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Abstract: 
The U.S. Bureau of Labor Statistics (BLS) 
publishes monthly estimates of employment 
levels, one of the key indicators of the U.S. 
economy, for many domains. To assess the 
quality of these estimates, it is important to 
publish their associated standard error estimates. 
In our simulation study, the standard design-
based variance estimators of the monthly 
employment growth rate estimators are found to 
be often unstable even at a statewide industrial 
level where there is a sample capable of 
producing a good point estimates. In this paper, 
we develop new direct design-based,, synthetic 
model-based and empirical linear Bayes (ELB)  
variance estimators  Using a Monte Carlo 
simulation from a real finite population, we 
evaluate the bias, variance, mean squared error 
(MSE), and coverage properties of the proposed 
variance estimators with respect to the 
randomization principle. 
 
Keywords: composite estimation, mean squared 
error, Monte Carlo simulation, randomization 
principle. 
 

1. Introduction 
The U.S. Bureau of Labor Statistics’ Current 
Employment Statistics (CES) program, a federal-
state cooperative program, collects data each 
month on employment, hours, and earnings from 
a sample of establishments. Using the CES 
sample, the Bureau of Labor Statistics (BLS) 
publishes estimates of these economic indicators 
by industry at the national, state, and 
metropolitan statistical area (MSA) levels.  See 
the BLS Handbook of Methods (2004, Chapter 2) 
for further details.  
 
The BLS maintains the Longitudinal Data Base 
(LDB) which uses information from the 
Quarterly Census of Employment and Wages 
program. Among other items, the LDB contains 
monthly employment data for every U.S. 
business establishment covered by the 
Unemployment Insurance (UI) tax laws, which is 
virtually a census. The LDB is updated quarterly, 
on a lagged basis, approximately 6 to 9 months 
after the reference period.  For the CES survey, it 

provides a sampling frame and the benchmark 
data. Information from the LDB can be used for 
research purposes. See Section 5 for a 
description of Monte-Carlo simulations based on 
the data from the LDB. 
 
The CES survey uses a stratified simple random 
sample of the UI accounts which are clusters of 
establishments.  The state, industrial supersector 
(based on a North American Industry 
Classification System, NAICS), and employment 
size class form the strata.  Approximately one-
third of all non-farm payroll workers are covered 
by the active CES sample. Optimal allocation is 
used to minimize the sampling variance of the 
statewide total private employment level.  For 
further details, see Butani et al. (1997) and  
Werking (1997).  
 
 The CES uses a weighted link relative (WLR) 
estimator to produce monthly employment 

estimates. The WLR estimator ( t̂Y ) of  the 

employment for month t ( tY ) is given by 

0 1t t
ˆ ˆ ˆY Y R ...R= , where 0Y is a known population 

employment (benchmark employment) in a 

certain month in the past, and tR̂  is an estimator 

of tR , the employment growth rate for month t. 

The employment growth rate is estimated by, 

, , 1
ˆ

t j j t j j tR w y w y −=∑ ∑ , where jty  and 

jw  are the employment and sampling weight for 

the jth establishment for month t , the sum being 
taken over all establishments reporting nonzero 
employment for both months t and t-1  in the 
sample belonging to the population of interest.  
This is essentially a standard ratio estimator and 
hence is approximately unbiased under the 
randomization principle (see Cochran 1977). For 
further details on the CES survey methods, see 
Current Employment Statistics Manual (2001, 
Chapter 7), Butani et al.  (1997), and Harter et 
al. (2003).  
 
Variance estimation for the CES program was 
discussed in Wolter et al. (1998). The BLS uses 
a balanced half sample replication (BHS) method 



for variance estimation.  Such BHS variance 
estimation performs well at the national level. 
However, BHS variances are very unstable at the 
state by industrial supersectors or lower levels. 
For these levels the repeatedly grouped BHS 
(RGBHS) (Rao and Shao, 1996) method is used. 
In this paper, we evaluate the randomization 

properties of the ratio components ˆ
tR  of the 

WLR estimator and their associated variance 
estimators at the state level by industrial 
supersectors using a design-based Monte Carlo 
simulation study. The ratios appear to perform 
well in terms of both design-bias and design-
variance. The BHS and RGBHS variance 
estimators have good bias properties. However, 
they are very unstable in terms of their design-
based variances. 
 
In Section 2, we consider a delta method for 
variance estimation of the monthly employment 
growth rates. The formula is not readily available 
from a textbook in sampling since we deal with a 
nonstandard sampling design resulted from the 
fact that at the time of sampling only the cluster 
membership and not the industry membership of 
an establishment is considered. The delta method 
has computational advantages over the 
competing BHS or RGBHS replication methods. 
Like the BHS and RGBHS variance estimators, 
the new variance estimator is approximately 
design-unbiased but unstable. However, our 
simulation suggests that the delta method is less 
unstable than both the BHS and RGBHS 
methods.  Similar comparison was made earlier 
by Krewski and Rao (1981). In Section 3, we 
consider a robust model-based synthetic variance 
estimator. A robust linear empirical Bayes(ELB), 
a compromise between the direct and synthetic 
methods, is considered in Section 4. In the 
process of deriving the ELB, we obtain an 
estimator of the variance of our delta variance 
estimator, a factor needed in computing the ELB.  
This is again not available from a standard text.  
A Monte Carlo simulation study is undertaken in 
Section 5.  In terms of the design-bias property, 
as expected, the direct variance estimators 
perform better than either the synthetic or the 
ELB variance estimators. On the other hand, 
overall the design-variance of the synthetic 
method is smaller than that of the direct or the 
ELB method. The design-based mean squared 
error (MSE) criterion is a convenient way to 
compare a design-biased estimator with a design-
unbiased estimator. The ELB turns out to be the 
best in terms of the design based  MSE criterion. 

2. A Delta Method  
In this section, we use a delta method to develop 
a new variance formula that captures the CES 
sampling design. To this end, we introduce some 
notation. We focus on the estimation for the 
industries within a state. Let the subscript i 
denote the industry under study. The CES has a 
stratified cluster design. Within each state, a UI 
account, a collection of establishments, 
represents a cluster. Most establishments in a UI 
account belong to a certain, dominant, industry, 
which is used to define a UI selection industry 
stratum. The UI accounts are stratified by this 
dominant industry and the employment size 
class. In general, establishments from other 
industries may be a part of a given UI account. 
Thus, after the sample is drawn, for the purpose 
of estimation related to an industry, 
establishments that belong to other industries are 
removed and establishments that belong to the 
industry under study are included in the 
estimation regardless of the industry from which 
they were selected as a part of a UI cluster. 
 

Let hlkty  and hlkw  be the month t employment 

and the associated sampling weight for the kth 
establishment of the lth UI account belonging to 
the hth stratum..  Note that the sampling weight 
does not change over time. Let a denote an 
independent sample from which a given 
establishment is selected as part of a UI cluster. 
The ratio estimator of the monthly employment 
growth is given by 
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where 
;ˆy atη  is the estimator of the employment 

total 
;y atη  from ath independent sample and its  

is a set of establishments that report positive 
employment in both months t-1  and t. 
 
It is possible that we do not have establishments 
belonging to the industry of interest i for every 
stratum from each independent sample. In 
calculating the cluster total, we simply add up 
the employment of all the establishments of the 
industry i (the theory is valid by treating 
employment as zero for other industries).  
 

Throughout the paper, we use dE  and dV  to 

denote the design-based expectation and 



variance. We use mE and mV  to denote the 

expectation and variance with respect to an 

assumed model.  An estimator of ˆ( ),d itV R  the 

design-based variance of ˆ
itR , is given by 
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;y hlatη  is the total of the variable y at time t for 

the lth cluster of the hth stratum selected in has , 

the hth stratum from the ath sample; 

,  ,  ha ha haN n f  are the population size, sample 

size and the sampling fraction for the hth stratum 
from ath sample respectively. 
 

As expected, in our simulation îtV  performed 

well in terms of the design-bias.  However, îtV  

is very unstable in terms of the design-variance. 
This may be due to the small sample used to 
estimate the finite population variance for an 
industry.  It is interesting to note that Cho et al. 
(2002) and Huff et al. (2002) noticed similar 
instability of the BHS variance estimator based 
on exploratory data analyses and not on a design-
based simulation. 
 

3. A Synthetic Method 
In this section, we attempt to obtain a variance 
estimator that is expected to perform well in 
terms of its design-variance. We need a suitable 
model to compensate for the small sample 
problem mentioned in Section 3. It is well-
known that certain salient design features can be 
captured by using an appropriate model.  In fact, 
for many commonly used sampling designs, 
standard design-based variance estimators can be 
produced from a model-based approach (see, e.g. 
Lohr 1999). But, a model-based approach is 
flexible enough to produce alternate variance 
estimators that may be desired in an attempt to 
rectify some deficiencies of the design-based 
estimator.   

 
The above discussions motivate us to obtain an  

estimator of ˆ( )d itV R  by estimating ˆ( )m itV R , 

the variance of ˆ
itR  with respect to a working 

model.  We call this a synthetic variance 
estimator since this approach implicitly assumes 

that ˆ ˆ( ) ( )d it m itV R V R= .  This is an assumption 

that is likely to fail. 
 

Let 1it−y , ity  denote vectors of sample 

observations for industry i at months t-1 and t, 
respectively. We have explored several models 

for ity  given 1it−y  and finally decide to choose 

the following  model.  We recognize that this 
model could be improved and so we are calling it 
a working model. 
 
Model 1: 
Conditional on 1it−y , observations in ity  are 

uncorrelated with  
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Using the variance decomposition formula, 

( ) ( ) ( )1 1
ˆ ˆ ˆ| | ,m it m m it it m m it itV R E V R V E R− −= +y y

 we now derive the variance of ˆ
itR  under Model 

1.  
 
Note that the second term in the variance 
decomposition is zero: 

( )1
ˆ | 0m m it itV E R − =y . 

For the first term, we have: 
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 Thus, we have the following synthetic estimator 

of ˆ( )d itV R  : 
2

1
2

2

1

ˆ ˆ ,it

it

hlk hlkt
sS

it t

hlk hlkt
s

w y

V

w y

σ
−

−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑

 



where 
2

2 1

1

ˆ( )1
ˆ

t

t

hlkt it hlkt
t hlk

shlk hlkt
s

y R y
w

w y
σ −

−

−= ∑
∑

 and 

ts  contains observations from all industries. 

 

In our simulation, ˆ S
itV  performs much better 

than the corresponding design-based estimator 

îtV  in terms of the design-variance.  However, it 

is worse than îtV  in terms of the design-bias 

property.  Essentially, this approach avoids the 
problem of estimating the individual industry 
variances and thereby improves on the design-
variance property at the expense of  increasing 
the design-bias. 
 

4. A ELB Method 
In this section, we take adavantage of the good 
design-bias property of the design-based 
estimator and good design-variance property of 
the synthetic estimator in proposing a new ELB 
estimator.  We propose to achieve this objective 
by considering a two-level model that accounts 

for the sampling variability of îtV and the 

variability of a model that attempts to link the 
design-based estimator to a corresponding 

alternate variance estimator (e.g., ˆ S
itV ).  

 
We concentrate on a fixed month, so from now 

on we shall drop the subscript t. Let iY  denote 

the corresponding finite population, and  

( )i i iV V≡Y  denote true design-based variance 

of ˆ
iR . 

 
We consider the following two-level model : 
 
Model 2: 

ˆ : [ | ]  andd i i iE V V=Level 1 Y

( )2ˆ[ | ] .d i i i iV V σ=Y Y  

2 : [ ]  and [ ] .m i i m iE V V Vξ δ= =Level 2  

We use Level 1 to incorporate  the sampling 

distribution of îV   and Level 2 to link iV to  iξ , 

an auxiliary information about iV . Level 2 

essentially implies the existence of a 
superpopulation model that generates the finite 

population.  Note that Model 2 is a robust model 
since we do not need any distributional 
assumptions beyond the specifications of the first 
two moments. 
 
In order to stabilize the variance, we take a log 

transformation. Define ˆln( )i iu V=  and consider 

the following model on the transformed variable 

iu : 

Model 3: 

( ) [ | ]   andd i i i iE u θ=Level 1 : Y Y

( )2[ | ] .d i i i iV u γ=Y Y  

( ) [ ]  and m i i iE θ µ=Level 2 : Y

( ) 2[ ] .m i iV θ τ=Y  

Note that we can view both Model 2 and Model 
3 as robust Bayesian models.  In both cases, 
Level 1 and Level 2 can be treated as the 
sampling and the prior distributions respectively.  
We can also treat them as robust mixed models 
where random effects are introduced through the 
specification of a superpopulation for the finite 
population.  Similar models were considered in 
Ghosh and Lahiri (1987) and Ghosh and Meeden 
(1997)  . 
 
We are interested in estimating (in the Bayesian 
approach) or predicting (in the classical 

prediction approach) ( )i i iV V≡ Y . Here we 

adopt the Bayesian approach. We shall first 

estimate  ( )i i iθ θ≡ Y .   

 
We define the model MSE (same as the 
integrated Bayes risk) of an arbitrary 

estimator ˆ  of i iθ θ  as 2ˆ ˆ( ) ( ) ,i i iMSE Eθ θ θ= −  

where the expectation is taken with respect to the 
marginal distribution of Model 3.  The linear 
Bayes estimator (LB) that minimizes MSE in the 
class of all linear estimators is given by 

i
ˆ ( ) (1 ) ,LB
i i i iB u Bθ µ= + −φ  

where 
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In practice, φ  is unknown and needs to be 
estimated from the data. We assume the 



following relationship between iµ  and the 

synthetic estimator ˆ S
iV : i ixµ β= , where 

ˆln[ ]S
i ix V=  and β  is an unknown slope.  

 

We estimate  iψ  from the sample by 

2

ˆ ˆ[ | ] 
ˆ ,

ˆ
d i i

i

i

V V

V
ψ = Y

 where ˆ ˆ[ | ]d i iV V Y  is a 

design-based estimator of ˆ[ | ]d i iV V Y  (Lahiri 

and Gershunskaya, 2005). 
 

For estimation of 2τ  and β , we use the method 
given in Fay and Herriot (1979).   Plugging in 

the estimator 2ˆˆ ˆ ˆ( , , )iψ β τ=φ  for φ , we obtain 

the following empirical linear Bayes (ELB) 

estimator of iθ : 

ˆ ˆ ˆ ˆ( ; ).ELB LB
i i i iuθ θ θ= = φ  

 
Finally, we take the reverse transformation to get 
an estimator of our parameter of interest: 

ˆˆ exp( )LB LB
i iV θ= . 

 
Remark: If both Level 1 and Level 2 of Model 2 
are normal, then we can use the log-normal mean 

formula to obtain the exact LB of .iV   It is given 

by 
1ˆˆ ˆ ( ) exp( ).
2

LB LB LB
i i i i iV V Bθ ψ= = +φ  

Plugging in φ̂  for φ  in ˆ ( )LB
iV φ  we obtain the 

following ELB: 
 
ˆ ˆ ˆ( ).ELB LB
i iV V= φ  

Some bias corrections can be made using 
Chambers and Dorfman (2003) or Lahiri (2005).  
However, we shall not pursue this approach here 
since our simulation results provide an evidence 
of nonnormality of Level 1. 
 

5. Monte Carlo Simulation 
The main focus of this section is to evaluate the 
performances of different variance estimators of 

the ratios ˆ
itR  used to estimate monthly relative 

employment changes, in terms of bias, variance 
and mean squared error with respect to the 
randomization principle.  We draw 10,000 

independent samples from the universe data set 
for the State of Alabama using a design which 
approximates the CES sampling design. These 
10,000 simulated samples allow us to compute 
the statistics needed in Tables 1-3: relative bias 

ˆ ˆ
dRB V E V V V⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ , coefficient of 

variation ˆ ˆ
dCV V V V V⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ,  relative 

root MSE 

2 2ˆ ˆ ˆRRMSE V CV V RB V⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , and 

confidence intervals based on the assumption of 

normality for an estimator V̂  of variance V .  
 
Note (Table 1) that the point estimators 

themselves, the ratios ˆ
itR , are highly efficient, 

the highest CV being 2.5%.  In contrast, the 
CV’s of the variance estimators are generally 
very high (as high as 195.4%), showing the 
instability of the design-based variance 
estimators. 
 
We compare bias and variance properties of 
three different design-based variance estimators 
in Table 1. Their performances are very similar: 
they exhibit small relative biases, however, their 
CV’s are all very high, the BHS method being 
even more unstable for the domains considered 
here than the other two.   Our delta method 
improves on both the BHS and RGBHS in terms 
of the CV. 
 
Table 2 presents relative biases, CV’s and 
relative root mean squared errors of the direct 
(based on Taylor series), synthetic and ELB 
variance estimators.  In terms of the MSE, the 
ELB method performs the best among the three 
different variance estimators.  For some of the 
industries, the ELB variance estimator cuts down 
the relative root MSE by more than half.  It is 
interesting to note that although the ELB 
estimator is derived under a model it is doing a 
great job in terms of the design-based property. 
 
For each of the simulated samples based on the 
estimated variances, we constructed the 90-
percent confidence intervals under the 
assumption of normality. The coverage 
properties of the estimators are presented in 
Table 3. In most industries, percent of the 
samples covered by the interval based on the 
direct estimator is only slightly lower than 
nominal. Depending on the direction of the bias, 



the synthetic estimator’s intervals give either 
under- or overcoverage. Coverage of the ELB 
estimator’s intervals in most industries is close to 
that of the direct estimator’s.   In terms of the 
average length, ELB is comparable to the design-
based method.  However, in terms of the 
variability of the length, ELB is superior to the 
design-based method. 
 

6. Concluding remarks 
Reporting standard errors along with estimates 
has been a norm of any standard official 
publication.  We observe that the ability to 
produce good design-based estimates does not 
necessarily guarantee good design-based 
variance estimates.   In this paper, we have 
demonstrated that it is possible to improve on the 
design-based variance estimation by considering 
a suitable two-level robust model.   We have 
proposed a variance estimator of the standard 
design-based variance estimator, a factor needed 
in generating our ELB variance estimates.  
Although, our method works reasonably well in 
our simulation, there is scope for further research 
in improving the variance estimator of the 
standard design-based variance estimator.  
Modeling is another issue that needs special 
attention.  In spite of these possible criticisms, 
our paper provides a general framework to attack 
the important variance estimation problem.  
When a naïve normality-based confidence 
intervals of the growth rate are applied using our 
variance estimators, our method is quite 
comparable with the other methods.  But, we 
reiterate that the problem of interval estimation is 
a different problem for which one needs to study 
the distribution of the estimated growth rate 
carefully in order to produce a better interval 
estimation procedure.  The usual form of 
normality-based confidence interval, i.e. estimate 
plus or minus the margin of error is just too 
naïve for this purpose.  More research is needed 
to address the problem of interval estimation.    
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Table 1. Relative biases and CV’s of the direct variance estimators and CV’s of the point estimator (in 
percentage) 

Relative bias CV 
Industry Taylor 

Series 
BHS RGBHS 

Taylor 
Series 

BHS RGBHS 

CV of the 
Point 

Estimator 
1 -2.2 1.0 1.3 152.6 173.3 158.3 2.5 
2 -3.0 -2.3 -2.3 73.3 100.0 75.9 1.5 
3 -0.6 0.0 0.2 47.2 73.4 49.7 0.5 
4 -1.6 0.7 1.1 48.0 73.9 51.3 0.5 
5 -1.6 0.4 -0.2 91.2 125.8 93.9 1.0 
6 -4.0 -4.4 -3.9 29.0 64.7 32.5 0.6 
7 -10.2 -7.1 -8.4 195.4 221.7 198.7 1.2 
8 4.5 7.0 7.3 94.3 104.1 97.3 1.4 
9 1.9 3.5 2.8 59.4 92.6 62.7 0.7 

10 -18.5 -18.1 -17.2 192.2 202.1 198.7 1.0 
11 -3.2 -3.2 -2.7 38.5 75.4 42.5 0.6 
12 1.2 1.2 1.9 34.2 69.0 37.6 0.8 
13 0.5 3.2 1.9 46.0 89.7 49.6 1.7 

 
 



Table 2. Relative biases, CV’s, and relative root MSE of the direct, synthetic, and ELB estimators (in 
percentage) 

Relative bias CV Relative root MSE Industry 
Direct Synthetic ELB Direct Synthetic ELB Direct Synthetic ELB 

1 -2.2 66.8 -14.5 152.6 44.7 68.1 152.6 80.4 69.6 
2 -3.0 -43.0 -28.4 73.3 14.4 27.5 73.3 45.3 39.5 
3 -0.6 12.2 -11.0 47.2 31.1 29.5 47.2 33.4 31.4 
4 -1.6 -9.4 -15.1 48.0 28.2 31.2 48.0 29.8 34.7 
5 -1.6 144.6 1.6 91.2 65.2 53.3 91.3 158.6 53.3 
6 -4.0 29.2 -7.4 29.0 32.3 23.4 29.3 43.5 24.5 
7 -10.2 -7.5 -35.9 195.4 25.6 57.6 195.6 26.7 67.9 
8 4.5 -1.1 -20.4 94.3 28.7 57.6 94.4 28.8 61.1 
9 1.9 180.3 13.6 59.4 73.6 54.6 59.5 194.7 56.3 

10 -18.5 -28.4 -41.6 192.2 18.9 39.7 193.1 34.2 57.5 
11 -3.2 63.1 -4.5 38.5 41.4 30.8 38.6 75.5 31.1 
12 1.2 -31.9 -10.4 34.2 17.5 20.4 34.2 36.4 22.9 
13 0.5 69.5 1.4 46.0 44.0 36.8 46.0 82.2 36.8 

 
Table 3.  Coverage probability with average length and CV of length (in parenthesis) for different methods 
(nominal: 90%) 

Industry Direct Synthetic ELB True 

1 
88.4 

(0.073, 54.7) 
95.4 

(0.108, 12.8) 
89.7 

(0.074, 33.5) 
91.4 

(0.084) 

2 
89.0 

(0.046, 31.2) 
79.0 

(0.036, 12.1) 
84.1 

(0.041, 17.6) 
90.4 

(0.049) 

3 
89.8 

(0.016, 21.8) 
91.1 

(0.017, 13.2) 
88.1 

(0.015, 16.0) 
90.2 

(0.016) 

4 
88.5 

(0.015, 23.1) 
87.6 

(0.015, 14.4) 
86.4 

(0.014, 18.0) 
90.5 

(0.015) 

5 
89.5 

(0.031, 34.8) 
98.3 

(0.051, 12.8) 
91.2 

(0.032, 24.7) 
90.3 

(0.033) 

6 
88.9 

(0.019, 14.8) 
93.1 

(0.022, 12.0) 
88.5 

(0.019, 12.6) 
90.0 

(0.020) 

7 
88.7 

(0.032, 59.0) 
91.3 

(0.037, 13.3) 
86.3 

(0.030, 31.9) 
92.8 

(0.039) 

8 
84.9 

(0.041, 50.8) 
88.6 

(0.045, 13.9) 
84.2 

(0.038, 38.5) 
90.2 

(0.045) 

9 
89.3 

(0.024, 27.5) 
99.2 

(0.040, 12.5) 
91.5 

(0.025, 24.0) 
90.2 

(0.024) 

10 
89.3 

(0.025, 53.1) 
90.7 

(0.027, 12.6) 
86.9 

(0.024, 23.2) 
95.3 

(0.032) 

11 
89.7 

(0.018, 18.7) 
95.7 

(0.023, 12.1) 
89.5 

(0.018, 15.7) 
90.2 

(0.018) 

12 
89.9 

(0.025, 15.5) 
82.0 

(0.021, 12.3) 
87.9 

(0.024, 11.1) 
89.9 

(0.025) 

13 
89.2 

(0.055, 22.3) 
96.2 

(0.072, 12.4) 
89.7 

(0.055, 18.4) 
90.0 

(0.056) 
 


