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1. Background 

Models for economic time series of the form 
Y Trend Seasonal Irregular= + + typically assume 
that each term is stochastic with a noise component.  
A fourth noise component, which we denote tε , 
enters the picture when the series is observed from a 
survey.  Pfeffermann (1994) presents a method for 
obtaining variance measures for seasonal adjustment 
with the X11 method.  The variance measures are all 
approximated from autocovariances of the error 
terms tε  and the irregular tI .  These autocovariances 
are estimated from their relation to X11 irregular 
autocovariances, in turn estimated by the method of 
moments from X11 output.  Breidt (1992) offers an 
alternative method working in the frequency domain.  
Chen, Wong, Morry, and Fung (2003) develop a 
second method for spectral estimation of the 
“combined error” autocovariances and compare their 
methods to the method of moments.  This paper 
continues the work of comparing these methods. 
 The next section reviews the method of 
moments and the spectral methods of Chen et al.  
Section 3 presents several comparisons based on 
simulation experiments.  Some experiments revisit 
the simulations in Chen et al and some are based on 
models suggested by a U.S. labor force series.  
Section 4 looks at theoretical properties of 
autocovariances and spectra for a few error models.  
The final section contains conclusions. 
 
2.  Methodology 
 Assume the observed series is t t ty Y ε= + , 

where = + +t t t tY T S I  represents the signal or 
population process with trend, seasonal, and irregular 

components and tε  represents sampling error.  We 

denote population and estimated values of the 
seasonally adjusted series as t t t t tA Y S T I= − = −  and 
ˆ ˆ

t t tA Y S= − , respectively.  The most basic variance 
measure considered in Pfeffermann (1994) and in 
Scott, Sverchkov, and Pfeffermann (2005) is  

         
( )ˆ

t tVar A A− .                        (2.1) 

Let t t te I ε= +  denote the combined error and 

           
( ),k t t kV Cov e e +=

.                     
(2.2) 

To estimate (2.1) from the observed series ty , one 

needs to calculate the autocovariances kV . It is 
natural to assume the irregular and sampling error are 
independent, so we have k k kV ν λ= + ,  

( ),k t t kCov I Iν += , and ( ),λ ε ε +=k t t kCov . 

 
Method of Moments (MM) 
 Pfeffermann (1994) develops an approximation 
to kV  in terms of the autocovariances of the X11 

estimated irregulars tR .  Begin by assuming that the 
combined errors form a stationary process and that 

            [ ] [ ] 0I t I tEw T Ew S= = ,
                

(2.3) 

where Iw  represents the symmetric X11 irregular 
filter.  Pfeffermann derives the approximate equation  
 

       ( ) ( )t I t j I t j
j j

R w j y w j e− −= ≈∑ ∑           (2.4) 

 
where ( )iw j  denotes the X11 symmetric irregular 
filter weight at distance j .  In practice, this means 
using data only from the central part of the X11 
decomposition, where the filters are time-invariant.  
Taking autocovariances in (2.4), we obtain the 
desired relation between autocovariances ( )U k  and 

( )V k  of tR  and te , respectively, namely 

( ) ( )
0

, 0, ,
C

kj
j

U k d V j k C
=

= =∑ K ,       (2.5) 

assuming 
( ) 0,V k k C= > , 

for some cutoff value C; in matrix terms, 
                          =U DV .                            (2.6) 

For the method of moments, which we denote MM, 
given X11 results, we compute estimates  

                    ( ) 1
t t k

t

U k R R
n += ∑

                   
(2.7) 

where the time points are restricted to the central 
portion of the series, and solve the linear system (2.6) 
to obtain the desired estimates for ( )V k . 

 When there is survey error present with a 
known structure, we simply subtract the known part 

λD  and solve  
                            λ νU - D = D                      (2.8) 

for ν .  In addition to making use of extra 
information, this method of solution reduces the 



   

linear system to a very small size, given that we are 
willing to model the irregular as a low order MA(q) 
process, which includes the usual assumption of 
white noise.  The advantages of this solution come 
with the price that sometimes the covariance matrix 
corresponding to an estimate ν  fails to be 
nonnegative definite.  In this case, our usual practice 
is to assume the irregular is negligible and set 0ν = . 
 
Spectral Method (SP) 
 For the spectral method, Chen also begins with 
the approximation (2.4).  As before, we use the 
observed tR  to make inferences about the combined 

errors te .  In the center of the series, where a time -
invariant symmetric linear filter is applied, the 
spectra of te  and tR  satisfy 

( ) ( ) ( )2
ω ω ω=R ef W f               (2.9) 

 
where W  is the gain or transfer function of X11’s 
symmetric irregular filter

  ( ) ( )cos( )
m

I I
j m

W w j jω ω
=−

= ∑ ,          (2.10) 

 
Writing *

eJ  as an estimator of the spectrum of te  and  

RJ  for the periodogram of tR , we have 
2*( ) ( ) ( )e RJ W Jω ω ω−= .             (2.11) 

Now we use the fact that for a stationary process the 
autocovariance and the spectrum form a Fourier pair.  
For applications considered here, we mostly assume 
the stationary process is or can be approximated by 
an MA(q) process, so the spectrum takes the form 

   
1

1
( ) (0) 2 ( )cos( )

2

q

e e e
k

f k kω γ γ ω
π =

 
= + 

 
∑ .  (2.12) 

Given that we can obtain observations of ( )ef ω  from 
(2.11), we may view (2.12) as a regression model, in 
which the regression coefficients provide the desired 
autocovariances of te : 

1

1
*( ) (0) 2 ( )cos( ) error

2

q

e e e
k

J k kω γ γ ω
π =

 
= + + 

 
∑  

(2.13) 
Chen addresses several technical issues, including 
places where periodogram smoothing is needed.  For 
estimating the regression coefficients, “observations” 

*( )eJ ω  are obtained for a set of Fourier frequencies, 
less points around the seasonal frequencies where the 
estimates are least stable. 
 Let us now assume sampling error information 
is available.  The spectra add:  e If f fε= + .  

Converting to a sample equation and assuming fε  is 
known, we have a simple estimate 

* *I eJ J fε= − . 

While by construction *( ) 0eJ ω ≥ , in practice there 

is no guarantee that this holds for *IJ .  A modified 
estimator is  

**( ) max( *( ) ( ),0)I eJ J fεω ω ω= − . 

Chen’s preferred method is to compute *IJ  or 

**IJ  and then approximate it by a best-fitting linear 
spectrum (constrained to be nonnegative).  Given this 
spectrum estimate Îf , we have 

 
0

ˆˆ( ) 2 ( )cos( ) , 0,1Ik f k d k
π

ν ω ω ω= =∫ . 

The justification for modeling a linear spectrum is 
this:  an MA(1) model should suffice for modeling 

tI , in which case 

1 1( ) (0) (1)cos( ), 0
2I I If ω γ γ ω ω π
π π

= + ≤ ≤ . 

Since the cosine function is monotone on [ ]0,π , a 

linear approximation should be reasonable. 
 Summing up, when sampling error information 
is available, Chen’s method (1)  yields estimates for 
V consistent with an MA(1) model for the irregular 
and (2)  always produces nonnegative definite 
estimates of the covariance matrix for tI .  We will 
denote this method as LSP. 
 
3.  Simulation comparisons between moments (MM) 
and spectral (SP, LSP) methods 
 
 For the default options of a 3x5 seasonal filter 
and a 13-point Henderson trend filter, the X11 
symmetric irregular filter has length 169.  A 
symmetric filter of length 2 1m + can be applied to 
only 2N m− central values from an input time series.  
Chen has carried out simulations with series having 
222 monthly observations, or 18½ years, so that the 
full filter applies to only the central 222 2 84 54− × =  
points.  In order to use more data, Chen approximates 
the irregular filter with a symmetric filter of length 
79, allowing use of 222 2 39 144− × = time points.  
We follow Chen by forming alternative filters of 
length 79 and 121.  A very basic property of the 
irregular filter is that its weights add to 0.  For our 
filter approximations , we reallocate the tail weights 
by two methods:  distributing the net amount equally 
among the remaining weights and distributing them 
proportionally, each remaining weight receiving a 
weight proportional to its own value.  In our 
empirical work, we present results using the latter, 
but differences between these two choices is small.  
As mentioned in analyzing Tables 3.3 and 3.4, 



   

however, results can be quite sensitive to even small 
departures from 0k

k

w =∑ .  There is a trade-off 

between using a more accurate filter and obtaining 
more central values for computing key statistics. 
 
3.1  Experiments derived from a U.S. labor force 
series 
 Important applications of seasonal adjustment at 
BLS include household and establishment 
employment and unemployment surveys.  Both major 
surveys have sampling error information.  
Simulations will be based loosely on Adult Female 
Unemployment from the household survey, the U.S. 
Current Population Survey conducted by the Census 
Bureau.  Sampling error information suggests an 
MA(2) model with parameters 1 .30θ =  and 2 .18θ = , 
reflecting positive correlation across months which 
dies out quickly.  Based on data for the span 1993-
2002 and taking account of the sampling error model, 
William Bell’s REGCMPNT program (Bell, 2003) 
estimates an ARIMA model for the signal part of the 
model.  Standard decomposition of this model 
through TRAMO/SEATS-style signal extraction 
leads to the following models for trend, seasonal, and 
irregular: 
 

2
1 2(1 ) .03 .97T T T

t t t tB T Z Z Z− −− = + − , 
11

11

0

(1 ) S
t j t j

j

B B S Zθ −
=

+ + + = ∑L , 

I
t tI Z= , 

where T
tZ , S

tZ , and I
tZ  are white noise processes 

with fixed variances of 2
Tσ , 2

Sσ  and 2
Iσ , respectively.  

The survey error follows an ( )2MA  process with 

covariance vector 
                      [ ]0 1,.315,.160λ λ= . 

Simulations are executed with three values of 0λ , 
55.0, 28.1, and 10.1, i.e., large, moderately large, and 
about equal in comparison to the irregular variance 

0 8.5ν = .  The following are results obtained 
averaging 1000 replications of series of length 240 
using the approximate filter of length 121.  The 
matrix D in (2.5) and the transfer function W  in 
(2.10) come from the symmetric X11 irregular filter.  
All that we need for estimating V is a set of X11 
irregular estimates.  Thus, for each simulated series, 
we apply the X11 irregular filter to the 120 central 
points, and use 

                   
[ ]ˆ

t t I tR I w y= = ,                

to estimate V. 

Table 3.1 contains the mean and standard 
deviation of the 1000N =  estimates for comparison 
to the theoretical values derived from the models.  
Estimates of the irregular variance and first order 
autocovariance are given for the moments method 
(MM) for MA(q) models, 0q =  to 2, and for the 
linear spectral method (LSP) which assumes an 
MA(1).  All are significant overestimates.  This is 
especially true for the LSP method and for MM with 

2q =  or 3q = , where some of the estimates are 
roughly double to triple the true value.  With MM, 
even for the correct value 0q = , there is 
approximately a 50% overestimate.  Not surprisingly, 
all the standard deviations decrease markedly as 0λ  
decreases and the estimates decrease as well.  The 
overestimation would appear to be largely due to 
noise from the trend and seasonal components not 
being filtered out. 
 To check this , we carry out simulations with 
exactly the same models as above, except for 
changing 2

Tσ  and 2
Sσ  from 3.4 and 1.7 respectively 

to 0.5.  In addition to the WN model for tI , we 
obtain results for MA(1) and MA(2) models with 
parameters 1 2( , ) (.4,0)θ θ =  and 1 2( , ) (.36,.20)θ θ = .  
For the MA models, the disturbances are selected so 
that the irregular variance 0ν  remains 8.5.  Table 3.2 
contains results for the intermediate sampling error 
case, 0 28.1λ = , again with results for MM ( 0q =  to 
2) and LSP (q=1).  Each column contains estimates 
for the three simulations in which the tI  model 
varies.   As before, the standard deviation of each 
estimate is shown in parentheses. 
 As expected, the overestimation is  greatly 
reduced.  For MM, all the estimates and standard 
deviations increase as q  increases.  All the estimates 

for 0ν  are overestimates.  The 0q =  estimate is 
closest for the WN and MA(1) cases and 1q =  
comes closest for the MA(2) case.  LSP 
overestimates 0ν  for all three models, but by a 

decreasing amount as tI  goes from WN to MA(2).  
The overestimation with LSP and with the correct q 
values with MM are at least in part due to noise 
coming from the trend and seasonal components.  
The decrease in estimates when the true irregular is 
MA(1) or MA(2) can be due to irregular noise being 
partially filtered out by X11’s irregular filter (see the 
end of Sec. 4 below for further comment). 



Table 3.1.  Estimates of kν  when  (0,8.5)tI WN:   2 3.4Tσ = 2 1.7Sσ =  

0λ  k  kν  0q =  1q =  2q =  LSP 1=q  

0 8.5 12.9   (8.3) 18.3  (11.7) 22.5  (15.7) 23.1  (14.0) 
55.0 

1 0 0 6.6  (8.5) 10.8  (12.1) 5.4  (8.0) 
0 8.5 12.8  (5.4) 16.4  (7.5) 20.3  (10.1) 20.8  (9.4) 

28.1 
1 0 0 5.2  (5.7) 8.7  (8.2) 5.4  (5.9) 
0 8.5 12.7  (3.2) 15.9 (4.7) 19.2  (6.6) 19.6  (6.0) 

10.1 
1 0 0 4.7  (3.6) 7.7  (5.5) 5.7  (4.0) 

 
Table 3.2.  Estimates of kν when , (1), (2)tI WN MA MA:  2 0.5Tσ = 2 0.5σ =S  

0λ =28.1 k  kν  0q =  1q =  2q =  LSP 1=q  

0 8.5 9.2  (4.9) 10.8  (6.4) 12.2  (8.3) 13.1  (7.2) 
WN 

1 0 0 2.0  (4.5) 3.7  (5.8) 1.5  (4.5) 
0 8.5 7.2  (4.6) 10.5  (6.6) 12.0  (8.6) 12.9  (7.8) 

1 2.9 0 4.4  (4.7) 6.0  (6.4) 3.6  (4.2) MA (1) 
2 0 0 0 1.7  (3.9) 0 
0 8.5 6.5  (4.3) 9.1  (6.2) 12.0  (8.4) 11.8  (7.0) 
1 3.1 0 3.4  (4.4) 6.1  (6.4) 2.9  (4.1) MA (2) 
2 1.4 0 0 2.8  (4.0) 0 

 
3.2.  Experiments from Chen et al (2003) 
 Next we revisit several comparisons done in 
Chen et al (2003).  Again we simulate N  replicates 
of a time series model of the form t t t ty T I ε= + + , 
this time with length 222, compute autocovariance 
estimates using both methods for each replication, 
and compare the mean estimates to the theoretical 
values. 
 The simulations are carried out comparing the 
moment method with the linear spectral approach or 
the spectral approach, depending on whether 
sampling error (SE) information is known or not.   
 Consider the observed series from three models  
M1, M2, and M3, for the combined error 

( ) 1 21 0.8 0.64t t t tM e ξ ξ ξ− −= + +
    

( ) 1 22 0.75 0.125t t t tM e ξ ξ ξ− −= − +
, 

where tξ  is white noise with mean 0 and variance 
2 25tσ = , or 

( )3 t tM e ξ= , 

where tξ  is white noise with mean 0 and variance 
2 36tσ = .   

 For some simulations a trend component is 
added to the combined error.  The trend component  

tT is governed  by an equation of the form  

            

1 1 1,

1 2,

t t t t

t t t

T T ζ η

ζ ζ η
− −

−

= + +

= +
                    (3.1)

 

 
where ,j tη ( )1, 2j =  is white noise with mean 0 and 

variance 2
jσ .  The noise standard deviations for the 

trend process are simulated  using model (3.1) with 
one of two different parameter pairs from the set 

( ) ( ) ( ){ }1 2, 0,0 , 0.8,0.6σ σ               (3.2) 

First we present results using 1,000 replicates 
for series with a trend component tT  and with one of 

the two models M1 or M2 for te  when there is no 
knowledge of the sampling error, cases appearing in 
Table 3.5.1 of Chen et al. (2003).  Tables 3.3 and 3.4 
show our results for the two most extreme trend 
models  for the moments method with 0 to 2=q  and 

the spectral method ( 1=q ). 
 Table 3.3 shows that for the combined error 
model M1, when the correct value 2q =  is chosen, 
MM gives estimates with very little bias for both 
trend models.  The SP estimates with 2q =  are 

underestimates, closer than MM for 1V , but less close 

for 0V  and 2V .  SP also has greater variability.  MM 
gives severe underestimation with 0=q  or 1. 

Table 3.4 gives the results for the two methods 
when the true combined error model is given by 
model M2.  Both methods come very close with the 
correct value 2q = .  MM is a bit closer to the true 
values in all cases, but here SP has less variability in 
its estimates.  MM underestimates with 0=q  but its 



   

estimates are close for 1=q , due to M2’s small 
covariance at lag 2 – it is practically an MA (1) 
model. 

The results given in the two above tables differ 
substantially from those reported in the Chen et al. 
(2003) because of the use of the unbiased filter in our 
simulations.  Both these tables show substantial 
changes in mean estimates with the moments method 
as q changes.  While only 2=q  values are shown for 

the spectral method, our work shows that it changes 
much less with the choice of q. 

Next in our analysis we look at the case when 
there is known sampling error present.  The observed  

series are based on trend and irregular models  
indicated in Table 3.5 with an AR(1) sampling error 
defined in Chen et al. (2003) by  

10.5ε ε −= +t t tz , 

where tz  is a white noise process with variance 36.   
This gives the survey error an overall variance 

of 48 similar in magnitude to the variance of the 
irregular term.  Table 3.5 gives the results for MM 
( 1=q , 2) and LSP ( 1=q ).  Compared to LSP, MM 
is less biased with 1=q  and more biased with 2=q  
for both trend cases.  Again, we note that M2 is fairly 
close to an MA(1) model. 
 

 
 
Table 3.3   Results for Combined Error Model M1 

1 2σ σ  k  kV  0q =  1q =  2q =  SP 2=q  

0 51.2 22.5  (6.1) 34.2  (11.1) 51.3  (17.9) 48.3  (20.5) 
1 28.3 0 17.4  (8.1) 32.8  (14.6) 29.6  (16.6) 

 
0 0 

2 16.0 0 0 16.0  (8.4) 12.8 (9.0) 
0 51.2 22.9 (6.2) 34.8  (11.2) 52.3  (18.1) 49.4  (20.8) 
1 28.3 0 17.7  (8.2) 33.4  (14.8) 30.3 (16.9) 

 
.8 .6 

2 16.0 0 0 16.3  (8.5) 13.1 (9.1) 
 

 
Table 3.4   Results for Combined Model M2 

1 2σ σ  k  kV  0q =  1q =  2q =  SP 2=q  

0 39.5 52.5  (13.2) 36.3  (8.5) 39.5  (13.9) 40.0  (10.7) 
1 -21.1 0 -24.2  (12.3) -21.3  (10.4) -19.7  (8.0) 

 
0 0 

2 3.1 0 0 3.0  (12.4) 2.6  (8.4) 
0 39.5 53.0 (13.3) 37.0  (8.6) 40.5  (14.0) 41.0  (10.8) 
1 -21.1 0 -23.8  (12.3) -20.6  (10.3) -19.0  (8.2) 

 
.8 .6 

2 3.1 0 0 3.3  (12.5) 2.9  (8.4) 
 
 
Table 3.5  Results with Irregular Model M2 and Known AR(1) Survey Error 

Model Actual MM  1=q  MM  2q =  LSP 1=q  

 
Trend: 1σ =0 2σ =0 

Irregular:  M2 
Survey error: AR(1)  

0ν = 39.5 
 

1ν = -21.1 
 

2ν = 3.1 

 40.9   (12.1) 
 

-19.1  (11.0) 
 

0 0 

 46.2   (16.5)  
 

-16.0  (12.3)  
 

7.3  (12.0) 

44.834   
  (12.62) 

 
-15.00  (7.25) 

 
0 0 

 
 

Trend: 1σ =0.8 2σ =0.6 

Irregular:  M2 
Survey error: AR(1) 
 

 

0ν = 39.5 
 

1ν = -21.1 
 

2ν = 3.1 

 
41.23   (12.33 ) 

 
-19.04   (11.17) 

 
0 0 

 
 47.13 (16.29) 

 
-15.67  (12.19) 

 
7.5 (11.9) 

 
45.201  (12.728) 

 
-14.97  (7.35) 

 
0  0 

 
 



4.  Theoretical characteristics of the X11 irregular 
 Key to both methods are properties of the X11 
irregular.  Properties of the X11 filters have been 
carefully studied; a recent paper is Findley and 
Martin (2003).  We briefly exhibit theoretical 
properties for autocovariances and spectra for simple 
error processes along the lines of processes described 
in earlier sections.  We write { }te  for the error 

processes and { }tR  for the processes stemming from 

application of the X11 irregular filter.  It is not clear 
how well these properties carry over to sample 
quantities, since, for instance, autocovariance 
estimates have sizable variances and the periodogram 
must be smoothed, just to provide consistent 
estimates of spectrum values. 
 Figure 1 shows autocorrelation functions for 
unfiltered and filtered error models, white noise 
(WN) and two MA(1) processes, 1 0.3θ = ± .  With 
WN, as is well known, the irregular filter induces 
sizable negative autocorrelations at lags 1 and 12, 
about -1/3 at lag 1.  For the MA(1) process with 
positive autocorrelation ( 1 0.3θ = + ), the lag 1 
autocorrelation moves toward 0, but the lag 2 
autocorrelation has a large negative value near -0.4.  
For 1 0.3θ = − , the negative lag 1 autocorrelation is 
accentuated, moving close to -1/2.  For an MA 
process with 12 0θ >  and 0, 12k kθ = ≠ , (not shown) 
the negative autocorrelation at lag 12 is dampened.  
Figure 1 also shows the spectra for these processes.  
For WN, the spectrum of tR  is roughly horizontal 
except for suppression at all the low (trend) 
frequencies and in a neighborhood of the seasonal 
frequencies.  For both MA(1) processes, the spectrum 

Rf  is zero or nearly so up to the first seasonal 
frequency and in a neighborhood of the other 
seasonal freqencies.  The nonzero parts of the 
spectrum mimic the shape of the spectrum ef  of te , 
especially beyond p/3.  Since much of the power for 
the positive MA(1) is in the lower frequencies, Rf  is, 
overall, comparatively low. 
 The shape of either the theoretical 
autocovariance function or spectrum provides 
information about te .  These same theoretical 
functions can be easily calculated for more 
complicated models for te .  Further work could be 
conducted to evaluate whether consideration of 
sample quantities from such error models can help in 
identifying the error structure, e.g., selection of q .  

Note that the decline in estimates of 0ν  as the model 

for tI  changes from MA(0) to MA(2) (with positive 

autocorrelations) fits with suppression of some of the 
error process by the irregular filter. 
 
5.  Conclusions 
 Our experience with the spectral method is quite 
limited, so these conclusions are tentative.  Both 
methods performed well in the Chen simulations.  
Especially in the first simulation based on the Adult 
Female Unemployment series, strong overestimation 
occurred.   
 The spectral method often behaves more stably 
than the moments method.  However, using the 
correct of q, the moments method can have much 
smaller bias and lower MSE.  A further advantage 
with the moments method is its modification to use 
all the estimated irregulars, not just the central 
values.  This modification, presented in Pfeffermann 
and Scott (1997), is important, since series are often 
seasonally adjusted with 10 years or less.  Extension 
of the spectral method to the case of non-stationary 
irregular has not been done. 
 In some of our simulations for Adult Female 
Unemployment, sampling error, irregular, and 
differenced trend comp onents all follow moving 
average models.  Asking a single filter to sort out the 
trend part from the noise is unrealistic.  The linear 
spectrum strategy of insuring valid covariance 
estimates and seeking nothing more complicated than 
an MA(1) irregular has much appeal.   
 Section 4 illustrates that it is easy to derive 
properties of the X11 irregular when the inputs are 
simple error processes (or sums of simple processes).  
For the moments method, one could consider 
smoothing a sample estimate of the irregular 
autocovariance function by using a theoretical 
function from a model suggested by the sample 
autocorrelations or spectrum.  Whether their sample 
properties are strong enough to support this approach 
has not yet been evaluated. 
 The analysis in this paper has emphasized a 
difficult case. However, based on experience reported 
in Scott, Sverchkov, and Pfeffermann (2005) typical 
applications of the X11 method yield acceptable 
results from the moments method and, likely, from 
the spectral method as well. 
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Figure 1a:  Autocorrelation Function and Spectrum of  the Filtered and Unfiltered White Noise Process 
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Figure 1b:  Autocorrelation Function and Spectrum of  the Filtered and Unfiltered MA(1) Process with 1 0.3θ =  
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Figure 1c:  Autocorrelation Function and Spectrum of  the Filtered and Unfiltered MA(1) Process with 1 0.3θ = −  
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