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In the present work we explicate the application of
maximum likelihood inference in the analysis of
surveys which are the result of (possibly
informative) stratified sampling. In Section 1 we
review basic idess, including two general results
useful for applying maximum likelihood to sample
data. ldess are illustrated by a simple through the
origin regression model. In Section 2, we discuss
the application of these ideas to the situation of
(possibly) informative stratified sampling. The
variable of interest Y depends linearly on covariates
X, and the stratification variable T depends linearly
on x and Y. For simplicity, we focus on the
through the origin modd, taking T = Y. Section 3
gives results of a simulation study, and Section 4
states conclusions.

1. Maximum likelihood estimation in survey
sampling.

Survey sampling is said to have two goals: analysis
and enumeration (Deming 1950.) We illustrate
the distinction with a simple example.

Example 1 A through the origin regression model
Suppose we have a population P of size N, in
which the variable of interest Y follows the model

Y =xb+x'%e;, (1

withe,~ N(0,s ?) independently for i = 1,...,N.
Suppose the values of the auxiliary variable x; are
available, fori = 1,...,N, and we take a sample s of

size n < N, and determine the values of the Y; "son
s. In enumeration, we aim to estimate a Population

Value like T = é o Yi . Inanalysis we are instead

concerned with estimating a model parameter,
likeb .

A major tool of analysis (in general of course, not just
in the sampling context) is maximum likelihood
estimation:  Suppose the available data D are the

realization of a random variable D ~ f (D;V\/), where

W is a vector of unknown parameters and f is a
probability function or density. (In Example

1,W={b,s ?}.)  The likelihood function is just
f(D;V\/) taken as function of W. A Maximum

A

Likelihood estimate W maximizes f(D;V\/), or,
equivalently, log f (D;W). Towards this end, it is

convenient to calculate the score function (with respect

_ Tllog f (D;W)
oW

to D) SC, (W) this is a vector

with (in our example) components

(b)= Tlog f (D; W)
b

We sat SCD(b):O, etc. and solve, to get the

maximum likelihood estimates.

Cp , efC.

In the sampling context, the data include not only
the data on sampled units, but often also auxiliary
information outside the sample, a variable |
indicating whether particular units are sampled or
not, inclusion probabilities p, and a response
indicator variable R telling whether a sampled unit
gets measured.  If we broaden the population to
include the vectors |, R, then the available data lies
as it were between the sample data and the full
population dataz sI D1 P. For example, we



might have D ={Y,,%.,1,,p., R}, with
distributions of the additional variables
parameterized by nuisance parameters W, .,
estimation of which can complicate estimation of
W. If R is superfluous when we solve for W,
then it is sad that "non-response is non-
informative’, otherwise “informative”. Ifl,p are
superfluous, then “sampling is non-informative’,
otherwise “informative”  (Rubin 1976). In what
follows we shall assume non-informative non-
response, and ignoreiit.

Here are two Results, which hold in general, but
are especially useful in the sampling context:

Result 1. DI U b sc, (W)= E(sc, (W)| D)

(Breckling et a. 1992, Orchard & Woodbury,
1972,...)

Result2. DI U . Suppose
sc, (W)=0b W=g(D). Thensc, (W)=0.
(Chambers, et a 1998)

Result 1 is basic. It says that if we have the score
function with respect to data U, we can derive the
score function with respect to data D included in U
by conditioning on D. Result 2 says that if the
maximum likelihood estimator based on a data set
needs only information available from a smaller
data st included within it, then the maximum
likelihood estimators for the smaller and larger data
sets are the same.

Consider again the through the origin regression
model with normal errors.

Example 1 (continued)
Thedensity of Y; givenx is

5
fly 1% )= 2o xs 2) "% exple M- xD)' 0
(vi I1%)=(2pxs 2) i T
leading to the score function for b with respect to
the population
.20
sc(b)=s 24, (% - bx).

N

Then sc(b)=0pP b= Al
P X

Qo

Qo
x| <

the maximum likdlihood estimateof b , if D = P.
Suppose what is availableis the data
D ={xP,YS, l,p S}. We consider two cases:

Case 1 Sampling is done probability proportional
to size (pps) with size variable x, that is,

p iz%, i=1,2, ..., N. Thisis an instance of
non-informative sampling. For units in the sample,
it is clear that E(Yi | D) =Y,, since D contains Y.
For non-sample units, we have
f(VID)= (Y I%)=f(¥ |x), snce the
inclusion probabilities add no information beyond

what is in x. Thus we get a score function with
respect to the data

SCD(b):épE(Yi - bx |D)
és(Yi - bxi)+é-r(E(Yi |Xi)' bxi)'

But E(Yi |xi)=bxi,so

sc,(b) =8,(Y, - bx) and, seting this score
o]
. ~o_a
function to zero, weget b, = s—— .
aX
Case 2 (informative sampling) Suppose now pps
samplingwithp ,=nY,/NY ,1=1,2,...,N. This
is an extreme case of informative sampling. (In
practice this might arise approximately if we did
pps sampling with respect to a 3 variable highly
correlated with Y that is not available at the time of
analysis.) Then
o]
sto(b) =8 LE(Y - bx %Y, 10.p )

o] o] [o} .
=a.Y +a EMIx.p.)-a,bx . Atfis
sight, the 2" term looks difficult to deal with.
However, since we know p .=nY,/NY and V;,
for each sample unit, any such unit determines for

uswhat Y is. Thatis, implicitly Y1 D. Andwe
were assuming also that X is available Then,



since maximum likelihood estimator with respect to
thefull data P was bA=¥ , and the ingredients
X

of this expression are available from D, Result 2

A

implies that b Dzi as wdl. Could any other
X

sample-based estimator be more efficient?

Note bene: Neither in the non-informative or
informative case, did we arrive at an estimator that
explicitly incorporates the sample weights. In the
non-informative case they are ignored; in the
informative case they are merdy exploited,
unconventionally.

1.1 Two s-based appr oaches to maximum likelihood
Typically the available data D contains information
beyond what is available on the sample units. We
here review two approaches to maximum likelihood
that rely only on the sample data (even when
“extra-sample’ information is available) The first
relies on the sample weights in classic fashion, and
is a special case of the use of weighted estimating
equations (Binder 1991; Godambe and Thompson
1986).

1. Pseudo-likeihood (“weighted maximum
likdihood’) Let p,=f(l, =1|P) be the
probability the ith unit isin s, andw, =p i'l. Then,

in our example, the weighted sample-based score
function

Scw(b):épwili(Yi - in):éS\Ni(Yi - in)
is a design-unbiased estimator of sc(b). Setting

~ AWy,
this to zero, yields the estimator b ,= o———,
a WX
that is,
~ O
| Y. /%
]:as '/', inCase 1
S
:I:o , inCase 2
fax/y

are, as one would expect, (considerably) less
efficient than the corresponding maximum
likelihood estimators above.

2. Sample Likelihood (* Weighted Distribution
Maximum Likeihood”) (Krieger and Pfeffermann
1992)

The sample density of Y; is the density of Y;
conditional on unit i being in the sample:

i 1)° £l 1x.1, =)= _:(ll)i(i':ﬁl);()yi )
To this there corresponds the sample likdihood:
Ls(b):f)S f.(y |%) and a corresponding
score function. In Case 1 (the non-informative
case) we have f(Ii :1|xi,yi): f(Ii :1|xi)

pof(y 1%)=f(y %)
P L(b)=O_f(yIx)P b=

getting the same estimator as
information case.

in the full

In Case 2 (the
f
fs(yi |Xi)o f(Yi | %, 1 :1):

with

informative  case),
(Ii :1|Xivyi)f(yi |Xi)
t(1 =11x)

f(li :1|Xi,yi):;—YYl» Nan
v

mean of Y. It

, wherem,, is the

follows that

nY nb x
fll. =1|x ¢ flY | x )dY = L,
(1, |X.)>>Om (v 1x) N

Y r.nY

marginal

Thus

(0 1% )=v, o xs 2) 2o x ) e L 2% )

o
2xs *
and sc,(b)=s 4 (¥ - bx)- n/b.

Setting this equal to 0, and multiplying through by
b, we get a quadratic equation, with solutions

é-sYi i\/(é-sYi)2 - 4ns 25-sxi
28 X '

b=



The negative solution corresponds to a minimum
of the sample likeihood function.

The downward S adjustment (we here assume for

simplicity that S is known.) under the radical
seems appropriate, since pps sampling with size
variable y would tend to select disproportionately
thelarger Y's. We note the estimate converges to
the Case 1 solution as s*® O. In our
experience, this estimator tends to be more efficient
than the pseudo-likeihood estimator and less
eficient than the full information maximum
likelihood estimator (Chambers et al. 1998). This
is certainly true for the informative case here.

2. ML under Informative Stratification

The general regression situation we would consider
is

Y, =x;b+vi%,, h=1,.H,i=1..N,
with e, ~ N(O,s 2)
independently of the Xx's.

independently, and

We follow Schema D2, Krieger and Pfeffermann
(1992). Stratification is determined by a variate T,
which is possibly in part determined by Y:

T, =bY, +xc+wi’hy, © z;g +w*hy, , with
h, ~ N(O,t 2) independent, and independent of

theYsand x's. Strata are determined by the H+1
stratum boundaries

¥ =0 W< t@c <MD <™ =¥ sothat
t" <t £17 b population unit i in stratum h
N, = number of unitsin the hth stratum
N, = number of units sampled from this stratum
using SRSWOR
S : sample labdsin stratum h,
ry : corresponding non-sample labels.

The population score functions are:

Y. - xTp )
AR LT

clg)=t 4§ o B0k
-z
e kbl

the last two equations accommodating the nuisance
parameters. To keep technical matters relatively
simple, we again focus on the through-the-origin-
model, assume the variance constant s ?is known,
and take Y itsdf as T, the stratification variable:
Example 2

Yhi :Xhib+xﬁilzehi’ ehi~ N(O’S 2)
independently h=1,....H, i = 1,...,Np,
x'sareavalable h=1,...H,i=1,....Ny,, Ti= Y,
and the datais thus
D= (¥, %, 1o {y™,n, Ny ;h=1,.. Hf:s ).

The population score function is given by
x<(b)=s ’zéP(Yi - bx). A weghted sample

version of this leads at once to the pseudo-
likelihood estimator of b

o] -1 9
6 — ahNhnhla hiTSYhi
w [+] 19 .
a h Nhnhla hil SXhi
To get the maximum likdihood estimate given the
data D, we note

SCD(b):S _zéh{ém(Yhi - b Xhi)+

&, BN 1y e, £y, x,)- b )
implying

by ={&,Y +

&,&, BN Iy ey, £y x, 1§ .
Thus we need the expectation of the non-sample

Y's conditional on their being within the stratum
bounds. We have

E(Yhi |y(h_l) £Y, £ y(h)’xhi)
=cyf(y1y™ £y £ y® x, by

(h)
dh—l) yf (Y| Xpi )dy
(h)
th—l) f(ylxhi )dy




=b Xhl

xi%s [ (A09)-j AD)/(F(AD)- FAT),
[eqtn (2)]

whaea? <[y - b, Joxt”

F2)= ()", expg— —ﬂu

2

& u° 0
" 25

normal cdf and density respectivedy (In the
simulations described below these were readily
calculated in Splus® using the functions pnorm and
dnorm.). The derivation of equation (2) is givenin
Appendix 1.

are the standard

N

Substituting (2) into the expression above for b
we have

= épxl)_lléhésthi +éhérh{b Xy *
s | (0)- 1 AOVE (D )- e )
Since the very quantity b we seek appears on the

right hand side (explicitly and also as part of the A
terms) we proceed |terat|vely

k”-a X [a a. Yt
or{b()xi+

s lArh ) AT VEA ) eAr Y,
with A" (‘h’ b xhl)sxl’2 We begin
the process by setting b g)= b

3. Simulation study

A series of simulation studies was carried out on
populations generated in accord with the modd of
Example 2. Each study consisted of 200 runs, in
each of which such a population of size was
generated having size N = 1000, b = 10,

s =3, with the X' s the square of realizations of a
normally distributed random variable z (so x is
positive and skewed). The population was

stratified into H = 2 strata, bounded by y®: -

median(Y;), ¥ (so Ny = N, = 500.) From these,
samples were taken of size n; = 20, and n, = 80.

Case 1. Population values available for auxiliary
variable x

In this case,
D =¥, %, 1o {y™,n, N, ;h=1.. Hf:s ).
Simulation results are given in

Table 1l
estimator means rmse
pop 10.005 0.114
crude 10.820 0.880
pseudo 10.032 0.438
max1 10.022 0.278
max5 10.006 0.164
max10 10.004 0.162
max20 10.004 0.162

Here “pop” refers to ideal estimation using all the
population data, “crude’ to an unweighted ratio
estimator, “pseudo” to the pseudo-likelihood
estimator, and “ maxk” to the kth iteration estimate
of the maximum likdihood estimator based on
equation (2); estimates appear to level out at about
the 10" iteration. The maximum likelihood
estimator is about 7 times as efficient as the
pseudo-likelihood estimator.

Case 2. Population density available for auxiliary
variable x

Everything is the same asin Case 1, except that the
non-sample x values are missing, and a density
function representing the distribution of the X's is
available (in practice, of course, this would be
unusual). Thuswe have

D=(Y,,x.,1,.{y"™ n,,N,;h=1...H}s

and the maximum likeihood estimator
modified to

éSYi +éh(Nh )E(Ym |y
: é (Ny-n )E(Xm |y

gets

~ <Yh|£y())
bp =

<YhI £ y( ))

QD
7]

x

+

=0

+ h Dr;l(b Bh *S Ch)
és i +éh(Nh - nh)Dr}lBh

> 1,0)



(F (A (x))- F (A ()£ (x)abx,
(F (A(x))- F (A () (x)ax

Y2 (A () £ (A (X)) £ (ol
A ()= (y™ - b x )/(s x'2). In the case of the
squared normal density of our simulations, we have

f(X): 1 iféa\/;'muf) a&_mu....-.

T+ G KE
where m,, s, are the mean and standard

‘¥
D, Q,
‘¥

B, Q,
‘¥

C, Q,

X
X

%u\/;}g Su g 8 Su 123

deviation of the root of X, assumed known. The
integrals were calculated using the function
integrate in Splus®. Simulation results arein

The relative efficiency of the maximum likelihood
estimator to the pseudo-likelihood estimator is now
about 3.

Case 4. Moments available of the population
values for the auxiliary variable x.

The form of the density is unknown; we use the
gamma density and finite population moments X ,

S as estimates of the unknown “super-

X

population” parameters m, S f Resultsarein

Table4
estimates means rmse
pop 9.997 0.114
crude 10.813 0.874
pseudo 10.028 0.390
max1 10.038 0.321
max10 10.057 0.199

Table2
estimator means rmse
pop 10.000 0.128
crude 10.870 0.955
pseudo 10.066 0.466
max1 10.057 0.381
max10 10.026 0.242

The maximum likelihood estimator is now about 4
times as efficient as the pseudo-likdihood
estimator.

Case 3. Moments, but not the form, of the
population density available for auxiliary variable
We assume we know the mean and variance
m,,s 2 respectivdy of x, but not the form of the

actual density. On the supposition that x has a
skewed distribution, we modd the density with the

The relative efficiency of the maximum likelihood
estimator to the pseudo-likelihood estimator is
about 4. The improvement over Case 3 is probably
due to random variation. In other words, case 3 and
case 4 areroughly equivalent.

Case 5. Mean of the population values for the
auxiliary variable x is available.

Here we lack information on the population 2™
moment. We use the gamma density, with the finite

population estimate X of m , and the weighted
estimate of variance
N, 2

o

SAf:N'lé’lhn—asch(xi - )‘() of s2. Results
h

(incorrect) gamma distribution with these (correct) ~ aregivenin
moments. Results aregivenin
Table5

Table3 estimator means rmse
estimator means rmse pop 10.011 0.124
pop 9.988 0.113 crude 10.830 0.904
crude 10.787 0.841 pseudo 10.052 0.379
pseudo 10.007 0.351 max1 10.054 0.314
max1 10.023 0.282 max10 10.056 0.215
max10 10.055 0.199




The relative efficiency of the maximum likelihood
estimator to the pseudo-likelihood estimator is
about 3.

Case 6. No population information on x is
available outside the sample.

Results using weighted sample estimates of mean
and variance of aregivenin

Table6
estimator means rmse
pop 9.992 0.116
crude 10.788 0.852
pseudo 9.987 0.416
max1 10.001 0.403
max10 10.038 0.452

There is clear deterioration of the maximum
likelihood estimator. The weighted estimator
indeed seems preferable.  However,...

Case 7. Same set-up as Case 6.
We estimate x-mean using maximum likelihood
estimator, given by

m, = N'l(ésxi +éh(|\|h
B, = &, X(F (A, (x)- F (A, (<) (xJox, using
the corresponding weighted estimator as seed. We

get new estimates of both b and M in each
iteration. Resultsarein

- nh)Dr;lBh)

Table7
estimator means rmse
pop 10.011 0.129
crude 10.868 0.928
pseudo 10.052 0.372
max1 10.077 0.354
max10 10.071 0.335

This seems to marginally improve things for the

maximum likdihood estimator. However, it is
clear that without some population information, it
is as wdll to use the pseudo-likelihood estimator.

4. Conclusions

We have constructed the form of the maximum
likelihood estimator of a regression coefficient in a
particular case of informative stratified sample.
The methodology is extendable to the genera
regression case described at the beginning of
Section 2, although formulae can be complicated.
The maximum likelihood estimator is much more
efficient than the conventional pseudo-likelihood
estimator which uses sample weights, when there
exists information on the population beyond what is
contained in the sample, as is often in practice the
case.
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Appendix 1 Proof of Equation (2)

(h)
Den = Qh—l) f (yl Xy )dy

x

= (aoxs )73, e %%dy
= (A7) -F(Al).

@
- X, b
(gotten by substitution U = Y~ %

1/2
X1 ’s

, €c.)
S
Num = Qh yf (y | X, )d

= (2pxs 2" 3 p§

=(2p) ”Q‘i“ (xhlb +xﬁl’zsu)exp§e u?gdu
=b x, (F(A%)- F (AN )+ (AFY)-1 (A9 )i%s .

Hence
E(Yhi |y(h_l £Y, £ y( ) ) ):

b x, + %% [ (AlY)- (/W)/(F( )- F(al2)).



