BLS WORKING PAPERS

U.S. DEPARTMENT OF LABOR
Bureau of Labor Statistics

OFFICE OF PRICES AND LIVING
CONDITIONS

An Anticipative Feedback Solution for the Infinite-Horizon,
Linear-Quadratic, Dynamic, Stackelberg Game

Baoline Chen, Rutgers University
Peter A. Zadrozny, U.S. Bureau of Labor Statistics

Working Paper 350
November 2001

The views expressed are those of the authors and do not necessarily reflect the policies of the U.S. Bureau of Labor
Statistics or the views of other staff members.



AN ANTI CI PATI VE FEEDBACK SOLUTI ON FOR THE | NFI NI TE- HORI ZON

LI NEAR- QUADRATI C, DYNAM C, STACKELBERG GAME'

Baol i ne Chen Peter A. Zadrozny
Department of Economnics Bureau of Labor Statistics
Rut gers University 2 Massachusetts Ave., NE
Canden, NJ 08102 Washi ngton, DC 20212
e-mai |l : baoline@rab. rutgers. edu e-mail: zadrozny p@l s. gov

Sept enber 17, 2001

JEL d assification: C61, C63, C73

Addi tional key words: noncooperative ganes, solving Riccati-type
nonl i near al gebraic equati ons.

ABSTRACT
This paper derives and illustrates a new suboptimal -consi stent feedback
solution for an infinite-horizon, linear-quadratic, dynanic, Stackelberg

ganme. This solution lies in the same solution space as the infinite-
hori zon, dynanmi c-progranni ng, feedback solution but puts the |leader in a
preferred equilibrium position. The idea conmes from Kydland (1977) who
suggested deriving a consistent feedback solution for an infinite-
hori zon, |Ilinear-quadratic, dynanmic, Stackelberg gane by varying the
coefficients in the player’s linear constant-coefficient decision rules.
Here feedback is understood in the sense of setting a current contro

vector as a function of a predetermined state vector. The proposed
solution is derived for discrete- and continuous-tinme ganes and is
called the anticipative feedback solution. The solution is illustrated
with a nunerical exanple of a duopoly nodel.

"The paper represents the authors’ views and does not represent any
official positions of the Bureau of Labor Statistics. W thank the
editors, referees, Jacek Krawczyk, and Randal Verbrugge for conments.



1. Introduction.

Dynami c Stackel berg (or |eader-follower) ganmes are useful tools
for studying dynami c econom c behavior in equilibriumsettings in which
some player is dominant. Because of their tractability, infinite-
hori zon, Ilinear-quadratic, dynamc, Stackelberg (LQDS) ganes have
received particular attention. LQ@S ganes have been used to study non-
conpetitive behavior in specific nmarkets and to evaluate and design
macr oecononi ¢ policies. For exanple, Sargent (1985) contains studies of
energy markets based on LQDS games; Kydland and Prescott (1977) and
Fi scher (1980) studied optimal tax policy using DS ganes; Canzoneri and
Gray (1985), MIler and Sal non (1985), and Turnovsky, Basar, and d Oey
(1988) studied international nacroeconom ¢ policy coordination using DS
ganmes; section 4 illustrates the present anticipative feedback sol ution
in a LQDS game of a hypothetical industry. The anticipative feedback
solution could be applied to the LQ approximation of any dynamc
econonic setting with a dom nant agent.

Three decision spaces have been considered in dynamc ganes:
open-1oop, feedback, and closed-loop. In open-loop decisions, players
set their control vectors as functions of tinme; in feedback decisions
pl ayers set their control vectors as functions of the current (or nost
recently deternmined or observed) state vector; in closed-Iloop
decisions, players set their control vectors as functions of the
history of the state vector, from the start of the game to the nonent
of decision. For exanmple, Hansen, Epple, and Roberds (1985) considered
open-1oop solutions of discrete-tine LQDS ganes, conputed using Eul er-
type equations. Simaan and Cruz (1973) considered feedback sol utions of
DS ganmes, conputed using backwards recursions of dynam c progranm ng
To enphasize the dynamic programming nature of these feedback
solutions, we refer to them as dynamc programing feedback (DPF)
solutions. Basar and Selbuz (1979), Basar and dsder (1980), and
Tol wi nski  (1981) considered classes of closed-loop solutions for
di screte- and continuous-tine, DS ganmes, conputed using non-standard
(non-DP) recursions and differential equations. See Basar and J sder
(1995, ch. 7) for a conprehensive discussion of DS ganes.

A potential problem in DS ganmes is that the solution which is
optinmal for the Ileader at the beginning of the gane is tine
inconsistent. That is, it ceases to be optimal for the leader in



subsequent periods. Consequently, the Ileader has an incentive to
restart the ganme. In a rational-expectations setting, followers would
recogni ze continual restarts. Such a succession of restarted | eader-
optimal solutions would be unsustainable and, hence, unappealing as a
solution concept. The time inconsistency problemin DS games was first
noted by Simaan and Cruz (1973), Kydland (1975, 1977), and Kydl and and
Prescott (1977) for open-loop solutions of DS ganes. In response,
Simaan and Cruz (1973), Kydland (1975, 1977), and Kydland and Prescott
(1977) considered DPF solutions of DS ganes. DPF solutions are tine
consistent by construction, but do not entirely solve the tine
consi stency problem because in them the |leader is continually tenpted
to switch to an optinal, open- or closed-loop, solution.

Basar and Selbuz (1979) and Basar and O sder (1980) proposed
cl osed-1oop solutions for discrete- and continuous-time, DS ganmes. The
Basar - Sel buz- d sder sol utions require addi ti onal structural
restrictions, beyond the usual concavity (or convexity), playability,
and stability conditions (see section 2). However, whenever they are
applicable, the Basar-Selbuz-Q sder solutions are tinme consistent.
Nevert hel ess, even when applicable, the Basar-Sel buz-O sder solutions
are not subgame perfect. Tolw nski (1981) proposed a nore general
cl osed-loop solution for LQDS ganmes  (under weaker structural
restrictions) which is nearly subgame perfect: if the follower deviates
fromthe optimal solution path for sone reason, the |eader induces them
to return to it after one period. The conmmon feature of these closed-
loop solutions is that they are incentive (or trigger) strategies in
which the |eader induces the follower to be on the solution path. In
econonics, the tinme consistency problem has sinmlarly been addressed
using incentive strategies (Barro and Gordon, 1983; Backus and
Driffill, 1985; Rogoff, 1989).

The present paper introduces a new feedback solution for
infinite-horizon LQDS ganes, called the anticipative feedback (AF)
solution. The nane is explained further in this section. Like the
infinite-horizon DPF solution, the AF solution lies in the space of
constant-coefficient, linear, feedback, decision rules and is subgane
perfect, hence, is tine consistent. However, the AF solution puts the
| eader closer to an open- or closed-loop optimal solution than the DPF
solution. Thus, in the AF solution, the |leader less tenpted to switch
to an optimal solution. The idea of the AF solution cones from Kydl and



(1977, p.310), who suggested deriving a feedback solution for a
di screte-time, infinite-horizon, LQDS gane by varying the coefficients
in players’ linear, constant-coefficient, decision rules. The AF
solution is derived for both discrete- and continuous-tine versions of
the LQDS ganes. Conpared with the open-loop, DPF, and closed-Ioop
solutions proposed by Hansen, Epple, and Roberds (1985), Simman and
Cruz (1973), and Tolw nski (1981), the AF solution has the follow ng
three nerits:

1. The AF solution is in the same space as the infinite-horizon
DPF sol ution, nanely, the space of |linear, constant-coefficient
decision rules in which the current control vector feeds back only on
the current state vector. This solution space is a product space of
real -valued matrices of finite dinmensions. As explained below when
anticipative effects are suppressed, the AF solution reduces to the
infinite-horizon DPF solution. Conpared to this DPF solution, the
| eader is better off in the AF solution and is, therefore, less tenpted
to switch to an optinal, tine-inconsistent solution

2. Like the DPF solution, the AF solution is subgane perfect by
construction, hence, is tine consistent.

3. Although open- and closed-loop solutions generally are
preferred by the leader, their solution spaces of sequences of contro
vectors or decision functions are nuch nore conplicated. In infinite-
hori zon ganes, the sequences are infinite. To be practical as policy
prescriptions, DS gane solutions should involve sinple and easily
under st ood decision rules. The |ower-dinensional AF solution is sinpler
and nore easily understood.

Anticipative control is the leader’s ability to influence the
state vector’'s evolution by accounting for the follower’s current
reactions to changes in the leader’'s current and expected future
control settings. The effect, manifested in the dependence of the
optimal solution on the initial state vector (cf., Hansen, Epple, and
Roberds, 1985), causes DS ganmes to be tine inconsistent. The AF
solution is consistent by construction, through the assunption that
coefficient matrices of decision rules are independent of the initia
state vector. By virtue of the principle of optimality upon which it is
based, the DPF solution cannot account for anticipative contro
effects.



In the present AF solution, anticipative control manifests itself
through the mtrix W, that neasures how the follower’s optinal

valuation matrix W varies in response to variations in the leader’s

lim
h- o

policy rule. Here W s = W(h) is the limit of the follower's optimal

valuation matrix as the planning horizon, h, goes to infinity. In the

DPF solution at backwards recursion h, by taking W »(h-1) as given, the
leader ignores anticipative control effects and, in effect, sets y
identically equal to zero. In the AF solution, the leader sets Y so as

to induce the follower to make decisions which put the leader in a more
favorable solution. Thus, W is an incentive tool of the leader so that,
like Basar-Selbuz-Olsder's and Tolwinski's solutions, the AF solution

is an incentive-based enhancement of the DPF solution.

The AF solution relates more directly to the following previous
work. Zadrozny (1988) reported the discrete-time AF solution in summary
form, without giving any derivations or applications. Medanic (1978)
derived a related continuous-time solution, using the maximum
principle. Whereas Medanic randomized the initial state vector, here,
as usual, it is taken as given. Otherwise, the AF solution appears not
to have been reported before.

This paper is organized as follows: For simplicity, only the two-
player game is treated. The extension to n-player games is conceptually
straightforward but notationally tedious. Section 2 presents the
discrete-time game. Section 3 derives nonlinear algebraic (or
nonrecursive) Riccati-type solution equations for the discrete-time AF
game. Appendix B derives analogous continuous-time solution equations.
Section 4 describes a trust-region gradient method for solving the
discrete-time AF equations and presents illustrative, numerical, DPF
and AF, solutions of a duopoly model. Section 5 contains concluding

remarks.

2. The Discrete-Timre Gane.

Two players are indexed by an ordered pair (i) 0 {(@1,2),
(2,1)}, where i is the player on whom attention is focused and j is the
opponent. Player 1 is the leader.

Let y(t) be an n x1 vector of "outputs" generated by the ARMAX

process



(2.1) y(t) = Ay(t-1) + ... + Ay(t-p) + Bou(t) + ... + Bgu(t-q)

+ Ge(t) + ... + Cg(t-r),

where p, q, and r are positive integers, u(t) is an nxl vector of
pl ayers’ controls, and g(t) is an nx1 vector of independent (white-
noi se) disturbances with zero nean and constant covariance matrix, X,

i.e., g(t) OIIDO,Z).

Let u(t) = (uy(t)T, ux(t)"T, where uj(t) is the mxl subvector
controlled by player i and superscript T denotes vector or matrix
transposition. Coefficients By, ..., By are partitioned conformably.

There are no equality or inequality restrictions on u(t), so that it
ranges over an mdinmensional Euclidean space. By appropriately zeroing
out coefficients, a subvector of y(t) can be made exogenous to the

game. For example, if y(t) = (yu(t)T, y(t)")T and conformable (2,1)
blocks in A, ..., G are zero and X; is block diagonal, then, y,(t) is
exogenous.

To wite process (2.1) in state-space form follow ng Ansley and
Kohn (1983), first, let x(t) be the sxl state vector x(t) = (xi(t)T,
., X(t)N T where v = max(p, g+1,r+1) and each x;(t) is nxl, so that s =

vn. Then, with xy(t) = y(t), equation (2.1) is equivalent to

(2.2) x(t) = Fx(t-1) + Gu(t) + He(t),
A, 1 0...00 0B, O 0G O
0 0. 00O 0. O 0. O
F=0 . ....00 G=0.0 H=0. 0
O . . ...I10 0. O 0. O
@A 0. Y= mB-.0 & -.0

where A, = 0 for i >p, BB =0 for i >q, and G =0 for i >r.
The state-space representation of process (2.1), thus, conprises
state equation (2.2) and observation equation y(t) = M(t), where M =

[, O ..., 0] is an nxs selection matrix. Partition G = [G, G
conformably with u(t) = (u(t)T, uy(t)NHT, so that Qu(t) = Guy(t) +
Guy(t).

In each period t, player i maxim zes



(2.3) Vi(t,h) = Ea Yy, Sm(t+k)

with respect to linear feedback policies on u;(t), defined below, where
E[D = E[PQ(t)], Q(t) = {y(t-k), u(t-k) | k =0}, dis a real discount

factor satisfying 0 < 0 <1, and
(2.4) m(t) = u(t)/Ru(t) + 2u(t)"§y(t-1) + y(t-1)"Qy(t-1).

The matrices R, §, and Q deternmine players’ profits (or |osses) for
different values of u(t) and y(t-1). For exanple, in the illustrative
exanpl e of section 4, R, §, and Q are derived fromthe output demand

curve and the production function and, therefore, depend on the

paraneters of these structural conmponents. Wthout |oss of generality,
we assume that R and Q are synmetric. Although we focus on h = o

initially we assune h is finite. Allowing sonme elenent of y(t) to be
identically equal to one introduces a constant terminto process (2.1)
and linear terns into objective (2.3).

Defining S = SMand Q = QM we wite
(2.5) m(t) = u(t)"Ru(t) + 2u(t)TSx(t-1) + x(t-1)"Qx(t-1).

In accordance with the partition of u(t) into ui(t) and uj(t), partition
R into R', R/, and R', § into § and §, and, hence, S into § and

S, to obtain
(2.6) m(t) = u () TR u(t) + 2u () TRIu () + u(t) TR uj(t)
+ 20 (t) TS x(t-1) + + 2u(t)TS x(t-1) + x(t-1)"Qx(t-1),
for (i,j) =(1,2) and (2,1).
W assume that each player knows: (a) Q(t-1) at the beginning of

period t; (b) the game’s structure, and (c) the game’s parameters,
i.e., the coefficients of process (2.2) and objective (2.3), for (i,j)



= (1,2) and (2,1). Each player, thus, has the same information about
exogenously given quantities. The information set is conplete except
for know edge of x(t), which mght have to be inferred from Q(t). Ganes
in which different players have different information sets are
substantially nore conplicated (Townsend, 1983) and are not considered
here.

W assune that the players follow constant |inear feedback
policies uj(t+k) = Px(t+k-1|t+k-1), k = 0, ..., h, where x(t+k-1]t+k-1)
= EuwX(t+k-1). We nmake this assunption for reasons of sinplicity and
understandability, as discussed in the introduction. In particular,
"constant" neans that the policy coefficient matrices, P, are
nonstochastic functions of the paraneters and are independent of the
initial state vector. W wite the players’ policy rules jointly as
u(t+k) = Px(t+k-1|t+k-1), where P =[P, B1"

Because the gane has a linear-quadratic structure and the players
have identical information sets, the principle of certainty equival ence
(also called the separation principle) applies (Astrom 1970, pp. 278-
279). Certainty equivalence says that the equilibrium value of P is
i ndependent of the probability distributions of gt) and v(t), and hence
can be conputed independently of x(t+k-1|t+k-1). Because conputation of
x(t+k-1]t+k-1) in the present case where both players have the sane
information is a faniliar Kalman filtering exercise (Anderson and
Moore, 1979, pp. 165-192), we focus on conmputing P and set X, = 0, so
that x(t+k-1|t+k-1) = x(t+k-1).

Infinite-horizon dynamc ganes generally require the follow ng
three types of assunptions: (i) second-order concavity assunptions to
ensure that players’ optim zation problens have locally unique
solutions, (ii) playability assunptions (the term cones from Lukes and
Russell, 1971) to ensure that an equilibrium exists, i.e., that
pl ayers’ reaction functions "intersect;" and (1ii) stability
assunptions to ensure that players’ objectives remain finite as h - o

Foll owi ng standard practice (Basar and Sel buz, 1979; Basar and
O sder, 1980), we nmke a broad concavity assunption. The concavity
assunption also serves to nmmintain playability. The stability
assunption that we nmake is the famliar stabilizability condition in
linear optinmal control theory.



Thus, to cover concavity and playability, we assunme that (A) m(t)
is concave in u(t) and the endogenous variables in y(t) and (B) m(t) is
strictly concave in u;(t). Assunption (A) is equivalent to assum ng that
the matrix which defines the purely endogenous part of m(t) in terns of
u(t) and y(t) 1is negative sem-definite and assunption (B) is
equival ent to assuning that R' is negative definite.

In the case of stability, first, ® = F + GP is the closed-Ioop

matri x of the ganme. Second, we account for discounting by multiplying @&

by /8. That is, we define the discounted closed-loop matrix ® = /3

or, equivalently, ® = F + GP, where F = J/6F and G = V3G @ is said
to be discrete-tine stable if its eigenvalues are less than one in
nodul us. A sufficient (but not always necessary) condition for Vi(t) =

l'm Vi(t,h) to be finite is that ® is stable. W assume P is restricted

to values that inply that ® is stable. P's that inmply stable ®'s are
thenselves called stable. To ensure that the set of stable P's is

nonenpty, we assume that (C) the ordered pair [F, G] is stabilizable.
Stabilizability ensures existence of stable, constant, linear, feedback
policies (Wnham 1967).

Defining stabilizability is sonewhat involved (e.g., Kwakernaak
and Sivan, 1972, pp. 53-65 and 459-462). However, let y(t) = (yi(t)T,
yo(t)T) T, where y,(t) is endogenous and y,(t) is exogenous. Then, first,
stabilizability inplies that, abstracting from exogenous variables and
di sturbances, for any initial value of y;(t), and for any target value

y,, there is a control sequence, {u'(t+k)} s that takes y; from the

initial value to vy, in a finite number of periods N  Second,

stabilizability inplies that the conditional nean of y,(t) is of

exponential order 1/ 8, i.e., || Erya(t+k) || < c||yat)]|/ 8", for k =
0O, 1, ..., where c is a positive constant and ||[l]] is a vector norm

Because 0 < & < 1, the second condition of stabilizability inplies that

exogenous vari abl es can be nonstationary within this linit.
Detectability, which is dual to stabilizability, is wusually

assuned for the underlying optinal-control problem (i.e., cooperative

solution of the ganme) to help ensure that ® is stable (Kwaker naak and
Sivan, pp. 65-81, 247-283, 462-466, and 495-501). Because concavity



assunptions (A) and (B) and detectability may be insufficient to ensure
stability in the present gane setting, detectability is not assuned
formally. Instead, we assune directly that P is stable.

A Stackel berg equilibrium can now be defined. In addition to what

each player has been assumed to know, player i has conjecture =Z;; about
pl ayer j's policy, P j» and conjectural variation 0=;;/ 0P; about how P ;,
reacts to infinitesimal changes in P i. Given this information,

conjectures, and conjectural variations, player i maximizes objective

(2.3) with respect to P i Subject to state equation (2.2). Let P i =
I (=i;, 0=;/0P;) denote player i's resulting optimal feedback matrix as a

function of =; and 0=/ 0P;; and let I, denote first-partial derivatives

of T, with respect to the first argument =1». Recall that player 1 is

the leader. A Stackelberg equilibrium occurs when: (I) P = [ P’, PJ]Tis
such that the players optimize (P ;= Tpand P 5, = Ty), (I) players’
conjectures are confirmed ( Zp, =P ,and =,; = P ), (lll) the leader's
conjectural variations are confirmed ( 0=1,/ 0Py = T,), and (IV) the
follower's conjectural variations are null ( 0=51/ 0P, = 0). Section 3

derives computationally useful forms of these equilibrium conditions
for the discrete-time infinite-horizon linear-quadratic game. Appendix
B derives analogous continuous-time solution equations.

3. Derivation of Discrete-Tine AF Sol ution Equations.

First, we state definitions and rules of matrix differentiation
and, then, use the rules to derive discrete-time AF solution equations.

3.1. Definitions and Rules of Matrix Differentiation.

First, motivated by Magnus and Neudecker (1988), we define matrix
derivatives in terms of matrix differentials. Then, we state two rules
of matrix differentiation, a product rule and a trace rule, that we use
to derive the AF solution equations.

Let A(C 8 = {A j(0)} denote a real, differentiable, m xn, matrix
function of a real, p x1 vector 0=( 64 .., 8,) T, where m, n, and p are
any positive integers (previous uses of m, n, p, and g are temporarily

suspended). Vector 0 could be the vectorization of a matrix with a total
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of p elenments. Let the mxn matrices oA = {0dA;/06;}, for k =1, ..., p,

collect first-order derivatives of A(B8) in partial-derivative form Let

dA; = zkpzl (0A;/06)dB,, where dbc is an infinitesiml variation in 6.

It suffices to consider do = (9,, ..., ép)Tds, where 0 = (6,, ..., 6,)"

is a real vector of finite-valued elenents and de is a real,
infinitesimal, scalar variation. Then, dA = {dA;} is the nmxm
differential formof first-order derivatives of A(6).

Product Rule. Let A(B) and B(6) be real, mn and nxq,

differentiable, matrix functions of the real px1 vector 6, where m n,
p, and q are any positive integers. Conmponentw se application of the
scal ar product rule of differentiation yields the matrix product rule

of differentiation
(3.1 d(AB) = dAB + AdB
(Magnus and Neudecker, 1988, p. 148). For exanple, setting 6 = P, we use

rule (3.1) to derive equation (3.5) fromequation (3.4).

Trace Rule. Let A and B be real -valued, nmxn and nxm nmtrices, Sso

that dAB is a neaningful matrix product, where dA is an infinitesinal
variation in A dA may be expressed as Ade, where A is a finite-
val ued, nonzero, nmxn matrix and de is an infinitesiml, nonzero, scalar

variation. Let tr(0 denote the trace of a square matrix. The trace rule

is:
(3.2) If tr(dAB) = 0, for all dA = Ade O R™, then, B = 0.
To prove trace rule (3.2), choose some (i,j) O {(1,1), ..., (mn)}.

Consider A such that A, #0, A, =0, for (k,?) # (i,j), and remenber

n
=1

that de # 0. Then, tr(dAB) = ¥ ¥ dABx = A Bde = 0 inplies B

= 0. Repeating this argunent for all other (i,j) O {(1,1), ..., (mn)},
we conpl ete the proof.

In subsection 3.2, we wuse rule (3.2) to convert first-order
conditions fromthe unsolvable formtr(dAB) = 0 to the solvable form B

= 0. In these applications, dA represents all possible variations in a



11

policy rule coefficient matrix. For exanple, setting dA = d;P" = d,R,
we use rule (3.2) to convert equation (3.5 to (3.6). Because the
variations, dA # 0, are used to determine first-order conditions of LQ

maxim zation problems, their A’s conceptually assume any nonzero

val ues.
3.2. Derivation of Solution Equations.

W now derive the discrete-time AF solution equations. Because

u(t+k) = Px(t+k-1) and the disturbance ¢g(t) is being ignored, state

equation (2.2) inplies x(t+k-1) = c-kax(t-l), for k = 0, ..., h. Thus,
objective (2.3) inmplies Vi(t,h) = x(t-1)"W(h)x(t-1), where W(h) is

generated recursively by

(3.3) W(k) = ®"W(k-1) ® + PRP + P'S + S'P + Q,

for k =1, ..., h, and W(0) = PRP + P'S + S'P + Q. Because ® is
stable, in the linit as h - o, Vi(t, o) = x(t-1)"Wx(t-1), where W =
U™ W(h) satisfies

(3. 4) W= 0"Wd + PRP + P'S + SP + Q.

Let d; denote the differential induced by infinitesiml variations

in P. Then, the imediate first-order necessary condition for
maxim zing Vi(t,») wth respect to player i's policy rule P i is
d; Vi (t, o) = 0. Because x(t-1) is independent of P i and can assume any
value, d V;(t, o) = x(t-1) Td; Wx(t-1) = 0 implies d iW = 0. To see what
d; W = 0 implies, we use product rule (3.1) to differentiate equation

(3.4) with respectto P i,imposed ;W =0, and obtain

35 d F[R'P+ RIP+ S+ GWo]

+d PI(RH'P+ RIP+ S+ GWd]+..=0,
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where (i,j) O {(1,2), (2,1)}, the dots here and bel ow denote asymetric
terns repeated in transposed form d;P;, denotes player i’s variation of
their policy rule coefficient nmatrix, and d;P; denotes player i's
conjectural variation about player j, i.e., player i’'s assunption about
how P; responds to infinitesimal variations in P.

Next, we specialize equation (3.5) as the first-order necessary
condition for player 2, the follower in the ganme. Being a Nash player,
pl ayer 2 has a null conjectural variation about the |eader, i.e., d,P, =
0. Thus, we set (i,j) = (2,1) in (3.5), inpose d,P, = 0, take the trace
of (3.5), use tr(A = tr(A") and tr(AB) = tr(BA) to consolidate terns
(including those represented by repeated dots), divide by 2, apply
trace rule (3.2) with dA = d,P,, and obtain

(3.6) RZP, + R'P+ S2 + GTWO = 0.

To obtain the first-order condition of the |eader, we express d;P,
in terms of d;P;,. First, we use product rule (3.1) to differentiate
equation (3.6) with respect to P, and obtain

(3.7) d:P, = Md,P, + Mzle\édS,

wher e M =-[R? + GWG] R + GWG],

M= -[R? + GWG]'G.

Concavity assunptions (A) and (B) stated in section 2 inply [R? +

G WG,] is negative definite and, hence, is nonsingular.

Next, to express d;W in terns of d;P;, we differentiate equation
(3.4) for i = 2 with respect to Py, sinplify the result using equation
(3.6) (an envel ope theoren), and obtain

(3.8) dW = d;PTN, + OTd,Wd + ...,

wher e Np = (RY)TP, + R'P, + Sb + GIWO.
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Because ® is stable, equation (3.8) is equivalent to
(3.9) AW = 3 () [diP[ N + NI diPy] @

Next, we use equation (3.9) to elimnate d;W from equation (3.7),
use the result to elimnate d;P, fromequation (3.5), for (i,j) = (1,2),
and obtain

(3.10)  diP[[Niy + MNoy] + 57 (@Y [diP N + NLdiPi] & MNey + ... =0,
where Ny = RIP, + R2P, + St + GTWO,

(R2)TP, + R?P, + S + GGW®.

Ny

Next, we take the trace of equation (3.10), use tr(A) = tr(A" and
tr(AB) = tr(BA) to consolidate ternms, divide by 2, and obtain

0

(3.11)  tr{diP[[Nys+ MNoy + N5 7 ®I(DN,M + MN®T)(DT)I]} = 0.

j=

Because equation (3.11) is in the formof tr(dAB) = 0, where dA = d,Pf

can assunme any nxm value, trace rule (3.2) inplies
(3.12) Ny + MNpp + NpW = 0,
wher e W=5", ®[ONM+ MNy®T (D7),

Because @ is a stable matri x,
(3.13) W= 0WdT™ + MNy®" + ® N, M.

The anticipative control effects nanifest thenselves through W,
which neasures how the follower’s valuation matrix, W, varies in
response to variations in the leader’s policy rule. In the DPF solution
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at backwards recursion h, by taking W(h-1) as given, the | eader ignores
anticipative control effects and, in effect, sets W = 0. Thus, by
droppi ng equation (3.13) and setting W = 0, the AF solution equations
reduce to the DPF solution equations. Furthernore, if we set M = 0 in
equation (3.12), so that it reduces to Ny = 0, the DPF solution
equations reduce to Nash equilibrium solution equations.

We have derived algebraic Riccati-type solution equations for the

anticipative feedback solution of the discrete-tine, linear-quadratic,
i nfinite-horizon, Stackel berg gane: equations (3.4), for i = 1 and 2,
(3.6), (3.12), and (3.13). Equations (3.4), for i = 1, (3.12), and
(3.13) are the leader’'s conplete first-order conditions and equations
(3.4), for i = 2, and (3.6) are the follower’s conplete first-order
conditions. Let & = (9],9,)7, where 9 = (vec(P)", vech(W)T,
vech(W)NT, 9, = (vec(P,)", vech(W) T, vec() denotes the columw se

vectorization of a matrix, and vech()] denotes the columw se
vectorization of the nonredundant |ower half of a symetric matrix.
Then, the AF solution equations conprise ns + (3/2)s(s+l1l) scalar-Ievel

equations for determ ning the same nunmber of elenents of 3§.
4. Nurerical Solution of Discrete-Tine AF Equations.

First, we describe a nunerical trust-region nethod for solving
the AF equations and, then, illustrate the nethod with a duopoly nodel.

4.1. Nunerical Solution Mthod.

The AF solution equations are nonlinear differentiable equations
in 9 and, therefore, are solvable using gradient nethods such as the
trust-region nethod (Mre et al., 1980). The trust-region nethod
requires an initial value of 8, 8, which should be close to the AF
solution value and, t her ef or e, should satisfy its regularity
conditions. Although the full AF regularity conditions are unknown, at
a mninum 9, should inply that P is such that ® is stable (otherw se W
and W are likely to be undefined) and that W and W are negative semi -
definite in endogenous state variables (otherwise second-order
concavity conditions are violated).
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A cautious approach in setting 9, for the AF solution is to
conpute a sequence of Pareto (or cooperative), Nash equilibrium (NE),
and DPF solutions. The Pareto solution is a convenient starting point
because its solution can be conputed without initial values. The Pareto
solution solves the problem of maximzing the weighted average of the
pl ayers’ expected present values, V(t,o) = 0Vi(t,©) + (1-8)Vy(t, ), for
some value of 6 0O [0,1], with respect to the joint feedback matrix P,
subject to the state law of nmotion (2.2). Conputing the Pareto sol ution
i nvolves solving the standard discrete-tinme algebraic matrix Riccati
equation, which can be done accurately and quickly using a Schur-
deconposition nmet hod (Laub, 1979). Under t he concavity and
stabilizability conditions, the Pareto solution yields the desired
stable P and the negative senmi-definite endogenous part of W = 68W +
(1-8)W. We could use the Pareto solution as an initial value for
conputing the AF solution. A nore cautious approach conputes successive
Pareto, NE, DPF, and AF solutions, using the Pareto, NE, and DPF
solutions as initial values for the NE, DPF, and AF solutions. The idea
here is that the Pareto, NE, DPF, and AF solutions should "line up" in
the solution space because the |leading player has ever greater
dom nance in the sequence of solutions. The |ast step of conputing the
AF solution is greatly sinplified by using the fact that, given the
first player’s solution values &;, the second player solves a standard

Ri ccati equation.
4.2, Illustrative Nunerical Solutions of a Duopoly Model.

The nodel is a nodification of the nodel in Chen and Zadrozny
(2001). As before, subscripts i = 1 and 2 refer to the leading and

foll owi ng players, respectively. The players are firms that produce qi(t)
and g,(t) amounts of a good. The denmand for the good is given by

(4.1) Pe(t) = -nqg(t) + d(t),

where qg(t) = qu(t) + gx(t), n > 0 is a slope paranmeter, and d(t) is the
denmand state generated by the AR(1) process

(4.2) d(t) = @d(t-1) + {(t),
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where | @ < 1/ 4/5 and the disturbance Zy(t) is distributed I1D with zero
nean.

The firnms use capital, kij(t), labor, ¢4(t), and materials, m(t), to
produce output and invest in capital. Investnent, n;j(t), has two stages:
purchasing capital goods and installing them Installing capital is an
"out put activity" because it uses resources that could otherw se be used
to produce output. The output activities are restricted according to the
production function

(4.3) h(ai(t), ni(t)) = g(ki(t), 4(t), m(t)),

where g(-) and h(-) are the constant elasticity functions,

(4.4) gk @, aO.m @)=(  oki@® P+ o) P+ oam) P)YP
h(q i®.n =0 va® "+ yni® 7)YP
where a; > 0, o + a, + a3 =1, B <1, v >0, vi+ Y. =1, and p> 1.

| B-1] -! is the constant elasticity of substitution among inputs and
| p-1] " is the constant elasticity of transformation between output
activities. Including n i in h( 0O is a parsimonious way of specifying
internal adjustment costs: for given input resources, ever more units of
output must be forgone as investment increases. Adjustment costs arise
only during the installation of capital goods. Mathematically, p>lisa
necessary and sufficient condition for the output transformation curves
to be concave. The transformation curves become more curved, and, hence,
adjustment costs increase as p increases. Similarly, B <1 is a necessary
and sufficient condition for the input isoquants to be convex to the
origin. The isoquants become more curved and input substitutability
decreases as [ decreases.
To obtain linear-quadratic optimization problems for the firms, we
describe the production function in terms of the quadratic approximation
of its dual variable production cost function (DVPCF). The variable
production costs are ¢ g®=p () GEO+p )M (), where p Mandp b

are the hiring and purchase prices of labor and materials. The labor and
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materials costs are called variable because these inputs are free of
adjustrent costs. The DVPCF is denoted by cq(w(t)) and defined as
follows: given w(t) = (wa(t), ..., ws(t))T = (qi(t), m(t), ki(t), p(t),
Pe(t)) T, Cq(w(t)) = mininmumof p(t)4(t) + pot)m(t) with respect to /(t)
and m(t), subject to the production function (4.3)-(4.4).

The firns’ renmmining costs are the purchase costs of capital goods
Cni(t) = pa(t)ni(t), where p,(t) is the purchase price of capital goods.
Thus, the firms’ profits are m(t) = rg)—c @ -c ni(t), wherer ai (©)
=pqa i®=- naiag i + dit)aq i (t) is sales revenue. The quadratic
approximation of ¢ qi (0 is ( v2)w () "D?cq(wio)w; (t), where O%Cq(wi o) is the
Hessian matrix of second-partial derivatives of ¢ qi (t) evaluated at w io =
1, 1,1, a,, as) ', a value that results in the simplest expression for

O%cq(Wio). [O%cq(Wio) is stated in appendix A in terms of the parameters of

the production function. For simplicity, we write O%cq(Wio) as O%cq.
Therefore,
(4.5) n(t)=- na®a i) +d(t)g M- v2wi®) em®-p WO ().

The input prices are generated by the AR(1) processes
(46) p )= @nPa(t1) +  Con(t),
P M= @pt1)+ (),
P )= GePult1)+ Conl),

where the coefficients @on: @, and @ are less than 1/ V3 in absolute

value and the disturbances Cony Cpp and  (pmare distributed 1D with zero
means.

Each firm's capital accumulates according to the law of motion
4.7 k = @kitl)+n O+ L),

where 0 < @ < 1 and the disturbance {, is distributed 11D with mean zero.

The model's structural components have thus been specified.
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Next, we sinplify the firms’ dynanmic optinization problens by first
solving for /(t) and m(t). We can do this because 4(t) and m(t) are not
control variables in the capital law of notion. Optinmal values of /(t)

and m(t), conditional on qi(t) and n;(t) being at their optimal values,
are obtained using Shepard’ s | enma (an envel ope theoren,

(4.8) Li(t) = caQi(t) + Cani(t) + Cagki(t) + Casp(t) + Caspnlt),
(4.9) m(t) = cs0i(t) + Csoni(t) + Csski(t) + Csap(t) + Cospuft),
where (C41, ..., Cy4s5) and (Csy, ..., Css) are the 4th and 5th rows of chq.

Then, to state the firns’ remaining optimzation problens in the
general notation of sections 2 and 3, we define the 4x1 control vector
u(t) = (ul(t), ux(t))T = (au(t), ny(t), ax(t), nx(t))" and the 6x1 state

vector x(t) = (kai(t), kuo(t), pi(t), pAt), pAft), d(t))T, and then assenble
the dynam c equations (4.2), (4.6), and (4.7) as the state equation

O
(4 10) Xt = FXt_l + mo |:|Ut,

axal]

where F = diag[@, & @i, Gy Gm @, G = % g g SE and 044 IS the 4x4
zero matrix. The matrices R, S, and Q, which define the profit function
in the general notation, are stated in appendix A in terns of n and the
el enents of [Pc,.

We conput ed exanpl es of AF solutions for the nodel using a trust-
regi on nethod described in section 4.1. The solutions were conputed in

less than 5 seconds on a personal conputer using a 150-negahertz

processor. A conputed solution 9 satisfies (3.4) for i = 1 and 2,
(3.6), (3.12), and (3.13) up to error matrices. The solution has k-
digit precision if all elenents of the error matrices are < 10X,

To conpute the AF solution, first, we conputed a Pareto solution
for equally weighted player’s objective functions, by solving a
standard al gebraic Riccati equation using a Schur-deconposition mnethod.
Second, we used the Pareto solution as an initial value for conputing
the DPF solution using the trust-region nethod. Finally, we used the
DPF solution as an initial value for conputing the AF solution using



the trust-region nmethod. We skipped the NE solution between the Pareto

and DPF solutions. In all -cases,
negative sem-definite in the tw endogenous state variables, i.
firns’ capital stocks.
Table 1 reports Pareto, DPF, and AF solutions for
pai rs of production function elasticities.
fixed at the following values: & = .935, n = .5, =y, =

oz = . 333,

and @ = @i = @ = Gm
obj ective functions are wei ghted equally,
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In the Pareto sol utions,

® was stable and W and W were

five different
The renumining paraneters are

.5, a; =

with 6 = .5. The table reports

the firns’ optimzed values, Vi(t,o) = x(t-1)"Wx(t-1), for x(t-1) = (1
1, 1, 1, 1, 1)7, in the different sol utions.
Tabl e 1: Pareto, DPF, and AF Sol utions of the Duopoly Mde
Sol ution Vy Vs, Vy Vs, V, A
(Bl p) = ('51 5) (B! p) = ('51 75) (Bl p) = ('51 10)
(CES, CET)=(.17,.2) | (CES, CET)=(.17,.15) | (CES, CET)=(.17,.11)
Par et 0 . 4292 . 4292 . 2611 . 2611 . 1417 . 1417
AF . 4215 . 4107 . 2568 . 2530 . 1383 . 1360
DPE . 4206 . 4093 . 2567 . 2535 . 1383 . 1366
(Bl p) = ('51 5) (Bl p) = ('31 5) (Bl p) = ('11 5)
(CES, CET)=(.17,.2) | (CES,CET)=(.77,.2) | (CES, CET)=(1.1,.2)
Par et 0 . 4292 . 4292 2.6286 2.6286 5. 0481 5. 0481
AF . 4215 . 4107 2.6199 2.6031 5. 0368 4.9990
DPE . 4206 . 4093 2.6188 2.6083 5. 0345 5.0196
As expected, both players achieve the highest values in
Pareto solutions and the |eader achieves higher values in the AF
solutions than in the DPF solutions. At least in this nodel, for

par anet er

cases and between the players.

val ues consi dered,

the values differ
As expected,

the firnms’

slightly anpbng the five

val ues decline

pl ayers
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as B declines and p increases. This occurs because |ower (s and higher
p's nmake the firns’ operations less flexible. First, lower B's inply
|l ower input substitutability, which reduces firns’ flexibility in
changi ng i nput proportions when input prices change. Second, higher p's
imply higher adjustnent costs, which nakes capital adjustnents nore
costly. Generally, both firms’ values increase as the |eader shifts
from DPF to AF decision rules.

5. Concl usi on.

We have derived al gebraic solution equations for a new sol ution,
called the anticipative feedback (AF) solution, for discrete- and
continuous-time, linear-quadratic, infinite-horizon, Stackelberg, two-
pl ayer, dynamc ganes. The AF solution puts the leading player in a
better position in conparison with the famliar dynam c programing
feedback (DPF) solution. The paper illustrates discrete-tine AF
solutions for a duopoly nodel. The solutions are accurately and quickly
computed using a trust-region nmethod. The illustrations show that the
leading firm indeed increases its value by switching from DPF to AF
decisions, but that the value increases are small, at least in the
duopoly nodel for the paraneter values that are consi dered.

Appendi x A: Coefficient Values of the Duopoly Model.

In this appendix, we state the R, S, Q matrices, for i = 1 and
2, that define the players’ objective functions in the illustrative
duopoly nodel. First, we state the elenents of %, denoted c;j, in

terms of the parameters of the production function. Then, we state the
R, S, and Q matrices in terns of the output-demand slope n and the
el ements of [cy.

The nonredundant upper-triangul ar el enents of 0%, are

cu = Yi(1-v1) (p-1) Ciz = -vi0:(1-B)/(1-0a1)],
+ yful(l' B)/(l' Gl), C14 = C15 = yl/(l- (Xl),

Ci2 = -Viva(p-1) - YVEVe(1-B)/(1-ay), Co2 = Y2(1-¥2) (p-1)
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+ yiay(1-B)/ (1-ay), C3s = Cgs = -0ay/ (1-0ay),

Css = -0O3/ ax(1l-01) (1-B),
Caz = -Y2 3(1-B)/ (1-ay),

C4s = 1/ (1-0y)(1-B),
Cos = Cp5 = Yol (1-0Q3),

Css = -0/ as(1-0a1) (1-B).
Czz = a1(1-B)[1+oy(2-a1)/(1-ay)],

Let R jx denote the (j,k) element of R and simlarly for § and
Q. For compactness, we state only nonzero elenments. The nonzero,
nonr edundant, upper-triangular elenments of R, and R, are

Ri1a =-n - Cu, R 13 = -1,

Ri,12 = -C1a, Rp33 = -N - Cu,
Ri13 = -1, Ro 3 = -Cia
Ri, 20 = -Co, Ry 44 = -Co.

The nonzero elenents of S; and S, are

Si,11 = -Cas, Sy 34 = -Cua,
Si,14 = -Cua S;,35 = -Cus,
S1,15 = -Cus, Sy36 = 1,
Si,21 = - Cos, S; 42 = -Cos,
Si23 = -1, Sy43 = -1,
S1,24 = -Cay, Sz, 44 = - Coy,
Si1,25 = -Cys, S;,45 = - Cos.
S;,32 = -Cugs,

The nonzero, nonredundant, upper-triangular elenments of @ and G

ar e

Q, 11 = -Cass, Q,44 = -Cyg,
Q14 = -Cas Qi a5 = -Cus,
Qi 15 = -Css, Qi 55 = -Css,
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@, 22 = -Cas, Q, 44 = - Cua,
Q 24 = -Caa, Q 45 = -Cus,
Q, 25 = -Cgs, Q 55 = -Css.

Appendi x B: Continuous-Ti me Sol uti on Equati ons.

In continuous tine, analogously to the ARMAX process (2.1), y(t)

is a nxl vector generated by the stochastic differential equation

(B. 1) Dy(t) = AD™Yy(t) + ... + Ay(t) + BDW(t) + ... + Byu(t)

+ CGDeg(t) + ... + CGg(t),

where D denotes the j-th mean-squared tine derivative, p, g, and r are
positive integers, u(t) = (uy(t)T, uy(t)NTis an mxl = (m + m)x1 vector
of players’ controls, and g(t) is an nxl1 vector of continuous-tine
whi t e- noi se di st urbances.

To say that g(t) is continuous-tine white noise neans that it has
i ndependent increments, zero nean, and autocovariance function ZXZA(t,-
ty), where Z.;is an nxn, symmetric, positive definite, intensity matrix,
A(t,-ty) is the Dirac delta function, and t, = t; are points in tine.
Strictly, ¢(t), its derivatives, and (B.1) are not well-defined, but for
p =21 + max(q,r), which is assuned, there is a well-defined (nean-
squared) stochastic integral equation corresponding to (B.1) that gives
it a rigorous foundation (Astrom 1970, pp. 13-90).

To put (B.1) in state-space form we define a state vector x(t)
exactly as in section 2 and, again, let xi(t) = y(t). Then, by a
recursive-substitution argunent simlar to that yielding (2), we obtain

(B. 2) Dx(t) = Fx(t) + Qu(t) + He(t),
where coefficient matrices F, G and H are exactly as in the discrete-

time state equation (2.2). Thus, the state-space representation of

process (B.1) conprises state equation (B.2) and the observation
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equation y(t)= M(t), where M= [I, O, ..., 0]. As before, u(t), G and
P partition as u(t) = (uy(t)’, ux(t)"H", G=[G, G], and P=[P', P/]1"
Constant linear feedback policies are uj(t) = Px(t|t), where
x(t]t) = E[x(t)] = E{x(t)]Q(t)] and Q(t) = {y(v, u(t| T <t}. As in
the discrete-tine case, we suppress disturbances so that x(t|t) = x(t).
At each noment t, given information Q(t), assunptions about

opponents’ positions and reactions, and state equation (B.2), player i

maxi m zes
(B:3)  Vi(t,h) = E [ " exp[-3tt)Im(0)dt

with respect to P, subject to uj(t) = Px(t) and state equation (B.2),

where & > 0 is a real discount factor and (1) = u(1)'Ru(t)+ 2u(1) 'S (1)
+ y(1)"Qy(1). As before, we assune that Q is symmetric, his initially

taken to be finite, S = SMand Q = MQM and we consider T(1) in the

nore detail ed representati on anal ogous to equation (2.4).
The discrete-tinme assunptions on paraneters are retained, except
for technical changes necessitated by the switch to continuous tine.

That is, as before, we assunme (A) 1 (1) is concave in u(t) and in the
endogenous variables in y(t), (B) m(t) is strictly concave in u(t),
and (C) after incorporating discounting, state equation (B.2) is
stabilizable. Assunptions (A) and (B) inpose the sane restrictions as

in the discrete-time case. However, whereas the assunption that R' is

negative definite is generally not necessary in discrete tinme, it is
necessary in continuous tine.

In continuous time, the discounting and stability conditions are
different. ®= F + G is still the closed-loop matrix, but in
continuous time the discounted closed-loop matrix is P= O - (& 2)1,,
where 1, is the nxn identity matrix, or, equivalently, ®=F + oP
where F = F - (&2)1,. ® is continuous-time stable if the real parts of
its eigenvalues are negative. As before, P is restricted to values that
i mply that ®is stable and the stabilizability of [F, G] ensures that

the set of stable P’s is nonempty.
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Constant linear feedback policies inply that Dx(t) = CTJX(I),
hence, that x(1) = exp[ EJ(T-t)]x(t), for T =t (Gaham 1981, pp. 108-

110), where exp[ ®(t-t)] = | + ®(t-t) + (v2!)®(t-t)2 + ... is the
matri x exponential. Thus, Vi(t,h) = x(t)"W(t,h)x(t), where

(B.4)  Vi(t,h) = ["" exp[ ®(-1)][PRP + P'S + S'P + Qlexp[ & (t-1)]dr.

W prenultiply equation (B.4) by o postmultiply it by ®, add the

products together, and integrate the sum by parts. Because @® is a

stability matrix, in the limt as h-o, we obtain

(B.5) ®W + WO + PRP + P'S + SP +Q = 0,

where W = \im W(t,h).
The inmmediate first-order necessary condition for naximzing
Vi(t, o) with respect to P is djVi(t, ) = 0. Because x(t) is given

i ndependently of P, and can assume any val ue, d;Vi(t, o) = x(t)Td;Wx(t)
O inmplies diW = 0. To see what diW = 0 inplies, we use product rule

(3.1) to differentiate equation (B.5) wth respect to P, inpose d;V
0, and obtain

(B.6)  dR[R'P+RP +§ +GW

+ &P [(R)™A +R'P + S + GW] +... =0,

where (i,j) O {(1,2,), (2,1)}, and the dots denote asynmetric terns
repeated in transposed form

To specialize equation (B.6) as the first-order necessary
condition for the follower, we set (i,j) = (2,1), inmpose d,P, = 0, take
the trace, use tr(B) = tr(B") and tr(AB)= tr(BA) to consolidate terns,
divide by 2, apply trace rule (3.2) with dA = d,P,, and obtain

(B. 7) R’P, + R'P, + S, + GJW = 0.
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To obtain the first-order necessary condition of the |eader, we
use product rule (3.1) to differentiate equation (B.7) with respect to
P, and obtain

(B.8) diP; = MdiP; + Md;W,
wher e M = -(R? 'R,
M = -(R?)'G].

To express d;Win terms of d;P;, we differentiate equation (B.5),
for i =2, with respect to P;, sinplify the result using equation (B.7),
and obtain

(B.9) ®Td;W + dW® + dP N, + NLd;P; = 0,

wher e N = (RY)™P, + RIP, + S) + G W.

Because ® is a stable matrix, equation (B.9) is equivalent to
(B. 10) d,W = J':J:o exp( @) [di PN, + NI, d;P;] exp( ®1) dr.

We use equation (B.10) to elimnate d;W from equation (B.8), then,
use the result to elimnate d,P, fromequation (B.6), for (i,j) = (1,2),
and obtain

(B.11) diP [ Nig + M Ny
+ [, exp(®T[diP[N, + Nj,diPi] exp( ®1) M Nudt = 0,

wher e Ny = R'Pp + REP, + ST + G W,

Ny = (RP?)™P, + RZP, + & + GJW.
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Next, we take the trace of equation (B.11), use tr(B) = tr(B") and
tr(AB) = tr(BA) to consolidate ternms, divide by 2, and obtain

(B.12) tr{d,P][Ny + M Ny
+ le_l'io exp( ®1) [ M Ny + NioM]exp( ®™)di]} = 0.

Because equation (B.12) is in the formof tr(dAB) = 0, where dA = dP/

can assunme any nxm value, trace rule (3.2) inplies
(B.13) Niy + M Ny + NpW = 0,

wher e Y = J’io exp( ®1) [ M Npy + NI, M] exp( @) dr,
or, equivalently,

(B. 14) PW + WOT + MNy + N,M = 0.

Thus, we have derived algebraic Riccati-type solution equations

for the anticipative feedback solution of the continuous-time, linear-
quadratic, infinite-horizon, Stackelberg, dynanmic ganme: equations
(B.5), for i =1 and 2, (B.7), (B.13), and (B.14). Equations (B.5), for

i = 1, (B.13), and (B.14) are the leader’'s conplete first-order
conditions and equations (B.5), for i = 2, and (B.7) are the follower’s
complete first-order conditions.

As in the discrete-tine solution, if we set W = 0 and drop
equation (B.14), the continuous-tine Stackel berg AF solution reduces to
the Stackelberg nonanticipative solution, which is analogous to the
di screte-tine DPF solution. In addition, if we set M = 0, the

nonanti ci pati ve solution reduces to the Nash equilibrium solution.
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