y”, iON ~J
_al(Q)engg B Py + DZBlk pkEl'DJ

=ai(q)expD8” p; + Dgﬁlk kaiD K~1J
U k=K O
=Byy,iUN ~K
|:[I'-'-[;ii 1+ B .
=a 0P . 1 ex ,1ad
A@m pr ﬂ P JN'ijk p(y.Y)
=a,(q)p/ J_| pi exp(y,y),iOK ~J

= _(Bn /y1)pi_1' iION~K

! Note that the N~K subset is empty if y, =0.



Table 10 (cont.)
Restricted Incomplete Demand System Models

(x8) 1. +p. O
X =a (q)ﬁ“ o [ piPey”,i0d
' +B11D !:l “
x; =a,(@)pfry",iON ~J
2,

[+, O 148 Bu
X =a.(q) =0 []pc™ [P 10
STyl
X, =a,(@)p e i0K~]
J1P

X = Byp; y,iON~K




Table 11
Restricted Incomplete Expenditure System Models

€l) 1. e =a(@+Bp,i0N
2. e =a,(q)+ Bikpk"'mgﬁlkpk"'y’im\]
kel =
ei__al(q)+ZB|kpk+ Blkpk+yiy’i|:|K~‘]
Y1
e =—(By/y)p, iON~K
3 e =a @+ Bupcty
1=a; k; 1« P
€; :Bilpl_BlipiliDN!i¢1
€2 1 e =a/(@)+Bp,i0ON
2. € = (yi /yl)(al(q) Y1 In Y), iON
(e3) 1. ei:ai(q)-l_ZBiklnpk’iDN
o
2. _ _ L.
€ _Lml(Q)_&*’&"' ;Blk Inp, +y,ygiQJ
Vi[O Yi Vi U
€ ==B;/y,,iON~]
(e4) L ei:ai(q)-l_Zﬁiklnpk’iDN
o
2. 0.
€ = LWl(Q)"'BM VeInp,+y,InygiON
Y10 Y1 « U
(€5) 1. e =a;(q)exp(B;p; +y1y),iON
€6) 1. e =a,(g)exp(B;p)y" iON
1 .
(e7) 1. & = (B! By, (q)ﬂ P J_l p* exp(y,y),i0J
D KON=K
& =a;(@p [P exply,y),i0K ~J
KON =K
& ==(B;/y.), 10N ~K
(e8) 1 & = (B /Bll)al(q)ﬂ peey”,idd
o
e =a,(q)p’y”,iON~J
2. e =(By!Bu)ay (@[] pfe [ p.i03
11)01 !:J K kJN_!K K
€

c=a,(q)p/ J‘| p,i0K ~J

e, =By, iON~K

! Note that the N~K subset is empty if y, =0.



Table 12
Restricted Incomplete Expenditure Share System Models

(s1)

(s2)

(s3)

(s4)

(5)
(s6)
(s7)

(s8)

s, =a;(@)+B;p;, iON
s, =(vi/y)(a,(q) +y,y),iON
s, =a;(@)+B;p;, iON
Si :al(q)+ B|k pk Dzﬁlk pk +In y,IDJ
ki
Si——al(Q)+;B,kpk kDZKBlkpk"‘YilnyyiDK~J
Si = (:Bli/yl)pi,|DN K
S

=a,(9)+ ) Byp, +iny
1 1 k; 1k Mk

S =Bup, —Bypi, i0ON,i#1
Si:ai(q)+ Bi IanIDN
k% K k
S; =£E471(Q)+ Py Ve Inp, +y1y[4|D N
Vi[O Y1 K
Si :ai(q)+ %Bik In pkylle
. D'
Si = D& Bll +a1(Q)+%B1k Inp, +y, InygiQJ
yl |:| i i |

S = ﬁli/yl,IDN ~J
s; =a; (@) exp(B;p; +v.y), iON
Si :ai(q)exp(ﬁii Pi)yyl, iON
s; = (B /.Bll)al(q)ﬂ pfkk exp(y,y),idJ

0
s, =a;(q)p exp(y,y),iON ~J
s; = (B; /:Bll)al(q)ﬂ peyn,idd

0
s =a;(@)pfy",iON~ ]
5= (BB @[] o8 []pfyi03

o) KON =K
s, =a,(q)p/ J_| pley™ iOK ~J
s, =B;,iON~K




Table 13
Quasi-Indirect Utility Functions for Incomplete Demand System Models*

Model Restrictions

Quasi-Indirect Utility Function

(x1)-1
(x2)-1
(x1)-2
(x3)-1
(x4)-1

(x3)-2

x5)-1 V1Y
(X5)-1 y, #0
(x6)-1 ¥, =0

x6)-1 vy, =1

o(p,q,y) = y_k%ak(q)pk _%%]gﬁkj Py P;

0 1
@(p.g.y) = %w—m By by +ay (@) +=—= By [ujexpEerk pkg

1 LN kOJ

@(p.a.y)=y=Y a (a)p, - Zﬁkkpk(lnpk 1)

KON

@(p.q, y)—[v+ fq)mexptr ;ykpkm

o(p.q,y) = 1(C1) eXpEZ B Py D_ e (@) exp(By P) — Zak (@) p,

Bll kDK J Bkk kOK~J
B 20 Bu=0

exp(-y1Y) _a,(9) _ < o) _
o(p.q,y) = expD— DZ Bux Py E eXpE; B Py D exp(By Py) k;

B =0

Bll Bkk

1

o(p.q,y) = 1(CI) eXpE; B P« D_ % (@) eXp(Bu Py) — Dzak () p,

Bll Bkk B =0
@(p.a,y)=Iny —%expﬁé By Py D— m;] ES) exp(By Py) ~ kD;?k (@) p,

Bu 20 B =0

a, (q) py

J




Table 13 (cont.)
Quasi-Indirect Utility Functions for Incomplete Demand System Models

Model Restrictions Quasi-Indirect Utility Function
(X6)-1 V. % 10 (P( P.q, Y) = yl_yl 1(q) exp;z .Bkk Py D % exp(Bkk pk) - DZG (Q) Py
1= 1-y, - .Bkk o
_ _a,(q) _ a,(q) _
(x6)-2 @(p.a,y) = yexD[T z By Pi D exXpQ Bkk Py D exp(By Pi) zak (@) Py
kON~K Bll kEIK¢ J Bkk Iz}EIK_BJ
y, =0 & _ o9 B _ a,(a) pLhe
x7)-1 @(p.g,y)=y sh a(@inp
(x7) N~K=0 1+ [311!_1 k ~J1+Bkk Z “ “
xp(-y,Y) 5, _ 0,(q) 145 A, (a) g
i (p(pqy)—— P = = “= S a.(q)in
o1 %0 AT | R e T
@(p,g,y)=Iny-—"2 (@) Py P~ a(a) PP = Sa(@np
681y =t - 1+p, 1] Lep, P Q@R
Bkk¢ 1 Bu=-1
1~y
_y™r a(9) 148 a. (@)  1p
] o(p.qy)=—-——[]p "™ - P = Ya,(@)Inp
(X8) l yl 7 1 1_ y1 1+ Bn !:_' “ ED%_J 1+ Bkk “ zm%i “ “
_ - a,(q) 148 a,(q) 1+8
. e(p.a.y)=y [1p =2 e - F ———=pP - Ya(@np
09)2 L0271 7 2 g P 2 @

! The results reported here correct for typographical errors found in LaFrance [1990].



Table 14
Quasi-Indirect Utility Functions for Restricted Incomplete Expenditure System Models

Model Restrictions Quasi-Indirect Utility Function

(e1)-1

& @(p.a.y) =y - > a (@Inp, = > Bup
(62)‘1 kON kON
(e3)-1
& GD(IO,q,y):y—Zak(Q)lnpk 2 ;Bk] Inp, Inp;
(e4)_1 kON kDN
_ a,() a,(q)

4 =0 e(p.a,y)=y——="] pf - pl - Ya, (@inp

(e7)-1 Nl K =0 B.. m k R ) B k IEDZ:BJ k k
(p(p q y) — _exp(_yly) p—ﬁ1k _al(q) ppkk — a (q) pﬁkk a (q)ln p
(e7)-1 yl ¢ O 1 kJN_~|K “ Bll !:J “ Bkk “ ; “
5kk¢
_ a,(q) k(Q) B

. - ®(p,q,y)=Iny-= P — p = Ya,(@lnp

(98) 1 Y1 1 Bll ﬂ k % Bkk k ‘2}%)3 k k
_y7 a9 a.(@)

i ©(p,q,y) = - pkk— P = Ya(q)np

(68) 1 yl ¢1 1_y1 Bll !_l k ™ Bkk k I(B%J k k
. (a) 5 a. (@) 4

] o(p.a.y) =y 1o -4 pk*— pl - Sa.@inp

(68) 2 J_l Bll !_.' Bkk “ k;J “ “

B ¢ B =0




Table 15
Quasi-Indirect Utility Functions for Restricted Incomplete Expenditure System Models

Model Restrictions Quasi-Indirect Utility Function

(s1)-1
& o(p,q, Y)—yrl pkak(Q) expD— %Bkk ka
(s2)-1 KON
(s3)-1
& qo(p,q,y)zlny—Zak(q)lnpk 2 ;Bk}lnpklnpj
(54)-1 kON kEIN
a,(q) a,.(q)
_ - ®(p,q,y) =Iny - =] pe — p = SYa,(g)inp
(s8)}-1 ¥, =0 B, 1" B, T ‘
5kk¢0 B =0
_y™" a(a) a. (@) j
i o(p,q,y)=—-———[]p - P = Y a(ginp
(38) 1 Vi #0 Y .311 !;l “ Bkk “ kD;J “ “
ﬁkk¢0 B =0
g, 0:(Q) 5 a (@) 4
] @(p.a.y) =y [P =21 pd - pl - Sa (@inp
(38) 2 kJN_~|K “ Bll !:.' “ Bkk “ k;J “ “

ﬁkk ¢ B =0




Technical Appendix

This appendix derives the necessary parameter restrictions for Slutsky symmetry to hold in an
open neighborhood around observed prices and income. The approach employed is similar to LaFrance

[1985, 1986]. For each of the 24 models, three mutually exclusive and exhaustive cases with alternative

income effects for goods i and j (i # j) are considered: 1) no income effects, i.e., y, = y; =0; 2) both
goods having income effects, ie, y; Z0;y; #0; 2) only one good having income effects,

(v; #0;y; =0). For each of these possibilities, the necessary parameter restrictions for Slutsky

symmetry to hold regardless of prices and income were derived. Restrictions implied by the derivative
properties of the Slutsky symmetry conditions were used extensively for this task. Once the parameter
restrictions were identified for the three distinct income relationships, consistent combinations of the three

sets of parameter restrictions were then determined.

1. The (x1) Model

Consider the (x1) unrestricted model specification:
X, =a;(q) + Z Bi P« +V;y (x1)

The implied Slutsky symmetry conditions are:
Bi +V;Xi =By +ViX, 1)

See LaFrance [1985] for the derivation of the necessary parameter restrictions.



2. The (x2) Model

Consider the (x2) unrestricted model specification:
X :ai(q)+ZBikpk +y;Iny
=1
The implied Slutsky symmetry conditions are:

Y Vi
it X =By +—

y y

X

The derivative of (1) with respectto p, , k=1,..., N, implies the following restriction:

yj:Bik :yiBjk

The derivative of (1) with respect to y implies the following restriction:

ViXi =ViX;
Case l. yi=v; =0
e (1) implies:
B = B;
Case II. y; 20, y; 20
e (2) implies:

Bi =(v;1yi)By. Ok
e (3)and (5) together imply:

a;(a) =(y;/y)a(a)
e Plugging (5) and (6) into (1) and simplifying implies:

:Bij = Bji

(x2)

)

)

©)

(4)

®)

(6)

()



e One can combine (5) and (7) as:

By =iy Vi) By Ok (8)
e (6) and (8) jointly imply that:

sgn(y;) =sgn(y;) # 0 ©
e Thus, (6), (8), and (9) are the necessary parameter restrictions.

Case IlI. y; 20, y; =0

* () implies this case is only possible if y; =0, a contradiction.

The restricted model specification takes the form:

L X =a @)+ Bypi0ON
kKON
an 0.
2. Xi=£ml(q)+& VP +y. InygiON
Y1 O 1K [l

3. The (x3) Model

Consider the (x3) unrestricted model specification:
Xi :ai(q)+ZBik Inp, +y;y (x3)

The implied Slutsky symmetry conditions are:

B

B,
— VX =_J+yixj (1)
i j

The derivative of (1) with respect to p; implies:

_Bij/pj+yiﬁjj :ijij (2)



Case I. yi=y; =0
e (1) and (2) are only satisfied if:
B =B; =0
Case II. y; 20, y; 20
e (2) holds in general only if:
Bi. = By =0,0k
* (4 and (1) imply:
a;(a) =(y;/y)ai(a)
which further implies:
sgn(y;) =sgn(y;) # 0
Case IlI. y; 20; y; =0

* (2) implies the restriction in (4), which with (1) implies y; =0, a contradiction.

The restricted model specification takes the form:

1 X =a,(q)+B;Inp,iON

2, X, = (v, Iy (@) +y,y),iON

4. The (x4) Model

Consider the (x4) unrestricted model specification:

©)

(4)

®)

(6)



X =ai(q)+gﬁik Inp, +y;Iny
The implied Slutsky symmetry conditions are:

Bu Yiy 2Pi vy

PPy P, Y

j
The derivative of (1) with respect to y implies:

YiXi =ViX;

Case l. yi=v; =0
e (1) is satisfied only if:
ﬁij = Bji =0

Case II. y; 20, y; 20

(x4)

)

)

©)

*  Plugging x; =(y;/y;)X from (2) into (1) implies (3). (3) and (2) along with the structure

of (x4) imply the following three restrictions:
Bi. = By =0,0k
a;(@) =(y;/y)a;(a)
sgn(y;) =sgn(y;) # 0
Case IlI. y; 20, y; =0

* (2)implies y; =0, a contradiction.

The restricted model specification takes the form:

1 X, =a;(q)+B;Inp;,iON

2, X, =(y; ly)@ (@) +y,Iny),iON

(4)

()

(6)



5. The (x5) Model

Consider the (x5) unrestricted model specification:
= a,@expy b, Y] (x5
The implied Slutsky symmetry conditions are:
BiX; VX X; = ByX +ViXX; D
The derivative of (1) with respect to y implies:
ViS; =V;S; (2)
The derivative of (1) with respectto p, , k=1,...,N, implies:

ﬁik(sij_ijin):ﬁjk(Sji_inin) 3)

Case l. yi=v; =0

« (1) implies B;X; = B;X; which is satisfied only if:

By =B; =0 4
or:
Bic = By = B, Ok (5)
a;(a) = (B / By)a;(a) (6)
Case I, v, £0; y, 20

* (2)implies y; =y; and this case collapses into Case | above.

Case IlI. y; 20; y; =0



* (2)implies s; =0. (1) implies that:

X; = _Bij ly; (8)

The restricted model specification takes the form:

i =—Gl(q)eXp§Z Bu Py + Blk P« +V1YDIDJ

kEIN K

kON~K

=By /!y, iON ~K

1. X; :ai(Q)eXpEﬁii p; + zﬁlk Py +y1yD|DK ~J

Note that the subset N ~ K is empty if y, =0

6. The (x6) Model

Consider the (x6) unrestricted model specification:
- C [ Vi

X, =a;(q)exp0d) By Py Y (x6)

= U

The implied Slutsky symmetry conditions are:
Vi _

:BJ|XJ+_XX B|]X|+_XX (1)

y y

The derivative of (1) with respect to y implies:

Vi(Si =X X; 1Y) =y,;(s; =xX; 1Y) (2)

Case I. yi=v; =0

« (1) simplifiesto B;X; = B;X;. As with the (x5) model, this condition is satisfied only if:

i



Case II.

Case I11.

By =By =0
or:
By =By = By UK
o,(@) = (B, / By)ar, (@)
y, 20; y, #0

(2) implies y; =y, or s; =S; = XX, /'y, but the later condition is only satisfied if
y; =y; =land B; = B; =0. Thus, the following condition must hold:
Yi =Y
(6) implies Bjixj = ,Bij X; , and thus either the conditions in (3) or (4) and (5) must be
satisfied.
y; 20, y; =0

(2) implies that s;; = X;X; /'y, which when plugged back into (1) implies:

X :Bjiy

The restricted model specification takes the form:

i Oy s
Xj = ﬁ_a1(Q)eXp§Z B P Oy, 107
B T O
X, =a;(q)exp(B; p;)y", iON ~J

B. 0.
X, =——a (q)expﬁgﬁ P+ ) By pgidd
[31 1 kk Mk k;Z;K 1k k[]

1

x

O 0.
i :ai(Q)eXpEﬁiipi + ZﬁmpkE'DK"J

KON ~K

=By, i0ON~K

©)

(4)

®)

(6)

(7)



7. The (x7) Model

Consider the (x7) unrestricted model specification:
n
x =0, @[] P exp(y;y)
The Slutsky symmetry conditions are:

B

_ Pi
X HY XX S X YK
i j

The derivative of (1) with respect to y implies:
YiSi = ViS;j
The derivative of (1) with respectto p,,k #1, j, implies:

Bjk(sji _yixixj) :Bik(sij _ijixj)

Case I. yi=v; =0
« (1) simplifiesto B; p;X; = B; P;X;, which is satisfied if:
ﬁij = Bji =0
e It can also be shown that (1) is satisfied if:

Bkl :l+B||,k:i,j;| :|,J,k¢|

By =By, Ok k#i,j
_1+B;
ai(Q)—maj(Q)

Case II. y; 20, y; #0

(x7)

1)

)

©)

(4)

()
(6)

(7)



* (2)implies that y; =y, and with this restriction the case collapses into Case | above.

Case IlI. y; 20, y; =0
* (2)impliesthat s; = 0, which is satisfied only if:

X; :_(Bij ly)! P;

The restricted model specification takes the form:

Eﬂ.+ i D — + 1
X =a,(0) By Dpilﬂ ™ ] P exp(y,y), 0
U] oJ ~K

+ ﬁll kON
1 X, =a;@p{" [ p exp(y,y). i0K ~J
KON~K

X, =—(By /yl)pi_l’ iON~K

Note that the N ~ K set must be empty if y, =0.

8. The (x8) Model

Consider the (x8) unrestricted model specification:
X =0, (q)ﬂ P y”

The Slutsky symmetry conditions are:

ﬁxj +ﬁxixj =ﬁxi +ﬁxixj
Pi

y P, y

See LaFrance [1986] for the derivation of the necessary parameter restrictions.

10

(8)

(x8)

1)
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9. The (el) Model

Consider the (el) unrestricted model specification:
N
ei:ai(q)-'_ZBikpk-'-yiy (e1)
The implied Slutsky symmetry conditions are:

1 1
ij{ﬁji P +yjei} :ij{ﬁij P; +yiej} (1)

The derivative of (1) with respect to p; implies:
yiBji :Bji +yjﬁii 2

The derivative of (1) with respectto p,, k Z1, j, implies:

ViBi = VB 3)
Case l. yi=v; =0
. (1) and (2) imply:
By =B; =0 4
Case II. y; 20, y; 20
. (3) implies:
Bi =(vily)Bj. Ok k#i,] ()

* For (2) to hold it must be the case that:
Bi =0ify, =1 (6)

B, _ViPi if y, 21 O
yi—1

Thus, (5), (6), and (7) are the necessary parameter restrictions.



Case IlI. y; 20; y; =0

12

« (1) implies e; ==(B; /y;)p; +(B;i /) p;. Two possibilities are implied by this structure:

Vi=1& B; =-B; O e ==B;p;+B;Pp

yi 21 & Bjizo [ ej:_(ﬁij/yi)pj

The restricted model specification takes the form:

1 e =a;(@)+Bp,iUN
& =0, @+ ) Bubet ) Bubty,illd
' kDKZn:k < kEIN2~K .
2. ei:ﬁal(q)-l_zﬁikpk-'-ﬁ zﬁlkpk+yiy,iDK~J
Y1 ® 1 kefmk
& =—(Byly)p;, iON ~K

e =a,(q)+ Zﬁm Pty

3. R

& =BuP —Byp, iON,i#1

10. The (e2) Model

Consider the (e2) unrestricted model specification:
N
€; :ai(q)+ZBik P +yiIny

The implied Slutsky symmetry conditions are:

1 0O y, O 1 0O .
—DBjipi"'_Jei :—DBijpj"'y_ejD
PiP; O Y O PkbP;jO y 'O

The derivative of (1) with respect to p; implies:

(9)

(10)

(€2)

)



ijij /y:ﬁij +yiﬁjj ly

The derivative of (1) with respectto p,, k Z1, j implies:

ViBi =ViBj
Case I. yi=y; =0
e (2) implies:
B, =B, =0
Case II. y; 20, y; #0

(2) implies (4) must hold. (1), (2), and (4) imply:
a, (@) =y /y;)a; (@)

By =B, =0,0k
sgn(y;) =sgn(y;) # 0

Case IlI. y; 20; y; =0

e (1) implies g, = l(Bij P; — B; p;), which is inconsistent with (e2).
Yi

The restricted model specification implies:

L e =a;(q)+B;p;, iON

2. & =, /y)@ (@) +y,Iny),iON

11. The (e3) Model

Consider the (e3) unrestricted model specification:

13

)

©)

(4)

()

(6)

(7)



N
€ =aj(q)+zﬁjk Inp, +y;y
1=1

The implied Slutsky symmetry conditions are:

1 1
ij{ﬁji + Vjei} =ij{ﬁij + Viej}

The derivative of (1) with respect to p, , k=1,..., N, implies:

ViBi =ViBy, Ok

Case I. yi=v; =0
e (1) implies:
B = B;
Case II. y; 20, y; #0
e (2) implies:
Bu =B DK

J

*  Plugging (4) back into (1) implies the following restriction:
Bji - Bij ty,a; (a) + Yid (q)=0

Case IlI. y; 20, y; =0

« (1) simplifiesto e, = B; /y; = B; /y;. To be consist with (e3), it must be the case that:

By =0, 0k
a, () =-B;y,
The restricted model specification takes the form:

1 ei:ai(q)+ZBiklnpk1iDN

KON

14

(€3)

1)

)

©)

(4)

()

(6)

()



0 . . 0.
€ =§m1(Q)_ﬁ_l_l+&+ZB1k Inp, +V1VE|DJ

1 g [ i KN

& ==By;ly,iON~J]

12. The (e4) Model

Consider the (e4) unrestricted model specification:

N
€; :ai(q)+ZBik Inp, +y;Iny

The implied Slutsky symmetry conditions are:

The derivative of (1) with respect to y implies:

Yi€; = V&

The derivative of (1) with respectto p, , k=1,..., N, implies:

Case I.

Case II.

yj:Bik :yiBjk' Ok

v, =y; =0
(1) implies:
B = B;
y; 20, y; 20

Plugging (2) into (1) and simplifying implies (4). (4) and (3) together imply:

YiVi
Bij :_zjﬁkk Ok

k

15

(e4)

)

)

©)

(4)

®)
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sgn(y;) =sgn(y;) #0 (6)

* Plugging (5) back into (2) then implies:

J

a,(a) = Lo, (q) @)
Yy

Case IlI. y; 20; y; =0

e (2) implies this case is not possible.

The restricted model specification implies:

1. ei:ai(Q)"'ZBiklnpk’iDN
R
O 0.
2. eizﬁml(q)+& y.Inp,+y, InygiON
Yi O Y1 O

13. The (e5) Model

Consider the (e5) unrestricted model specification:

n

g
e =a;(q)expd) B Py Vi y% (e5)
The Slutsky symmetry conditions are:

1 1
ij{ﬁji piej + yjeiej} = ij{ﬁu pjei + yieiej} (1)

The derivative of (1) with respect to y implies:

YiSii = ViSj (2)
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Case l. yi=v; =0
e (1) simplifies to Bji pe; = ,Bij P;€;, which is not in general satisfied unless:
B, =B, 3)
Case II. y; 20, y; 20
e (2) implies:
Vi =Y (4)
*  (4) implies that (1) simplifies to B; p;e; = B; P;€;, and thus (3) must also be satisfied.
Case IlI. y; 20; y; =0

e (2) implies this case is not possible.

The restricted model specification takes the form:

1. & =a;(@)exp(B;p; + V1Y), i ON

14. The (e6) Model

Consider the (e6) unrestricted model specification:

A [
e =a;(q) eXpﬁz Bi by (e6)
= U
The Slutsky symmetry conditions are:
1 0O Vi 0 1 0O i O
—DBji Pi€; +_Jeiej D:—lj;ijpjei-'-LeiejD 1)
PiP; O y O PiP; O y 0

The derivative of (1) with respect to y implies:
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JB o ee B 8 ee f @
’E" pjpiyg 'E" pjpiya

Case l. yi=v; =0
e (1) simplifies to ﬁji p.e; = ,Bij P;€;, which is not in general satisfied unless:
By =By ©)
Case Il y; 20, y; #0
e (1) is not in general satisfied unless (3) and the following condition are satisfied:
Vi =Y (4)
Case IlI. y; 20, y; =0
* (2)impliesthat s; =e;e; /(p;p;y). This restriction along with (1) implies ¢, = B, p;V,

which is inconsistent with (e6).

The restricted model specification implies:

1. e =a;()exp(B;p;)y", i0N

15. The (e7) Model

Consider the (e7) unrestricted model specification:
€ =ai(Q)H P exp(y;y) (e7)

The Slutsky symmetry conditions are:

1 1
ij{ﬁjiej +yjeiej} :ij{ﬁijei +yieiej} 1)
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The derivative of (1) with respect to y implies:

YiSi =ViSy (2)

Case I. yi=y; =0

* Inthis case, (1) simplifiesto 3;€; = [3;€;, which is satisfied only if:

B; =B; =0 3
or:
Bi = By, Tk @)
a;(q) = g—”a ;(9) (5)
Case Il. v, 20; ¥, 20
. (2) implies:
Vi =V (6)

e Using (6), (1) simplifies to Bjiej = Bijei , Which is satisfied only if (3) or (4) and (5) are
satisfied.
Case IlI. y; 20; y; =0
. (2) implies this case is not possible unless s; = 0,

which holds only if:

€ = _Bij ly; (7)

The restricted model specification takes the form:



20

e = (B, /B11)a1(Q)H [ J_l pkﬁlk exp(y,y),idJd

1 & =a,(@p™ [P exp(y,y).ioK ~J

kON~K

_(Bli /yl)’iD N~K

16. The (e8) Model

Consider the (e8) unrestricted model specification:

e, =a,(q) H pley” (e8)
The Slutsky symmetry conditions are:
0 i O 0
L|:Bjiej +heiej L EBU i +_e|e]|:| (1)
pi pj |:| y |:| p| p] D y D

This model is equivalent to (x8). See LaFrance [1986] for the derivation of the necessary parameter

restrictions.

17. The (s1) Model

Consider the (s1) unrestricted model specification:
Sizai(q)-'_ZBikpk-'_yiy (s1)
=1
The implied Slutsky symmetry conditions are:

-y
oD {BJ. P +(s; +Y; y)S} o.p {B.,p, + (s +y.y)S} (1)



Case I.

Case II.

Case III.

21

vi=v; =0
(1) simplifies in this case to B, p; = B; p;, which is satisfied only if:
By =B, =0 )
y, #0; y; # 0
(1) simplifies to Bji PitY,;ys = Bij P; +V.Yys; which when differentiated with respect to y
implies y;s; = V;S;, and when differentiated with respect to p; implies
BiL-Y:y) =-Y,;YB;. These two conditions hold in general only if:
Bi = By =0,k =i, ] 3)
y; 20; y; =0
(1) in this case simplifies to s; = (B; p; — B; ;) /(Y;Y) , which is inconsistent with the

structure of (s1).

The restricted model specification takes the form:

1.

s, =a; () +B;p;,iON

s; =(vi Ty )(a. (@) +y,y),iON

18. The (s2) Model

Consider the (s2) unrestricted model specification:

s, =a;(q)+ g Bi b +YyiIny (s2)

The implied Slutsky symmetry conditions are:



%{B]i P +(Sj +yj)si} =L_{Bij P; +(s; +yi)5j}

PiP; Pip

Case I. yi=v; =0

(1) simplifies in this case to 3 p; = [B;; P, which is satisfied only if:

Bij ::Bji =0

Case II. y; 20, y; 20

« (1) simplifies to Bji P +V;Si = Bij P; *+V;s; whose derivative with respect to p; is

B;i(v; =1) =y, B; and whose derivative with respectto p,, k#1,j,is ;B =V, B

For these conditions to hold in general, either:
y; =1
B; =0

Bi =By 1y, Ok k#i,j

or:
y; #1
_YiPi
P yi—1
Case IlI. y; 20, y; =0

* (1) inthis case simplifiesto s, = (B, p; = B; P!V,
condition requires that either:
;=1

or:

. To be consistent with (e2), this

22
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)

©)
(4)
®)

()

(8)

(9)
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Bij =0 (10)

The restricted model specification takes the form:

L s, =a;(a) +B;p;, iON
s;=a @+ Y Bib+ ) Bup +Iny,i0d
' kDKZ,n:k < kEINZ~K e
2, Si:£a1(Q)+ZBikpk+£ Zﬁlkpk+yilny,iDK~J
Y1 KR Y1 k=K
S ==(By/y)p;,iON ~K

s,=a,(q)+ By,p, +Iny
1 1 k% 1k Mk

S = BuP, — Byp, i0ON,i#1

19. The (s3) Model

Consider the (s3) unrestricted model specification:
Si :ai(q)+ZBik Inp, +y;y (s3)

The implied Slutsky symmetry conditions are:

%pj{ﬁji +(s; *y; Y)Si} :%pj{ﬁij +(s; +Y, Y)SJ‘} @
Case I. vi=y;=0
* (1) implies:
:Bij = Bji (2)



Case Il.

Case I11.

y; 20, y; #0

The derivative of (1) with respectto p, , k=1,...,N, implies:

_Yi
Bik _y_ijk

Plugging (3) into (1) implies:

a,(a) =i, (q)
y.

:Bij = Bji

(3) and (5) can be combined as follows:
YiVi
Bij = _21 B Tk
Yi

Thus, (4) and (6) are the necessary restrictions for this case.

y; 20, y; =0

(1) simplifies to s; = (=B, + B;)/y;Yy , which is inconsistent with (s3).

The restricted model specification takes the form:

1.

s =ai(@)+ % By Inp,,iON

KON

an 0.
si=£[m(q)+& yiInp +y,ygiON
Y1 O Y1 ¥ ]

20. The (s4) Model

24
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Consider the (s4) unrestricted model specification:

Si :ai(q)+Zﬁik Inp, +y;Iny
=1

The implied Slutsky symmetry conditions are:

#pj{ﬁji +(s; +yj)si} :%pj{ﬁij (s +yi)si}

Case l. yi=v; =0
e (1) implies:
B = Bj
Case II. y; 20, y; 20
» The derivative of (1) with respectto p, ,k=1,...,N, implies:
By =2 By, Ok
Yi
e Plugging (3) into (1) implies:
a,(@ =Yt @) -2+ Pog
YiO Yi ¥iO
Case IlI. y; 20, y; =0

« (1) implies s; = (B; — B;)/y;, but the structure of (s4) requires that:

B; =0

The restricted model specification takes the form:

1 Si:ai(Q)"'ZBiklnpkviDN

KON
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(4)

®)



B . ad
2 s, =LiiPr Pisg @)+ Byinp, +yiiny(i0)d
Y1 O0Yi Yi P 0

S ==Byly,,iON~J

21. The (s5) Model

Consider the (s5) unrestricted model specification:
_ N O
s; =a;(@)expdy By Py +Y, YE
The implied Slutsky symmetry conditions are:

_L{Bji PiS; +(1+yjY)SiSj} =—{Bij P;Si +(l+yiy)sisj}

y
plpj pipj

The derivative of (1) with respect to y implies:

@y +y;)s; =@/ y+y;)s;

Case I. yi=v; =0
« (1) simplifiesto B;p;S; = B; P;S;, Which holds in general only if:
B, =B, =0
Case II. y; 20, y; 20
* (1) and (2) imply that:

Yi =Y,

*  Given (4), (1) simplifiesto B;p;S; = B; p;S;. Asa result, (3) must also hold.

Case IlI. y; 20; y; =0

26
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* (2) requires that y;, =0, a contradiction.

The restricted model specification takes the form:

1. s; =a;(a)exp(B;ip; +y1Y),iON
22. The (s6) Model

Consider the (s6) unrestricted model specification:
— C D Yi
s; =a;(a)exp0) By Py (s6)
= [l
The implied Slutsky symmetry conditions are:

%pj{ﬁji PiS; +(1+Vj)3i51} :%pj{ﬁij N +(1+yi)sisi} @)

The derivative of (1) with respect to y implies:

(Sji _Sij)/y+ijjiSj / pj _yiBijSi/pi +(yj2 _in)SiSj /(pipj) =0 (2)

Case l. yi=v; =0
(1) becomes B;p;S; = B; P;S;, which holds in general only if :
By =By =0 ©)
Case II. y; 20, y; 20
« (1) simplifiesto B;p;/s; +V; = B;p;/s; +V,, which along with (2) is generally satisfied
only if (3) and the following condition hold:

Vi =Y 4)
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Case IlI. y; 20; y; =0

* There are no parameter restrictions under which (1) and (2) hold unless y, =0, a

contradiction.

The restricted model specification takes the form:

1. s; =a;(a)exp(B; p,)y",iON

23. The (s7) Model

Consider the (s7) unrestricted model specification:
s =4 (q)H P exp(y; y) (s7)

The implied Slutsky symmetry conditions are:

L{ﬁjisj +(1+ Yi y)sisj} = L{Bijsi +(1+y, y)sisj} 1)
Pi pj Pi pj
The derivative of (1) with respect to y implies:
@7y +y;)s; =@y +y)s; 2)

Case I. yi=Yy; =0
+ (1) simplifiesto B;s; = B;$;, which in general holds either if:
Bij = Bji =0 3)
or:

Bi = B Uk 4)
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o, (q) = g—;a,- @ ©)

Case II. y; 20, y; 20
e (2) implies:
Vi =Y, (6)
e With (6), (1) simplifies to Bjisj = Bijsi , which implies either (3) or (4) and (5) must also
hold.

Case IlI. y; 20, y; =0

* (2)implies y; =0, a contradiction.

The restricted model specification takes the form:

s, = (B / Bu)a, (q)ﬂ Pl exp(y,y),i0J

Si =4Q; (q) P exp(yly)’ iON~1J

24. The (s8) Model

Consider the (s8) unrestricted model specification:
s, =a,(q) H pley” (s8)
The implied Slutsky symmetry conditions are:

L{Bjisj +(1+yj)sisj} {Bijsi +(1+yi)sisj} 1)

_ Y
pipj pipj



This model is identical to the (x8) and (e8) models up to a parametric transformation. See LaFrance

[1986] for a derivation of the necessary parameter restrictions.

30



	Introduction
	Necessary Parameter Restrictions, the Structure of the Restricted Demand Systems, and the Quasi-Indirect Utility Functions
	Discussion
	tables.pdf
	Table 7
	Table 8
	Table 8 (cont.)

	tables1.pdf
	Table 13
	Model

	Table 13 (cont.)
	Model

	Table 14
	Model

	Table 15
	Model


	Appendix.pdf
	Technical Appendix
	The (e1) Model


