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1. Introduction

In applied work with generalized variance function
models for sample survey data, one generally seeks
to develop and validate a model that is relatively
parsimonious and that produces variance estimators
that are approximately unbiased and relatively sta-
ble. This development and validation work often
begins with regression of initial variance estimators
(computed through standard design-based methods)
on one or more candidate explanatory variables.

Evaluation of the adequacy of the resulting regres-
sion Þt depends heavily on the relative magnitudes of
error terms associated, respectively, with pure sam-
pling variability of the initial design-based variance
estimators; the deterministic lack of Þt in the pro-
posed generalized variance function model; and the
random equation error associated with the gener-
alized variance function model. This paper presents
some simple methods of evaluating the relative mag-
nitudes of the sampling error and equation error
terms. Both parametric and nonparametric regres-
sion methods are used in producing smoothed esti-
mators of the mean squared equation error in the
underlying generalized variance function model Þt.

Some of the proposed diagnostics are applied to
data from the U.S. Current Employment Survey.

2. Variance Function Model

DeÞne �θj a point estimator of θj , a Þnite population
mean or total. Let θξ j be a superpopulation ana-
logue of θj where j is the domain index. For exam-
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ple, in CES survey, domains are the combinations
of industries, areas and time. DeÞne Vp j= Vp(�θj)

as the design variance of �θj , and �Vp j = �Vp(�θj) as
an estimator of Vp j . Throughout this paper, the
subscript �p� denotes the method to obtain an ex-
pectation or variance evaluated with respect to the
sample design.
The generalized variance function method models

the variance of a survey estimator, Vp j , as a function
of the estimate and possibly other variables (Wolter
1985). The common speciÞcation is

Vp j = f(θj ,Xj , γj) + qj (1)

where Xj is a vector of predictor variables poten-
tially relevant to estimators of Vp j , qj is a univariate
�equation error� with the mean 0, and γj is a vector
of variance function parameters which we need to
estimate. Note especially that qj represents the de-
viation of Vp j from its modeled value f(θj , Xj , γj).

3. Current Employment Survey Data

The CES survey collects data on employment, hours,
and earnings from 400,000 nonfarm establishments
monthly. Employment is the total number of persons
employed full or part time in a nonfarm establish-
ment during a speciÞed payroll period. An establish-
ment, which is an economic unit, is generally located
at a single location, and is engaged predominantly in
one type of economic activity (BLS Handbook,1997).
This paper will focus only on total employment in
the reporting establishment.

One important feature of the CES program is that
complete universe employment counts of the previ-
ous year become available from the Unemployment
Insurance tax records on a lagged basis (Butani,
Stamas and Brick, 1997). The quarterly unemploy-
ment insurance Þles are generally transmitted Þve
months after the end of the quarter by the states to
BLS. It takes BLS an additional 3 months to process
these Þles through various edits as well as perform



record linkage to previous quarters before making
it available as the sampling frame (Butani, Stamas
and Brick, 1997). This data known as ES202 data
are used annually to benchmark the CES sample es-
timates to these universe counts (Werking, 1997).
Using the benchmark data, xia0, at the base pe-
riod from ES202 data, the CES program obtains
weighted link relative estimator, �yiat, to estimate
the total employment, xiat, within the industry i,
area a and month t,

�yiat = xia0 �Riat

where �Riat is the growth ratio estimate from bench-
mark month 0 to current month t.
The CES sample design uses stratiÞed sampling of

Unemployment Insurance (UI) accounts with strata
deÞned by state, industry and employment size class
(BLS Handbook, 1997). CES aims primarily at
meeting the requirements for the national estimates.
As for Þner domains which are deÞned by geographic
characteristics, and industrial classiÞcations, effec-
tive sample sizes within occupational classiÞcations
become so small that the standard design based es-
timators are not precise enough to satisfy the needs
of prospective data users (Eltinge, Fields, Fisher,
Gershunskaya, Getz, Huff, Tiller and Waddington,
2001). It is necessary to have stable estimates of
V (�yiat) for the Þner domains.

4. Model Fitting

We used the direct variance estimators from the sur-
vey as the dependent variables in GVF models. In
the CES survey, we have direct estimators, �Vp j of
Vp j , from Fay�s method which is a variant of the
balanced half-samples replication methods. Each
replicate half-sample estimate is formed based on a
Hadamard matrix. In the standard balanced half-
samples replication methods, only the selected ones
are used to estimate the variance, and the weights
for the selected units are multiplied by a factor 2 to
form the weights for the replicate estimate (Wolter,
1985). However, in Fay�s method, one-half of the
sample is weighted down by a factor K(0 ≤ K < 1)
and the remaining half is weighted up by a compen-
sating factor 2 − K (Judkins, 1990). In our CES
example, K = 0.5.
We assume that �Vp j is a design unbiased estima-

tor for Vp j , i.e., Ep( �Vp j) = Vp j . Our sample con-
sists of Unemployment Insurance accounts, which re-
port nonzero employment for previous and current
months. Let niat be a number of responding UI ac-
counts within the industry i, area a and month t. In
this paper, we consider only domains with at least

12 reporting UI accounts. There are 430 industry-
area combinations in our CES data. Each industry-
area combination has data from January to Decem-
ber of the year 2000. Hence we have 5160 industry-
area-time combinations. For the current analysis,
we considered data from the following six indus-
tries: Mining, Construction and Mining, Construc-
tion, Manufacturing Durable Goods, Manufacturing
Nondurable Goods, Wholesale Trade. Consider the
GVF model

log( �Viat) = γ0 + γ1log(xia0) + γ2log(niat)

+γ3log(tia0) + e . (2)

In this model, we assume that both intercepts and
slopes are constant across the industries and areas.
Various modiÞed models can be considered from (2).
For example, we may allow the intercepts to vary
across industries. Further, we may allow the inter-
cepts and the slopes to vary across industries.

5. Residual Decomposition

Suppose that a model Þtting method (e.g., ordinary
least squares perhaps on a transformed scale; or non-
linear least squares) leads to the point estimator �γj .
This in turn leads to the estimated variances,

V ∗p j
def
= f(�θj , �Xj , �γj) . (3)

Note that V ∗p j is the variance estimator based on
the model, which is transformed back onto original
variance scale.
From the deÞnition of the direct variance estima-

tor

�Vp j = Vp j + #j (4)

where #j has a mean 0 and a constant variance. Re-
call the variance function model in (1),

Vp j = f(θj ,Xj , γj) + qj

Then the resulting residuals are

�Vp j − V ∗p j
= (�Vp j − Vp j)− (V ∗p j − Vp j)
= #j − {f(�θj , �Xj , �γj)− f(θj , Xj , γj)− qj}(5)
= #j + {qj − E(qj)}+ E(qj)

− {f(�θj , �Xj , �γj)− f(θj , Xj , γj)} . (6)

In the equation above, #j is a pure estimation er-

ror in the original �Vp j estimates with E(#j) = 0,



{qj − E(qj)} is random equation error, and E(qj)
is deterministic lack-of-Þt in our model attributable
e.g., to omitted regressors or misspeciÞed functional
form. {f(�θj , �Xj , �γj) − f(θj , Xj , γj)}, the last term
in (6), is a parameter estimation error attributable

to errors {(�θj , Xj , �γj)− (θj , Xj , γj)}.
Exploratory analysis of the adequacy of our esti-

mated values, V ∗p j , may focus on the magnitude of
the prediction errors,

!
V ∗p j − Vp j

"
, relative to the er-

rors,
#
�Vp j − Vp j

$
, in the original estimators �Vp j .

If E(V ∗p j−Vp j)2 is smaller than the variance of �Vp j ,
then we would prefer V ∗p j . In some cases, we may
Þnd that

δ(θj , Xj , γj)
def
= E

%&
f(�θj , �Xj , �γj)− Vp j

'2
| θj , Xj , γ

(
varies across values of θj or Xj with

δ(θj , Xj , γj) << Vp( �Vp j − Vp j) only in some
cases. In this case, we might prefer V ∗p j for some,
but not all values of Xj . This is one case in which
we need to consider a variance function model for
the equation errors qj as well as possibly non con-
stant values of the mean squared estimation errors,

E

%&
f(�θj , �Xj , �γj)− f(θj , Xj , γj)

'2
| θj , Xj , γj

(
.

6. Conditional Expected Squared Er-
ror

We evaluate error sizes in terms of related general
measures and conditional expected squared error.
We may assume that for some known d,

Vp j
−1d �Vp j

p∼ χ2(d) (7)

where
p∼ refers to the distribution induced by the

random sampling design, conditional on the Þnite
population. Thus, Ep( �Vp j) = Vp j , Vp( �Vp j) =
2V 2p j/d, and

Ep( �V
2
p j) = {Ep( �Vp j)}2 + V ( �Vp j)

= V 2p j + 2V
2
p j/d

= d−1(d+ 2)V 2p j .

Consequently, an unbiased estimator of Vp( �Vp j) is:

�Vp( �Vp j) = (d+ 2)
−1 2 �V 2p j . (8)

For our CES survey example, six employment size
classes were used for stratiÞcation. Hence we use
d = 6.

In this section, we obtain and model the condi-
tional squared error, E{(V ∗p j − Vp j)2|Xj}. Consider

E{( �Vp j − V ∗p j)2|Xj}
= E

)
{( �Vp j − Vp j) + (Vp j − V ∗p j)}2|Xj

*
.

Recall the equation (5)

�Vp j − V ∗p j = #j + qj − {f(�θj , �Xj , �γj)− f(θj , Xj , γj)}.

From the variance function model in (1), and the
deÞnition of V ∗p j in (3), we have

Vp j − V ∗p j = qj − {f(�θj , �Xj , �γj)− f(θj , Xj , γj)}.

We are now assuming that for all Xj ,

E
#
#j

)
qj − {f(θj , Xj , γj)− f(�θj , �Xj , �γj)}

*
|Xj

$
is much smaller than E(#2j |Xj), and

E{(Vp j − V ∗p j)
2|Xj}. Generally this will be

true provided that the number of domains is
relatively large.
Under the distribution assumption of �Vp j in (7)

and the assumptions above, an approximately unbi-
ased estimator of E{(V ∗p j − Vp j)2|Xj} is:

rj
def
= (�Vp j − V ∗p j)2 − (d+ 2)−1 2 �V 2p j .

7. Model Fitting for Conditional Ex-
pected Squared Error

For a given function f(θj , Xj , γj), we may consider a
model to produce a smooth version, hf (θj , Xj ,ω), of
the �nonparametric� estimator, E{(V ∗p j−Vp j)2|Xj}
such that:

E{(V ∗p j − Vp j)2|Xj} = hf (θj ,Xj ,ω) + cj
where E(cj) = 0. To develop possible appropriate
models, consider the case in which

E(q2j ) >> E[{f(�θj , �Xj , �γj)− f(θj ,Xj , γj)}2].

If we believed that V (qj) is approximately propor-
tional to V 2p j , then we could consider a regression
model Þt for rj such that

rj = ω0 + ω1V
∗
p j + ω2V

∗
p j
2 . (9)

We consider the following model for rj to evaluate
the adequacy of the GVF model (2) for Vp j . When
we divide each term in (9) with V ∗p j

2, we have

V ∗p j
−2rj = V ∗p j

−2ω0 + V ∗p j
−1ω1 + ω2 . (10)



We used the following ordinary least squared method
to compute ω where ω is the vector of (ω0,ω1,ω2)
. DeÞne X = [V ∗p j

−2, V ∗p j
−1,1] a j × k matrix

where j is the number of domains, and k is the
number of coefficients in (10). Since we have 5160
industry-area-time combinations, and have three co-
efficients in (10), j = 5160 and k = 3. Hence

�ω = (X#X)−1X#(V ∗p j
−2rj) . Hhat (�h), the smooth

version of rj , is the product of the corresponding
elements of X �ω and the weight V ∗p j

2.

8. Data Analysis

Figure 1 shows the plot of rj , an approximately un-
biased estimator of the mean squared error (MSE)
of V ∗p j , against log(V

∗
p j). Hhat, the smooth version

of rj , is also plotted against log(V
∗
p j). This Þgure

demonstrates the sensitivity of Hhat to outstanding
values of rj .

Figures 2 and 3 present results from two nonpara-
metric regression methods known as locally weighted
regression (loess) and a supersmoothed estimator
(supsm). For some general background on these
smoothing methods, see the section of MathSoft
(1995, section 7.11). Figure 2 displays the locally
weighted regression smoothing predictors (loess). In
locally weighted regression smoothing, the nearest
neighbors of each point are used for regression, and
the number of neighbors is speciÞed as a percentage
of the total number of points. This percentage is
called the span. Figure 2 shows the loess with two
different span sizes, 0.1 and 0.5 respectively. Not
surprisingly, a loess predictor with a larger span size
shows less sensitivity toward outstanding data val-
ues. A loess predictor with span size 0.5 didn�t Þt
the data as well as the loess predictor with span size
0.1 at the tail. Figure 3 shows the result of super-
smoothing rj as a function of log(V

∗
p j) adjunct to a

loess predictor. With loess, the span is constant over
the entire range of predictor values. Supersmoother,
however, chooses a span for the predictor values rj
based on only the leave-one-out residuals whose pre-
dictor values ri are in the neighborhood of rj . A
supersmoother Þt the data better than the loess pre-
dictor with span size 0.1 in the tail.

In Figure 4, we plotted several estimators of the
standard error of �Vp j against V

∗
p j . (2

�V 2p j)/(d + 2)
is denoted as SE2 which is the unbiased variance
estimator of �Vp j . (2V

∗
p j)/d is denoted as SE1 which

could be a reasonable variance estimator of �Vp j if
the error, V ∗p j − Vp j is small compared to the error,
�Vp j − Vp j . As seen previously, Hhat is the smooth
version of rj .

9. Discussion

In closing, we note several possible extensions of the
current work. First, we have focused on modeling of
the variance of sampling error alone. In some work
with small domain estimation, there is also inter-
est in modeling of the variances of prediction errors,
which may include components of both sampling er-
ror and model error. Second, one may complement
the current evaluation of predictive precision of a
GVF with formal signiÞcance testing for speciÞc co-
efficients of a given GVF model. Third, one may
develop additional diagnostics that are speciÞcally
focused on evaluation of the effect of GVF lack of
Þt on speciÞc statistics e.g., conÞdence intervals for
Þnite population means or variance-based weights
in construction of weighted least squares estimators.
These issues will be considered in other papers.
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Figure 1: Rj on log(Vstar)
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Figure 2: Loess-smoothed Rj on log(Vstar) with different span widths
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Figure 3: Supersmoothed and Loess-smoothed Rj on log(Vstar)
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Figure 4: Sqrt(Hhat), SE1 and SE2 on Vstar


