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Abstract

The U.S. Bureau of Labor Statistics (BLS) faces sample size con-
straints when computing its Consumer Price Index (CPI-U). The samples
are not adequately large for the index to equal a true ��xed basket�price
index. This study adjusts for this small sample bias by estimating the
the second order of a stochastic expansion of the index. Unlike increas-
ing sample size, this adjustment is inexpensive because one uses the same
data that is used to compute the CPI-U. From the beginning of 1999 to
the end of 2003, I estimate that 63% of the di¤erence between the BLS
superlative index (CPI-C) and the CPI-U is the result of �nite sample
bias and the other 37% is commodity substitution bias.
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1 Introduction

Measuring in�ation properly is an essential ingredient in refereeing US economic

policy debates, in setting of optimal contracts, in guiding monetary policy, and

in determining the �nancing needs of all levels of government. Therefore, accu-

rate in�ation measure is an important issue. Although, the U.S. Consumer Price

Index (CPI-U) is perhaps the most widely used national in�ation measure, it

has many shortcomings as an in�ation measure. This study looks at one source

of bias in the CPI-U. To compute the CPI-U the Bureau of Labor Statistics

(BLS) takes many separate and small samples throughout the nation�s urban

centers, and it is these small samples that induce an upward bias in the CPI-U.

The CPI-U is a two stage index. In the second stage, the �All-Items�CPI-U

is computed as a weighted average of 8,018 sub indexes called price relatives or

relatives. A relative is a price index for a group of commodities or services (called

items) within a metropolitan area (called area).1 The relatives are computed in

the �rst stage. Examples of these item-areas are apples in Boston, rental housing

in Seattle, etc. BLS is limited in the number of prices that it can collect for

each item-area, and while it attempts to allocate the sample size among these

item-areas optimally, the samples sizes that are used to compute a relative can

remain as small as one. The relative is a non-linear moment of the collected

prices, and while the relative itself asymptotically converges to its true value,

BLS samples are not adequately large to achieve this consistency. Therefore,

the CPI-U is a weighted average of relatives that su¤er from �nite sample bias.
1Typically there are 38 geographic areas called �primary sampling units" (PSUs) and 211

items that generate 38x211=8,018 cells.
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This study proposes a low cost method to improve the accuracy of the CPI-

U by adjusting its relatives so that �nite sample bias is reduced. This bias

adjustment method uses the same data that is used to compute the CPI-U.

It improves the accuracy of the relative by using the additional information

about the second moments of the sample and the curvature of the function that

computes the relative.

While this method improves the accuracy of the CPI, it is not as good a

solution as the more costly alternative of increasing the item-area�s sample size

to the point where the relatives reach their asymptotic properties. The reason

is that increasing sample size will not only reduce bias, but will eliminate the

variance e¤ects of sampling error. This low cost bias adjustment method in this

study does not purge the e¤ects that sampling error has on the variance in the

same way that increasing the sample size does.

Finite sample bias in the relative has been widely reviewed. Before 1998, all

CPI-U relatives were Laspeyres type indexes that were ratios of averages. Early

studies used methods described by Cochran�s textbook (1963) where he reviews

the �nite sample bias from ratio estimation. Examples of studies that use these

methods to derive �nite sample bias for price indexes are Kish, Namboordi, and

Pillai (1962), McClelland and Reinsdorf (1997), and Greenlees (1998). After

1998, most of the CPI-U relatives changed from a Laspeyres form to a geometric

mean or Jevons form. Unlike the Laspeyres type relatives, the �nite sample bias

of the geomean relative is systematically positive because of Jensen�s Inequality.

This study commenced after the BLS switch to the geomean relative, unlike
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the earlier ones mentioned here. Since �nite sample bias was no longer solely a

problem of ratio estimation, this study uses the analytical bias reduction method

outlined in Hahn and Newey (2004) and Rilstone et. al (1996). This method

takes a stochastic second order expansion of the relative, and uses the second

order term to approximate the bias.2

Because of the chaining of the index, �nite sample bias in one month has a

unit root and will compound with the �nite sample bias in another month. When

indexes are direct rather than chained, �nite sample bias does not compound

and thus has a smaller impact. Thus chaining the index can make the �nite

sample problem exponentially worse over time.

This study attempts to analytically reduce �nite sample bias by using the

second order term in stochastic expansion of the relative around its true para-

meter value to adjust the price relative. The basic intuition behind analytical

bias adjustment is that one is using a second moment of prices and the cur-

vature of the index function as additional information in the estimation of a

price index. Stochastic expansion theory is the starting point for bootstrap

theory that adjusts for bias and that improves con�dence interval estimation

with Edgeworth Expansions (See Hall 1992.) This idea is often used in other

econometric problems such as weak instrumental variables (see Hahn and Haus-

man (2002)) or correcting for bias in non linear panel data models. (See Hahn

and Newey (2004).) Analytical bias adjustment is not the only method of �nite

2The idea of using asymptotic expansions to approximate �nite sample bias originated
with informal discussions that I had with John Greenlees. However, the derivation of the
adjustments and the proofs of the propositions that establish the properties of my proposed
adjustments are my own.
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sample bias correction. Bradley (2001) does a simulated bootstrap correction

only for food and home fuel items. However, if one wishes to do a simulated

bootstrap correction on the entire set of samples, 8,018 bootstraps would need

to be done each month. Even in today�s environment of high speed chips, this

is still computationally intractable.

BLS uses three di¤erent methods to compute relatives. The most widely used

method is the geomean. In this study, I estimate that 96% of the �nite sample

bias adjustments in the CPI-U comes from the relatives computed by geomeans.

The other methods used to compute relatives are the Laspeyres and the sixth

root of a Laspeyres used for the rent and imputed rental equivalence. Although

housing has the largest expenditure weight in the CPI-U, it contributes very

little to the �nite sample bias of the overall CPI, because the housing samples

on an area basis are relatively large and there is surprisingly much less variance

in rents than in the price of other goods and services. Food and apparel are the

two groups that contribute the most to the �nite sample bias of the CPI-U.3

There are several sources of bias in the CPI; �nite sample bias is just one

of them. Lebow and Rudd (2003) give the most up to date and comprehensive

review of the various sources of bias or measurement error. It is important that

�nite sample bias in the CPI-U not be confused with commodity substitution

bias. Much publicity has focused on the �Laspeyres type� form of the upper

level CPI-U formula where the weights of the price relatives do not allow for

commodity substitution across items when there is a change in the ratio of price
3Each month a randomly rotating set of outlets within an area place some of their food

and apparel items on sale. This adds variance to the observed prices within the food and
apparel items. These types of sales do not occur in housing rents.
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relatives. Lebow and Rudd (2003) and Shapiro and Wilcox (1997) are examples

of studies that measure commodity substitution bias by taking the di¤erence

between the CPI-U and a superlative price index.4 Bradley (2001) and this

study show that this is not the correct measure of commodity substitution bias,

since �nite sample bias makes the CPI-U a biased estimator for a Laspeyres or

��xed basket�price index. In Bradley (2001) and in this study, there is a proof

showing that some superlative indexes, such as Törnqvist, do not su¤er from

�nite sample bias in the same way as a Laspeyres index does. Therefore, while

the total bias that is measured by taking the di¤erence between the current

CPI-U and a superlative price index has not changed, this study shows that

one cannot attribute all of this di¤erence to commodity substitution bias. Ad-

ditionally, the part that comes from �nite sample bias can be reduced without

incurring the cost of producing a timely superlative index, or increasing sample

size.

One should not expect signi�cant substitution opportunities among all the

8,018 item-areas. For instance, suppose that the price of bananas in Philadelphia

increases. Philadelphia residents will not substitute any item sold in another

city for bananas in Philadelphia. At best there are a few other items within

food in Philadelphia that they can substitute in response to the price increase

in bananas. If consumers do not substitute for items outside their geographic

reach, then this means that if the price of any one of the 211 items increases

then at most they only have substitution opportunities with less than 3% of the

4Lebow and Rudd (2003) do acknowledge that there is evidence of �nite sample bias.
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remaining cells.5 This study con�rms the expectation that the true upper level

form is �close to�a Laspeyres form. Most of the substitution activity perhaps

should be taking place within the item-area cell. For example, if the price of a

certain brand of cereal increases, consumers will usually substitute to another

brand of cereal.

Because of �nite sample bias, the CPI-U is greater than the true ��xed

basket� price index; however, my proposed adjustment method reduces this

bias using the same data that is used to compute the index in the �rst place.

Thus, it is less expensive and easier to use this method to improve the CPI-U

than it is to replace it with a timely superlative index where expenditure data

must be updated every month.6 The best way to mitigate �nite sample bias

and regular sampling error variance is to increase sample size. But, this is also

costly. If budgets are constrained, then it seems that analytical bias reduction

is the �second best�alternative.

Section 2 brie�y describes the properties of the price relative. It uses tradi-

tional �rst order expansion to show consistency. Next it uses stochastic second

order expansions to approximate the �nite sample bias. It is this approxima-

tion that adjusts the sample estimate of the relative. It then shows how these

adjusted relatives can be used to generate a corrected upper level Laspeyres

index. I show in this section the reason that one should not make the same ad-

justments to the relatives for either an upper level Törnqvist or geomean index.

5Since they can only substitute within the geographic area, this means that only 1/38�3%
of the 8,018 cells are available.

6 In fact this is the reason that the �nal version of BLS superlative CPI-C is not a timely
index. It would be prohibitively expensive to have a �real-time� expenditure update along
with the current monthly collection of prices.
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Finally, this section shows how to additively decompose both the CPI-U and the

bias-adjusted CPI-U into the major commodity groups (i.e., food, medical care,

housing, etc.). Section 3 describes a Monte Carlo simulation that veri�es the

properties established in Section 2. Section 4 gives a re-estimate of the CPI-U

when the second order term is used to analytically correct for �nite sample bias.

Section 5 concludes.

2 Construction and Adjustment of the Price Rel-
ative

2.1 Basic Construction of the Relative and its Asymptotic
Values

The formula used to construct the price relative in the CPI-U depends on the

item. If it is believed that there are substitution opportunities within an item

- such as breakfast cereal, or children�s apparel - a geometric mean index is

computed. For other items, such as hospitals or home heating oil, where there

seem to be very few substitution opportunities, a �Laspeyres type�index is used.

The month to month price index for housing rent and the �rental equivalence�

for homeowners is the sixth root of a Laspeyres index, where the denominator

contains rents from the previous six months.

Let item-areas be indexed by i; the sample observations within an item-area

be indexed by j; and the month-year by t: Denote the jth collected price in

item-area i and period t as pijt: For a sample of ni; the geometric mean price
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relative for item-area i is7

bRGit = expf niX
j=1

ln(pijt=pijt�1)=nig (1)

where ni is the number of price quotes. bRGit is intended to be an estimate of the
entire item-area index, plimni!Ni

bRGit; where Ni is the total number of goods
or services within the ith item-area, then denote

�Git= plim
ni!Ni

niX
j=1

ln(pijt=pijt�1)=ni = E[

niX
j=1

ln(pijt=pijt�1)=ni]: (2)

The �nite sample bias of the geometric mean is

BGit = E( bRGit)� exp(�Git): (3)

Since
Pni

j=1 ln(pijt=pijt�1)=ni is a linear average, its expectation equals �Git:

But from Jensen�s Inequality, the �nite sample bias will be positive if this sample

average has non-zero variance.

7Typically, a geomean price index has the form exp(
Pni
j=1 wij ln(pijt=pijt�1)) where wij

is the expenditure share of the jth item in item-area i: For the CPI-U, the prices of the goods
or services that are collected within an item-area are sampled with a probability of selection
equal to that good or serivice�s share of the total item-area�s expenditure from a previous
period. Even though a simple average is computed from this sample , on an expected value
basis, this is an expenditure share weighted geomeans. To see this, let Ni be the population
total: Then drawing ni items will induce the following identity:

Pni
j=1 ln(pijt=pijt�1)=ni =PNi

j=1 Ini (j) ln(pijt=pijt�1)=ni; where Ini (j) equals the number of draws of j in a sample of
ni items. But with the probability of selection equal to the expenditure share, it follows that
E(Ini (j))=ni = wij ; and since the expenditure share is independent of the price, this implies

that E
nPni

j=1 ln(pijt=pijt�1)=ni
o
=
PNi
j=1 wij ln(pijt=pijt�1):
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The Laspeyres relative is computed as8

bRLit = Pni
j=1 pijt=niPni
j=1 pijt�1=ni

: (4)

If

�Lit = plim
ni!Ni

bRLit = plimni!Ni

Pni
j=1 pijt=ni

plimni!Ni

Pni
j=1 pijt�1=ni

=
E(pijt)

E(pijt�1)
; (5)

then for a small ni; Ec(RLit) 6= �Lit: Unlike the geomean index, the Laspeyres
relative is not globally convex, and as a result, unlike the geomean index, the

�nite sample bias, BLit = Ec(RLit)��Lit; of the Laspeyres is not always positive.
For the housing index, a sixth root of a six-month index is calculated. Letting

bRHit denote the housing relative, the month to month change is estimated as
bRHit =  Pni

j=1 pijt=niPni
j=1 pijt�6=ni

!1=6
: (6)

I denote its asymptotic value as

�Hit =

 
plimni!1

Pni
j=1 pijt

plimni!1
Pni

j=1 pijt�6

!1=6
; (7)

and the �nite sample bias is

BHit = E( bRHit)� �Hit:
This is a very unusual type of index. It is geometric average of a six month

Laspeyres index. Since rents most often change on an annual basis, for each

8The textbook form of the Laspeyres index is
Pni
j=1 pijtqijt�1Pni

j=1 pijt�1qijt�1
where qijt�1 is the quan-

tity of j sold in item-area i in time t � 1: As previously mentioned, goods and services are
sampled with a probability of selection equal to expenditure share. Denote Pijs as the
collected price at time s: BLS scales Pijt and Pijt�1 by a price from a previous period,
l < t � 1 so that pijt = Pijt =Pijl and pijt�1 = Pijt�1 =Pijl : If there are Ni items in
the entire item-area, then, with the probability proportional to expenditure share, one gets

E
nPni

j=1 pijt=ni

o
= E

nPNi
j=1 I(j selected)(Pijt =Pijl )=ni

o
=
PNi
j=1 qijPijt where qij is a

�xed quantity measure.
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observation this six month index has a higher probability of detecting a change

than a month to month index.

2.2 First Order Expansion of the Relative

To establish the �rst order asymptotics of the relative (or
p
n consistency), I use

a �rst order stochastic expansion. This method is the usual one used to estab-

lish the consistency and asymptotic normality of an estimator. (For example,

Hansen (1982) uses this method to establish the asymptotic properties of the

GMM estimator, and Amemiya�s 1985 Advanced Econometrics uses this method

to establish the asymptotic properties of the Maximum Likelihood Estimator.)

Like Hansen (1982), throughout this paper, I assume that all price variances

are bounded, for all i and s; fpijsgnij=1 is i.i.d. across j9 , and that Ni is �very

large�so that ni converging to Ni is equivalent to ni converging to 1: For the

geomean index I expand bRGit around �Git to get10 :
bRGit � exp(�Git) = exp(�Git)( niX

j=1

ln(pijt=pijt�1)=ni � �Git) +Op(n�1i ): (8)

Since by assumption there exists a �nite variance for ln(pijt=pijt�1); which is

denoted �2Git; and with the i.i.d. sample, one uses the Lindeberg-Levy Cen-

tral Limit Theorem, to conclude that
p
ni(
Pni

j=1 ln(pijt=pijt�1)=ni � �Git)
d!

N(0; �2Git): One can then conclude

p
ni( bRGit � exp(�Git)) d! N(0; �2Git exp(2�Git)):

9pijs and pijt can still be serially dependent, but there need to be independence among
the draws withiin an item area and within a period of time.
10Here an = Op(nx) means that there are �nite constants K; " and N such that

Pr
�
jn�xanj > K

�
< " for all n > N:

11



For the Laspeyres, I get the �rst order approximation

bRLit � �Lit =
1

E(pijt�1)
[

niX
j=1

pijt=ni � E(pijt)] (9)

� E(pijt)

E(pijt�1)2
[

niX
j=1

pijt�1=ni � E(pijt�1)] +Op(n�1i ):

Denoting �2it�1 = V ar(pijt�1); �
2
it = V ar(pijt); and �it;t�1 = Cov(pijt; pijt�1);

I get

p
ni( bRLit � �Lit)! N(0; �2Lit)

�2Lit =
�2it

E(pijt�1)2
� 2E(pijt)�it;t�1

E(pijt�1)3
+
E(pijt)

2�2it�1
E(pijt�1)4

:

Using the same approach for the housing Laspeyres, and denoting �it;t�6 =

Cov(pijt; pijt�6);I get the following
p
ni result:

p
ni( bRHit � �Hit)! N(0; �2Hit)

�2Hit =
1

36

24 �2it
E(pijt)5=3E(pijt�6)1=3

� 2 �it;t�6
E(pijt)1=3E(pijt�6)4=3

+
E(pijt)

1=3�2it�6
E(pijt�6)7=3

35 :
While �rst order asymptotic theory holds for estimated price indexes, in many

cases ni is small so that these asymptotic conditions are not attained. In the

case of the �rst order expansion of (8), the small ni induces the expected value

of the Op(n�1) term to be strictly positive because the exp() function is strictly

convex in its argument, and Jensen�s Inequality applies. The Laspeyres and the

Housing relatives are not strictly convex in their arguments and therefore the

�nite sample bias is not systematically positive or negative.
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2.3 An Adjustment Using the Second Order Expansion of
the Relative

The problem facing BLS is that the sample sizes for many item areas are smaller

than 5 observations and therefore the asymptotics outlined in Section 2.2 do not

hold. I propose an analytical bias correction of the relative by estimating the

term in the second order expansion of the relative, and using this estimate to

adjust the sample relative.

For the geometric mean relative the second order expansion of bRGit around
�Git is:

bRGit � exp(�Git) = exp(�Git)( niX
j=1

ln(pijt=pijt�1)=ni � �Git)+ (10)

(1=2) exp(�Git)(

niX
j=1

ln(pijt=pijt�1)=ni � �Git)2 +Op(n
�3=2
i ):

Passing the expectations operator through this expression gets:

BGit = E( bRGit � exp(�Git)) (11)

= :5 exp(�Git)E(

niX
j=1

ln(pijt=pijt�1)=ni � �Git)2 +O(n
�3=2
i ):

Let �2Git = E(
Pni

j=1 ln(pijt=pijt�1)=ni��Git)2; and b�Git =Pni
j=1 ln(pijt=pijt�1)=ni:

I can get a sample estimate of �2Git from the existing data as

b�2Git = 1

ni(ni � 1)

niX
j=1

(ln(pijt=pijt�1)� b�Git)2: (12)

The sample estimate of geometric mean bias correction is

bBGit = (1=2)b�2Git exp(b�Git); (13)

and the bias adjusted geometric mean relative is bRGit � bBGit. In the appendix,
I show
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Proposition 1 If i) ln(pijt) is i.d.d. across j; and ii) E(ln(pijt)4) < 1; then

there is a �nite 
2Git such that n
3=2
i ( bBGit � BGit) ! N(0; 
2Git) where BGit is

the true �nite sample bias as de�ned in (11).11

For the geomean index, it follows that bBGit > 0 for all b�2Git > 0: Proposition
1 says something about the precision of the sample estimate of the �nite sample

bias. It converges more rapidly to its true value, BGit; than the sample relative

bRGit converges to exp(�Git): In ths sense, bBGit is a more precise estimator of
BGit; than bRGit is for exp(�Git): This is to be expected since the true bias BGit
converges to zero more rapidly than bRGit converges to its population value. To
understand the full e¤ect of the bias adjusted relative, bbRGit = bRGit � bBGit; I
make the following decomposition:

p
ni(
bbRGit � exp(�Git)) =

p
ni( bRGit � exp(�Git))�pni( bBGit �BGit)�pniBGit)

= Op(1)�Op(n�1)�Op(n�1): (14)

This shows that both bbRGit and bRGit have the same limiting distribution, and
this is what we want since the asymptotic distribution of the �nite sample

bias, BGit; degenerates to zero. However, for �small� ni
bbRGit and bRGit have

di¤erent means because both E( bBGit) and E(BGit) are strictly greater than
zero. Additionally, bBGit is a more precise estimator of BGit than bRGit is for
exp(�Git) in terms of n�covergence. Therefore, for �nite samples

bbRGit is a more
precise estimator for exp(�Git) than bRGit: The �rst term on the right hand side
of (14) shows that adjusting the relative by bBGit will not purge the variance in
11Since we must prove a convergence of b�2Git to �2Git; I need the additional assumption of

a bounded fourth moment in prices.
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the relative that comes from sampling error. Increasing the sample size, ni will

both decrease the variance and the bias due to sampling error. This is what

makes bias adjustment an inferior solution to increasing sample size.

For the Laspeyres relative I get the second order expansion

bRLit � �Lit =
1

E(pijt�1)
[

niX
j=1

pijt=ni � E(pijt)]�
E(pijt)

E(pijt�1)2
[

niX
j=1

pijt�1=ni � E(pijt�1)]

�
[
Pni

j=1 pijt=ni � E(pijt)][
Pni

j=1 pijt�1=ni � E(pijt�1)]
E(pijt�1)2

+
E(pijt)[

Pni
j=1 pijt�1=ni � E(pijt�1)]2

E(pijt�1)3
+Op(n

�3=2
i ):

Denoting �2it�1 = V ar(pijt�1); �it;t�1 = Cov(pijt; pijt�1); and passing the ex-

pectations operator through this expression yields:

BLit = E( bRLit � �Lit) = E(pijt)�
2
it�1=ni

E(pijt�1)3
� �it;t�1=ni
E(pijt�1)2

+Op(n
�3=2
i ) �

E(pijt)

E(pijt�1)

�
cv(pijt�1)

2 � �it;t�1cv(pijt)cv(pijt�1)
�
; (15)

where �it;t�1 is the correlation between pijt and pijt�1; and cv(p) is the co-

e¢ cient of variation of the random variable p: Using sample moments I get

estimates for �2it�1; �it;t�1; E(pijt�1); and E(pijt); where

bpit = niX
j=1

pijt=ni;

bpit�1 = niX
j=1

pijt�1=ni;

b�it;t�1 = Pni
j=1(pijt � bpit)(pijt�1 � bpit�1)

ni � 1
;

and

b�i;t�1 = Pni
j=1(pijt�1 � bpit�1)2

ni � 1
:
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Let the Laspeyres bias correction be approximated as:

bBLit = bpitb�2it�1=nibp3it�1 � b�it;t�1=nibp2it : (16)

The bias adjusted Laspeyres is then bRLit � bBLit: I conclude:
Proposition 2 If i) pijt is i.d.d. across j; and ii) E(p4ijt) < 1; there is a

�nite 
2Lit such that n
3=2
i ( bBLit �BLit)! N(0; 
2Lit):

I can go through the same second order expansion for the housing relative

and I get the following approximation of bias correction

bBHit = (1=2)� bpitbpit�6
�1=6 

7

36

b�2it�6=nibp2it�6 � 2

36

b�it;t�6=nibpit�6bpit � 5

36

b�2it=nibp2it
!
: (17)

2.4 E¤ects on the All-Items Index

The month to month �All-Items�CPI-U based on the BLS samples is:

bRt =X
i2G

bRGit bwGit�1 +X
i2L

bRLit bwLit�1 +X
i2H

bRHit bwHit�1 (18)

where
X
i2G
;
X
i2L

, and
X
i2H

denote the sum of Geomean, Laspeyres, and Housing

relatives respectively, and bwGit�1; bwGit�1; and bwHit�1 are expenditure weights
for period t� 1.12 De�ne the �true population�CPI-U as

Rt =
X
i2G

RGit bwGit�1 +X
i2L

RLit bwLit�1 +X
i2H

RHit bwHit�1 (19)

where RMit is the asymptotic relative of method M = fG;L;Hg: If all the

relatives were geomean (i.e., L = H = ?); then we get the unambiguous result
12A Laspeyres Index can be written in the form

P
i

pit
pit�1

wit�1 where wit�1 is the period

t � 1 expenditure share for good i: bRGit; bRLit; and bRHit are proxies for pit
pit�1

and the bw0s
are estimates of wit�1:
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that the �All-Items�CPI-U has positive bias (E( bRt � Rt) > 0). Let N be the

total number of item-area cells; if all the relatives are computed by the geomeans

and the variance of the sample means for each relative is greater than zero, we

would get

plim
N!1

bRt �Rt > 0: (20)

However, since some of the relatives are not geomean we cannot get this unam-

biguous result. The bias adjusted �All-Items�index is:

bbRt =X
i2G
( bRGit� bBGit) bwGit�1+X

i2L
( bRLit� bBLit) bwLit�1+X

i2H
( bRHit� bBHit) bwHit�1:

(21)

In the previous section, I showed that while both bRMit and
bbRMit = bRMit� bBMit

have the same asymptotic properties, for �nite samples E(bbRMit) is a more

precise estimator for RMit:
13

One might conclude that one needs to make the same bias adjustment�plug

in� for a superlative index such as a Törnqvist. But this is not correct.14 To

see this, I start with a simpli�ed Törnqvist functional form

Tt =

NY
k=1

(Rkt)
wkt ; (22)

where Rkt is the true price relative between periods t and t� 1 for item-area k;

and wkt is its expenditure share weight which is a simple average of expenditure

shares in period t and t� 1: Suppose that Tt is estimated by

bTt = NY
k=1

( bRkt)wkt (23)

13Notice that it is E(bbRMit) that is more precise.
bbRMit itself is calculated with sample

moments and therefore, is subject to sampling error.
14This is proved in great detail in Bradley (2001), I describe the results again here.
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and for simplicity assume that all bRkt are estimated by geomean indexes with
a �xed sample size n that is su¢ ciently small so that V ar( bRkt) > 0; for all k:
Then

E[ln( bRkt)� ln(Rkt)] = 0: (24)

even though E[ bRkt �Rkt] > 0: bTt can be rewritten as
bTt = expf NX

k=1

wkt ln( bRkt)g
Since wkt = Op(N�1) and ln( bRkt) = Op(n�1); and given condition (24), I get
that for a �xed n;

plim
N!1

f
NX
k=1

wkt ln( bRkt)g = Ef NX
k=1

wkt ln( bRkt)g = NX
k=1

wkt ln(Rkt): (25)

I use the following lemma:

Lemma 3 If plimN!1b� = �; then plimN!1 exp(b�) = exp(�):(The proof for a
more general function can be found in Amemiya, 1985, pages 112-113.)

Letting b� =PN
k=1 wkt ln(

bRkt) and � =PN
k=1 wkt ln(Rkt); I conclude that

plim
N!1

bTt � Tt = 0; (26)

even though for the Laspeyres index plim
N!1

( bRt�Rt) > 0 when n is �xed and all
the relatives are geomean. BLS does publish a �Törnqvist Type� index which

is labeled the CPI-C. For the CPI-U and the CPI-C, N is 8,018. This is an

adequately large size to assume that the asymptotic properties of a Törnqvist

are satis�ed. However, notice that if I �plug in� bRkt� bBkt into a Törnqvist then
E[ln( bRkt � bBkt)� ln(Rkt)] < 0:
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and (24) and (25) no longer hold, and therefore the condition for Lemma 3

no longer holds. Plugging in a bias adjustment to the Törnqvist will make it

downwardly biased, and this bias will persist as N !1. Notice that the CPI-U

cannot be written as a continuous function of
PN

k=1 wkt ln(
bRkt); therefore the

condition of Lemma 3 does not apply to the CPI-U.

The CPI-C is a Törnqvist type index, but some of the relatives are not

geomeans. However, in the empirical section of this paper, I show that 96%

of the �nite sample bias in the �All-items� CPI-U can be attributed to the

geomean indexes. Thus, plugging bias adjustments into the CPI-C will most

likely induce a negative bias.15

2.5 The Additive Decomposition of the Indexes and Bias
Adjustments

The �all-items�CPI-U is the upper chained index:

bIt =  X
i2G

bRGit bwGit�1 +X
i2L

bRLit bwLit�1 +X
i2H

bRHit bwHit�1! bIt�1: (27)

After computing the bias adjustment, I calculate the bias-adjusted CPI-U index

as

bbIt =  X
i2G
( bRGit � bBGit) bwGit�1 +X

i2L
( bRLit � bBLit) bwLit�1 +X

i2H
( bRHit � bBHit) bwHit�1!bbIt�1:

(28)

15 If the weights in the Törnqvist are constant over time, then it is a geometric
mean index, which implies that separability conditions allow the index to be decom-
posed into groups of item-areas. For a set of item-areas S; the group index is bTSt =
expf

P
k2S(wk ln

bRktg=Pk2S wkg: Let NS be the number of item-areas in S: For a �xed
n; plimNS!1(bTSt � TSt); however, for some groups such as apparel and food Ns is still not
su¢ ciently large to achieve its asymptotic properties. So far, there is no evidence that the
expenditure weights are constant. Therefore, the Törnqvist cannot be decomposed into sub-
indexes. If di¤erent groups have di¤erence variances in prices and di¤erent sample sizes, then
they will be at di¤erent stages of their asymptotic convergence. Since Ns < N; it may still be
necessary to bias adjust some of the groups.
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For both bIt and bbIt, I set the index at t = December, 1998 equal to 1. The �nal
period denoted as T is December, 2003. Notice in (28) that bBGit; bBHit; and bBLit
have unit roots that keep them in the index inde�nitely, and they compound.

From here on, I drop the G;L; and H subscripts so that the relative and

the bias correction are now bRit and bBit: There are 8 major groups in the �All
Items�CPI-U. Each group is a set of similar items. For example, the food group

includes the banana, meat, cereal, and diary items. Here is the listing of the

8 BLS groups with the designated letter in parentheses denoting the set of all

items within the group:

� Food and beverages (F )

� Housing (H)

� Apparel (A)

� Transportation (T )

� Medical care (M)

� Recreation (R)

� Education and communication (E)

� Other goods and services (G)

Each major group contains many items. For instance food contains, apples,

cereal, co¤ee, etc. I denote G =fF;H;A; T;M;R;E;Gg as the set of groups.

Since di¤erent groups have di¤erent price distributions and sample sizes, it is

useful to disaggregate both the indexes and the bias adjustments to determine

how each group contributes to these statistics. Since the indexes in (27) and (28)

are chained, additive decomposition of the �All-Items�CPI-U bias adjustment

into the 8 groups is not straightforward. To �nd the percent contribution of each
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group to the average monthly indexes and bias adjustment over the T periods,

I need the following proposition proven in the appendix:

Proposition 4 Monthly average growth respectively in the CPI-U and the bias

adjusted CPI-U is (bIT )1=T � 1 and (bbIT )1=T � 1: The following identity holds
bIT 1=T � bbIT 1=T =

TX
t=1

240@ bRtm( bRt; bIT 1=T )PT
t=1m(

bRt; bIT 1=T ) �
bbRtm(bbRt;bbIT 1=T )PT
t=1m(

bbRt;bbIT 1=T )
1A Pi bwit�1cBitbRt � bbRt

!35 :
where m(a; b) = (ln(a) � ln(b))=(a � b); bRt =  X

i

bRit bwit�1! ; and bbRt = X
i

( bRit � bBit) bwit�1! :
As a corollary, I can get

Corollary 5 The contribution to bIT 1=T � bbIT 1=T by a group J 2 G is

TX
t=1

240@ bRtm( bRt; bIT 1=T )PT
t=1m(

bRt; bIT 1=T ) �
bbRtm(bbRt;bbIT 1=T )PT
t=1m(

bbRt;bbIT 1=T )
1A Pi2J bwit�1cBitbRt � bbRt

!35 :
This allows me to additively decompose the total bias adjustment, bIT 1=T �bbIT 1=T ; into the conttibtution that is made by each group..

3 Monte Carlo Simulation

Section 2 shows that for the �xed-basket CPI-U, the bias adjusted relative is

a more precise estimator of the true relative. To correct for �nite sample bias,

sample estimates of higher moments are used as proxies of their population

counterparts. The small sample sizes that induce bias will also introduce sam-

pling error in the moment estimators and this in turn will add sampling error
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to bias adjustments. Is it possible that sampling error makes the second order

approximation of a bias adjustment too imprecise? Propositions 1 and 2 claim

the opposite. To both verify the properties established in Section 2 and to ad-

dress the issue of sampling error e¤ects on the bias adjust, I conduct a Monte

Carlo Experiment.

The geomean, the Laspeyres, and the Housing relatives have respectively

71%, 11%, and 18% of the expenditure weight in the �All-Items�CPI-U. I take

a random samples of prices for twelve time periods (t = 1; 2; ::; 12): Historically

the average sample sizes for geometric mean, Laspeyres, and Housing relatives

are 10, 12, and 40, respectively. Therefore, in each of the twelve time periods,

I draw one sample of size 10 to compute a geomean relative, another of size

12 to compute a Laspeyres relative, and a �nal one of size 40 to compute a

Housing relative. I sample log prices from a N(.002463233t,0.0025) distribution

so that the compounded twelve month price growth is 3%. The true population

relative for each period is then exp(.002463233): I repeat this process 2,000 times

and this repetition is indexed as r. Let bRM;t;r be the relative computed from

the M th method (M = geomean, Laspeyres, Housing), and let bBM;t;r be its

corresponding bias adjustment computed from the sample moments.

Table 1a reports the average of bRM;t;r�exp(:002463233); bBM;t;r; and
bbRM;t;r�

exp(:002463233) in percentage terms (bbRM;t;r = bRM;t;r � bBM;t;r): Even though

each of the methods face the same data generating process, the geomean has

the largest bias. This cannot be explained entirely by sample size because the

sample size of the Laspeyres has only two more observations, but the average
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bias is 35% less than the geomean. For the Housing index, there is almost no

bias. Therefore, the di¤erence in functional form between the geomean and the

Laspeyres plays a role in �nite sample bias. This gives evidence that when BLS

changed from a Laspeyres relative to a geomean, �nite sample bias became a

greater problem.

The geomean bias adjustment reduces the bias by 83%. The Laspeyres

slightly overadjusts, and the Housing correction is ine¤ective. Because there

was so little bias in the Housing relative, I decided to re-investigate the Housing

adjustment by conducting another simulation where the sample size was 10 and

the variance of the log of prices was increased to .64. I show the results in

the row entitled �Alternative Housing.�Here the bias correction does perform

better, but not as well as the geomean adjustment.

To investigate the impact of sampling error, Table 1b shows the perfor-

mance of the estimated standard deviations of the log price for the geomeans

and the price for both the Laspeyres and Housing. Since log price is drawn

from a N(.002463233t,0.0025), the true standard deviation of the log of prices is

p
0:0025 = :05 and for prices it is {exp(.00492t+0.0050)-exp(.00492t+0.0025)}1=2.

Table 1b reports the results for the di¤erences between the simulated standard

deviations and the true standard deviations. As expected, the column labelled

�Mean Di¤erence� shows that the sample estimate is unbiased; however, the

last three columns show that sampling error exists. In other words, on aver-

age we get the population standard deviation; however, for a particular sample

there will be some error. For the geomean, over 95% of the draws produce stan-
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dard deviations in the interval (.045,.055) where the true standard deviation is

.05, and although this does not allow for perfect bias adjustment, the interval

is narrow enough to induce an improvement. Additionally, this gives evidence

that the expected bias adjusted relative is more a precise estimator of the true

relative than the unadjusted relative.

Finally, for each of the 2,000 repetitions, I compute for each time period an

�All-Items�index by expenditure weighted sum where the geomeans relative is

given a 71% weight, the Laspeyres is given an 11% weight, and the Housing a

18% weight. I do the same for the bias adjusted relative. I then compute a

�yearly�index from the twelve month �All-items�index. The average di¤erence

between the unadjusted yearly index and the true index is .34%, while the

average di¤erence between the bias adjusted index and the true index is .09%.

This experiment provides evidence that bias adjustment based on sample

estimates of second order approximations does not completely remove the bias.

Sampling error is still a problem. However, this bias adjustment does greatly

lower the bias. It is important to note that the sampling error from the small

samples will continue to be a problem under bias adjustment. This should

con�rm that the best alternative to mitigate �nite sample bias is to increase

sample size. If this is not feasible then �nite sample bias adjustment based on

higher sample moments is a �second best�alternative.
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4 Results for the CPI-U

I compute both the CPI-U (27) and the bias adjusted CPI-U (28). Table 2

contains the annual and cumulative results over the 60 month period from De-

cember 1998 to December 2003. I also list the results for BLS�s recently published

�Törnqvist type� index, the CPI-C. The column labelled �(CPI-U - CPI-C)�

gives the di¤erence between the published CPI-U and the �Törnqvist type�

index. This di¤erence �uctuates positively with the underlying in�ation rate

and ranges from 0.28% to 0.79%. The next columns decompose this di¤erence

between the di¤erence of the CPI-U and the bias adjusted index, and the di¤er-

ence between the bias adjusted index and the CPI-C. The �rst di¤erence can be

attributable to �nite sample bias and the second di¤erence may be attributable

to commodity substitution bias. Over the �ve year period, on average 62.5%

of the di¤erence between the published CPI-U and the CPI-C can be attributed

to �nite sample bias and the rest to commodity substitution bias. This table

also lists correlations between the bias adjustment and key sample variables.

Since the geomean bias adjustment is a function of (a) the sample variance of

the di¤erence in log prices and (b) sample size, I show the correlation for those

key sample variables. The Laspeyres and Housing bias adjustments are based

on the sample variance of prices - not the variance of the di¤erence of log prices.

Therefore, I list those correlations. Notice that for the Laspeyres and Housing

adjustments the correlations with the variances of the base period prices are

larger than the current period variances. Additionally, the correlations between

the adjustments and the variances are weaker for the Laspeyres. If one looks
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at the bias adjustments in (16) and (17), this is to be expected. The reason

is that b�2it�1 and bp3it�1 are highly correlated. Thus a large b�2it�1 is o¤set by a
large bp3it�1.
Table 3 gives the additive decompositions based on the method in Section

2.5. Table 3a lists the group contribution respectively to the CPI-U, the bias

adjusted CPI, and the bias adjustment. Notice that the group contribution to

each of the indexes is the same. This occurs because there is very little di¤erence

generally between the unadjusted and the adjusted relative. The round o¤ error

hides the slight di¤erence. Although food and apparel contribute only 20.5%

to the indexes, they contribute 65.8% to the bias. The reason is that both

food and apparel have unusually volatile prices partly due to the frequency of

sales. Table 3b lists the contribution of the di¤erent methods.16 From the

result of the Monte Carlo simulation, it is not surprising to �nd that 96% of the

bias comes from the relatives based on the Geomean method. Combining this

result with the theoretical results in Section 2.4 gives evidence that �plugging

in�bias adjusted relatives into the CPI-C would induce additional bias. Table

3c breaks down the �All-Items� index into the Core and Non Core parts. The

Core includes all items except non-alcohol related food and beverages and energy

items such as motor and heating fuel. The reason for the Core index is to remove

items that are highly volatile over time but not necessarily volitale within an

item-area. However, the volatility here is volatility over time rather than within

an item area. The variances of the sample means for log prices for energy items
16Please note that the Housing Group index is di¤erent from the Housing Relative method.

The Housing group includes home heating fuel, cleaning supplies, and various services. These
items are not computed with the Housing method.
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are smaller because their sample sizes are larger. The average sample size for an

energy item-area is 28, almost three times the sample size of a typical geomean

index. While energy prices �uctuate widely over time, there is relatively little

price variation within time. Since the food part of the Non Core excludes

alcoholic beverages, there is a slight di¤erence between the food results in Table

3a and Table 3c.

There is a large di¤erence between a group�s contribution to the index and

its contribution to the bias. The reason is that the bias adjustment varies widely

by group. If one looks at Table 4, the bias adjustment for apparel is the largest

while its share of the index is small. On the other hand, the bias adjustment for

housing is smaller than average while its share of the index is large. The food

group is the largest contributor to the bias adjustment. Although its average

bias adjustment is less than apparel�s, it has a higher expenditure share. Both

the apparel and food group relatives are computed with geomean indexes. Table

5 gives a yearly breakdown by Core and Non Core Items. This shows the high

�over time�volatility of energy, which contrasts with the relatively small �within

time�variability exhibited in Table 3c.

It is important to remember that the adjusted indexes from this historical

data do not completely eliminate �nite sample bias. They are imperfect ad-

justments that bring us �closer� to the true ��xed basket� index. One should

not read Table 2 and conclude �The annual �nite sample bias for the CPI-U is

0.27% on average.�This is too strong a conclusion, and the factors that in�uence

�nite sample bias can change in the future. However, we do have two major
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results. First, the currently published CPI-U is an upwardly biased estimate

of the true ��xed basket� index. Second, if budget constraints do not allow

BLS to increase item-area sample sizes adequately enough for the asymptotic

properties to be realized, then the bias adjustments in this study represent a

�second best�solution.

5 Conclusions

The currently published CPI-U is an upwardly biased estimate of a ��xed bas-

ket�price index. Therefore the di¤erence between the CPI-U and a superlative

index cannot be entirely attributed to commodity substitution bias, as previous

studies have done. The CPI-U�s �nite sample bias can be reduced by using the

same price quotes that are used to initially generate the index. Therefore unlike

correcting for commodity substitution bias, no additional data is needed.

On a year to year basis, it is not possible to predict the reduction in the

CPI-U if it is adjusted for �nite sample bias, but in the �ve years of this study,

the CPI-U is reduced by .27% on average. However, the bias adjustments are

unpredictable, since they are based on the variance of prices within a cell, and

these variances change unpredictably over time.

Analytical bias reduction is not the only method to adjust for �nite sample

bias but it requires less computation than bootstrapping, and it is less expen-

sive than expanding sample sizes. However, if analytical bias reduction were

implemented the �nal relatives that are used in the CPI-U would di¤er from

those used in the CPI-C.
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Appendix

Proof of Proposition 1

Proof of Proposition 1: From (10) the following holds

bRGit � exp(�Git) = exp(�Git)( niX
j=1

ln(pijt=pijt�1)=ni � �Git)�

(1=2) exp(�Git)(

niX
j=1

ln(pijt=pijt�1)=ni � �Git)2 = Op(n
�3=2
i ):

Passing through the expectations operator, I get

BGit = E[ bRGit � exp(�Git)] = (1=2) exp(�Git)�2Git=ni +Op(n�3=2i ):

I wish to show that

bBGit �BGit = Op(n�3=2i );

where bBGit = (1=2)b�2Git exp(b�Git); and thus showing that n3=2i ( bBGit �BGit) d!

N(0; 
2Git): By the triangle inequality

j bBGit �BGitj � j bBGit � (1=2) exp(�Git)�2Git=nij+ jO(n�3=2i )j:

I need to only show that j bBGit � exp(�Git)�2Git=nij is Op(n�3=2i ).

bBGit � exp(�Git)�2Git=ni =
(1=2) exp(b�Git)b�2Git � (1=2) exp(�Git)�2Git=ni =

1

2ni(ni � 1)

niX
j=1

(ln(pijt=pijt�1)� b�Git)2 exp(b�Git)� (1=2) exp(�Git)�2Git=ni =
1

2ni

(Pni
j=1(ln(pijt=pijt�1)� b�Git)2

ni � 1
exp(b�Git)� exp(�Git)�2Git

)

=
1

2ni
A(ni):
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I need to show that A(ni) = Op(n
1=2
i ): I do this by taking a �rst order expansion

of A(ni) around �Git and �
2
Git:

A(ni) = exp(�Git)(b�2Git � �2Git) + �2Git exp(�Git)(b�Git � �Git) +Op(n�1):
E(An) = O(n

�1): Using the condition( i) that jE(ln(p4ijt)j <1; :(b�2Git��2Git) =
Op(n

�1=2
i ) and (b�Git � �Git) = Op(n

�1=2
i ): This establishes that jA(ni)j =

Op(n
1=2
i ):Since var(b�2Git) and var(b�Git) are bounded then var(n3=2( bBGit�BGit))

is bounded and since pGit is i.i.d., I can use the Levy-Lindberg Central Limit

Theorem to conclude that there is a 
2Git such that

n3=2( bBGit �BGit))) d! N(0; 
2Git):

The proof of propositions 2 and 3 follow the same process.

Proof Proposition 4

From Diewert, Ehemann, and Reinsdorf (2000), it is shown that the index

PG =

nY
i=1

(pit=pit�1)
wi

has the additive decomposition

PG =

Pn
i=1 wipit=m(pit; PGpit�1)Pn
i=1 wipit�1=m(pit; PGpit�1)

:

I can then use this to additively decompose both bIT 1=T and bbIT 1=T into the

contribution of each month. Since

bI1=TT =
TY
t=1

� bRt�1=T
and bbI1=TT =

TY
t=1

�bbRt�1=T ;
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I can additively decompose the months as

bI1=TT =

PT
t=1(1=T )

bRt=m( bRt; bI1=TT )Pn
i=1(1=T )=m(

bRt; bI1=TT )
=

PT
t=1

bRt=m( bRt; bI1=TT )Pn
i=1 1=m(

bRt; bI1=TT )

and bbI1=Tt =

PT
t=1(1=T )

bbRt=m(bbRt; bI1=TT )Pn
i=1(1=T )=m(

bbRt; bI1=TT )
=

PT
t=1

bbRt=m( bRt; bI1=TT )Pn
i=1 1=m(

bbRt; bI1=TT )
:

The within month contribution of each item in the unadjusted and adjusted

index is just bwit�1cRit and bwit�1ccRit: Since cBit = cRit � ccRit, I get the desired
result.
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Relative Type 
Index (Weight)

Sample 
Size

Average 
Bias of 
Initial 

Relative

 Average 
Adjustment

Average Bias 
of Adjusted 

Relative

Geomeans (71%) 10 0.0300% 0.0250% 0.0050%
Laspeyres (11%) 12 0.0195% 0.0209% -0.0014%
Housing (18%) 40 0.0008% 0.0002% 0.0006%

Alternative 
Housing 10 0.2300% 0.1730% 0.0570%

Relative Type  Mean 
Difference

Standard 
Deviation 

of 
Difference

 Minimium 
Difference

 Maximum 
Difference

Geomenans -6.74E-05 0.0023601 -0.00494566 0.020122428
Laspeyres 2.22E-06 0.0011421 -0.00250337 0.008251568
Housing -8.06E-07 0.000601 -0.00177075 0.003574577

Table 1a
Simulation Results - Finite Sample Bias, 

the Adjustment and Bias for Adjusted Relative

Table 1b
Simulated Difference between the Sample Standard 

Deviations and theTrue Standard Deviations
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Period from 
Dec-Dec CPI-U

Bias 
Adjusted
 CPI-U

CPI-C (CPI-U)-
(CPI-C)

(CPI-U)-
(Bias 

Adjusted CPI-
U)

(Bias 
Adjusted 
CPI-U)
-CPI-C

% Difference 
from Finite 

Sample Bias

% Difference 
from 

Commodity 
Substitution 

Bias
1998-1999 2.663% 2.335% 2.139% 0.524% 0.329% 0.195% 62.7% 37.3%
1999-2000 3.390% 3.090% 2.600% 0.790% 0.300% 0.490% 38.0% 62.0%
2000-2001 1.548% 1.300% 1.267% 0.280% 0.248% 0.033% 88.3% 11.7%
2001-2002 2.400% 2.107% 2.021% 0.379% 0.294% 0.086% 77.4% 22.6%
2002-2003 1.870% 1.585% 1.509% 0.360% 0.285% 0.075% 79.0% 21.0%

Entire 5 year 
Period 12.433% 10.851% 9.902% 2.531% 1.582% 0.949% 62.504% 37.496%

Correlations wirh the Bias Adjustments

Factor Geomean 
Relative Factor Laspeyres 

Relative Factor Housing 
Relative

Var(lnPt-lnPt-1) 92.6% Var(pt) 2.1% Var(pt) -3.0%
n -4.7% Var(pt-1) 3.8% Var(pt-6) 0.0%

n -2.3% n -1.9%

Source of Difference between 
CPI-U and CPI-C

Table 2
Summary Statistics for

the CPI-U, the Bias Adjusted CPI-U, and the 
CPI-C
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Table 3a
Contributions to Index Growth and Bias Adjustment

Group Name
Group

Contribution 
CPI-U

Group
Contribution

Adjusted
CPI-U

Group
Contribution

to Bias 
Adjustment

Apparel     4.5% 4.5% 25.6%
Education      5.5% 5.5% 3.1%

Food     16.0% 16.0% 40.2%
Housing      40.4% 40.4% 15.7%
Medical      5.8% 5.8% 1.2%

Recreation      6.0% 6.0% 6.2%
Transportation 17.3% 17.3% 4.4%

Other      4.6% 4.6% 3.5%

Table 3b
Method Type Contributions to Index Growth and Bias Adjustment

Relative 
Type

Type
Contribution 

CPI-U

Type
Contribution

Adjusted
CPI-U

Type
Contribution

to Bias 
Adjustment

G 71.1% 71.1% 96.5%
L 17.7% 17.7% 2.5%
H 11.3% 11.3% 1.0%

Table 3c
Core Type Contributions to Index Growth and Bias Adjustment

Relative 
Type

Type
Contribution 

CPI-U

Type
Contribution

Adjusted
CPI-U

Type
Contribution

to Bias 
Adjustment

Core 77.8% 77.6% 59.7%
Energy 7.1% 7.1% 0.8%
Food* 15.3% 15.3% 39.8%

* Excludes alcoholic beverages
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Table 4
Annual Group Detail

1999 2002

 Group 

 Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference  Group 

Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference

 Apparel   -0.47% -2.08% 1.61%  Apparel   -1.76% -3.57% 1.80%
 Education  1.58% 1.03% 0.55%  Education  2.13% 1.99% 0.14%

 Food  2.00% 1.24% 0.76%  Food  1.51% 0.80% 0.72%
 Other 5.08% 4.83% 0.25%  Other 3.30% 3.10% 0.20%

 Housing  2.17% 2.08% 0.09%  Housing  2.35% 2.24% 0.11%
 Medical  3.66% 3.57% 0.10%  Medical  5.04% 5.00% 0.05%

 Recreation  0.79% 0.34% 0.45%  Recreation  1.11% 0.75% 0.35%
 Transportation  5.39% 5.30% 0.09%  Transportation  3.82% 3.77% 0.05%

2000 2003

 Group 

 Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference  Group 

Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference

 Apparel   -1.70% -3.23% 1.53%  Apparel   -2.05% -3.87% 1.82%
 Education  1.32% 1.24% 0.08%  Education  1.55% 1.47% 0.09%

 Food  2.73% 1.90% 0.83%  Food  3.50% 2.76% 0.74%
 Other 4.17% 3.90% 0.27%  Other 1.48% 1.31% 0.17%

 Housing  4.28% 4.19% 0.09%  Housing  2.23% 2.10% 0.12%
 Medical  4.18% 4.14% 0.05%  Medical  3.69% 3.62% 0.07%

 Recreation  1.67% 1.42% 0.25%  Recreation  1.09% 0.87% 0.22%
 Transportation  4.08% 3.99% 0.09%  Transportation  0.35% 0.28% 0.07%

2001

 Group 

 Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference

 Apparel   -3.26% -4.66% 1.40%
 Education  3.20% 3.13% 0.06%

 Food  2.77% 2.08% 0.70%
 Other 4.52% 4.29% 0.23%

 Housing  2.91% 2.83% 0.08%
 Medical  4.73% 4.67% 0.05%

 Recreation  1.57% 1.32% 0.25%
 Transportation  -3.82% -3.88% 0.07%
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Table 5
Annual Detail by

Core and Non Core Index Type

1999 2002

Type
 Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference Type

 Annual 
Growth
CPI-U

 Bias 
Adjusted  Difference

Core 1.936% 1.677% 0.260% Core 1.915% 1.691% 0.224%
Energy 13.400% 13.372% 0.028% Energy 10.720% 10.692% 0.028%
Food 1.971% 1.188% 0.783% Food 1.497% 0.759% 0.739%

2000 2003

Type
 Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference Type

 Annual 
Growth
CPI-U

 Bias 
Adjusted  Difference

Core 2.543% 2.339% 0.204% Core 1.110% 0.894% 0.216%
Energy 14.215% 14.173% 0.043% Energy 6.914% 6.881% 0.033%
Food 2.741% 1.884% 0.857% Food 3.580% 2.811% 0.769%

2001

Type
 Annual 
Growth
 CPI-U

 Bias 
Adjusted  Difference

Core 2.754% 2.572% 0.181%
Energy -13.055% -13.093% 0.038%
Food 2.828% 2.110% 0.718%
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