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Abstract: For many household and establishment surveys, initial contact and interview attempts by 
themselves do not produce satisfactory response rates.  This often leads data-collection organizations to use 
various callback procedures to collect data from sample units that initially were nonrespondents.  Analyses 
of the resulting data depend implicitly or explicitly on models for the response mechanism, conditional on 
the specific callback procedure.  These models generally are acknowledged to be, at best, approximations 
to more complex underlying response processes.  Consequently, it is important to explore the extent to 
which the properties of the callback-adjusted estimators may be sensitive to deviations from the assumed 
models.  This paper develops a framework for exploring the impact of moderate deviations from assumed 
conditions, and presents some related simulation results. 
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1. Introduction 
 
 There is substantial literature on methods for estimation and inference from survey data subject to 
nonresponse. Some of this literature considers methods that account explicitly for the number of callbacks 
required to obtain the survey responses, (See, for example, Drew and Fuller (1980), Drew and Ray (1984), 
Potthoff et al. (1993) and references cited therein.) This paper provides some evaluations of the numerical 
performance of some specific callback-based methods proposed by Drew and Fuller (1980), and extensions 
thereof. 

Specifically, Drew and Fuller (1980) consider a simple random sample of size n selected with 
replacement from a population of size N. Each sample unit is asked to provide survey responses; based on 
these responses, the unit would be placed into exactly one of K disjoint subpopulations.  

Within the overall population, ( ) %1001 γ− of the units are “hard core nonrespondents,” i.e., 
regardless of any efforts by the survey organization, these units will not provide survey responses. For a 
unit that is in subpopulation k and is not a hard-core nonrespondent, the survey organization has probability 

kq  of obtaining a response on any given call attempt. Note that the per-call probabilities kq  are constant 

across call attempts r=1….R. Furthermore, the survey organization will make up to R  call attempts, and 
will not stop those attempts until it obtains a response or it completes the R -th attempt. 

Thus, if one does not collect any data from respondents except for their (non)response status and 
for respondents, their population classification, Kk ,...,1= ,  the observed data are 
 

n0 = the number of units that did not respond by the thR −  call attempt ; and 
=rkn  the number of units that responded on the thr − attempt and that were subsequently 

classified into the thk − subpopulation. 
 
Drew and Fuller (1980, p. 639) then demonstrate that the vector ),...,( 110 RKnnn   follows a 

multinomial distribution with a sample size of  ∑∑
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For our current discussion, we will treat the terms kf as known (e.g, from a recent population 
census or administrative record source) and focus on estimation of the (non)response-process parameters 

4321 ,,,, qqqqγ . For such cases, arguments in Drew and Fuller (1980, p. 639) indicate that the log-
likelihood function for the aforementioned multinomial is  
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simplification indicates that expression  (1.1) equals 
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In the remainder of this paper we consider performance of maximum-likelihood point estimators 
based on the maximization of expression (1.1). Section 2 outlines the primary steps followed in this 
simulation study, reports results for sample sizes that are relatively large, i.e., n=250, 500, and 1000, and 
reports results for more modest sample sizes, n=50 and 100. Section 3 presents extensions of Sections 2 to 
cases involving misspecified logistic regression models. Section 4 reviews the main conclusions obtained 
from this simulation work and highlights some areas for future research. 
 
2. Simulation-Based Evalulation of Estimators of ( )4321 ,,,, qqqqγ  
 
 2.1 Design of the Simulation Study  
 
 For this section, we restricted attention to the case in which 4=K , 2=R  and  

25.04321 ==== ffff .  Thus, there are five parameters, 321 ,,, qqqγ , and 4q that are to be 
estimated, each contained in the interval )1,0( . We study cases with n=50, 100, 250, 500, and 1000, with 
1000 replicates in each case. 

For this study, we set each of the true parameter values 321 ,,, qqqγ  and 4q equal to 0.8. Using 
PROC IML, a SAS dataset with 1000 replicates is first generated.  Each observation contains a count for 
the nine categories ( )24110 ,..., nnn  derived from the generation of a multinomial random vector based on 
the assigned parameter values. 

We used the SAS procedure PROC NLP to maximize the log-likelihood expression (1.2) with 
respect to the unknown parameters 321 ,,, qqqγ  and 4q given the known population fractions 1f  through 

4f  and the observed counts 24110 ,..., nnn . With the exceptions noted below, we initialize iterations for 
PROC NLP parameter values equal to the idealized values 0.8. We carried out related simulation runs with 
initial parameter values randomly selected from the interval )1,0( , but results are not detailed here. 

 
    2.2 Numerical Results for Large Sample Sizes 
 
 We studied a number of different Non-Linear Programming (NLP) techniques. For large samples 
with n>=250, the standard large-sample properties were generally satisfied, both for point estimators and 
for confidence interval estimators. 

The numerical maximization techniques included the Newton-Raphson, the Newton-Raphson with 
Ridging, the Quasi-Newton, and the Conjugate-Gradient optimization techniques. In addition, we explored 
six different variance-estimation options included in PROC NLP.. Finally, we considered two different 
methods (Profile Likelihood and WALD) for construction of confidence intervals. For detailed discussion 
of these computational methods, see sections 28, 38, and 39 of SAS Institute (2002-2005). 
 



2.3. Performance of Point Estimation Methods With Moderate Sample Sizes 
 
 Subsection 2.2 reported results for relatively large sample sizes: n=250, 500, and 1000. We also 
studied the properties of the same estimation procedures with n=50 and 100, and encountered the following 
numerical issues. First, when we allowed PROC NLP to initialize from a randomly selected starting point 
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on the initial value. Second, for confidence interval computations we were unable to obtain confidence 
intervals with two of the techniques, and the two that did produce them produced intervals that were very 
wide. Third, we examined the numerical iterations obtained for one particular replicate for 100=n . This 
particular replicate number 558 was chosen because even when the idealized starting values of  

321 ,,, qqqγ  and 4q equal to 0.8 were used, the resulting computed estimates of 3q  and 4q   (0.9999 and 
0.6123), respectively, were far from the true values equal to 0.8. 

Table 1 presents each of the 32 iterations produced by PROC NLP for replicate 558 with initial 
values of 0.8 for each parameter. Note especially from Table 1 that the numerical values of the point 
estimates and the objective function are almost constant for iterates 9 through 27; and that the values for q1, 
q2, and q 4 change substantially between iterates 27 and 32. This numerical phenomenon is not uncommon 
in optimization. See e.g., Kennedy and Gentle (1980), p. 437. 

Figure 1 displays the likelihood surface for replicate 558, with 7669.0ˆ =γ  , 8259.0ˆ1 =q , and 

999999983.0ˆ3 =q  (equal to the numerical values for these parameters provided in the final row of Table 

1) and with  ),( 42 qq  allowed to vary over the rectangle [0.80, 0.90] x [0.60, 0.90] that contains the final 

point estimates )61231573.0,890470816.0()4ˆ,2ˆ( =qq . The likelihood values (displayed on the vertical 
axis and labeled “log-likelihood”) do not follow a simple quadratic-surface pattern generally used for large-
sample approximations in likelihood-based point estimation and inference theory. Instead Figure 1 displays 
a local maximum near the point ),( 42 qq  = ( )687.0,854.0 , a ridge that includes the abovementioned point, 

and a global maximum for the likelihood with 2q and  4q  having values greater than 0.8. 
In addition, Figure 2 displays the likelihood surface in a neighborhood of the final point estimates 

)61231573.0,890470816.0()4ˆ,2ˆ( =qq with ),,( 31 qqγ  fixed at the final point estimates (0.7669314, 
0.825864053, 0.999999983). Comparisons of Figures 1 and 2 indicate that the local maximum of the 
likelihood function in Figure 2 is substantially smaller than the local and global maxima displayed in 
Figure 1. Thus, when applied to data from replicate 558, with idealized initial values 

)8.0,8.0,8.0,8.0,8.0(),,,,( 4321 =qqqqγ  the PROC NLP algorithm converges to the relatively small local 
maximum displayed in Figure 2, rather than the larger local maximum or the global maximum beyond the 
boundaries of Figure 2. 
 
3. Performance Under Mis-Specified Logistic Regression Models 
 
3.1 Description of Models and Simulation Methods 
 
 Section 2 presented results for estimation of the parameter vector ),,,,( 4321 qqqqγ with the 

subpopulation proportions kf   known and the subpopulation-level response probabilities qk  treated as 
constants. 

However, the callback literature uses more elaborate models that depend on the relationship 
between the probability of response and the observed auxiliary variables. This literature acknowledges that 
these are only approximations to the true probability model. For the remainder of the paper, we study the 
extent to which some estimation methods may be sensitive to differences between the true model and the 
model we actually use for estimation. 

In our earlier simulation work, we used a simple version of the Drew and Fuller model in which 
the per-call response probability kq depended  only on the subpopulation membership of our sample unit. 



Drew and Fuller (1980) also consider cases in which the q  terms vary within subpopulations as quadratic 
functions of a predictor variable X: 

2
210)( XXXq βββ ++=                     (3.1) 

For the current section, we replaced the Drew-Fuller quadratic regression model (3.1) with a 
quadratic logistic regression model  

{ }[ ] 2
210)(1/)(log XXXqXq βββ ++=−                        (3.2) 

where 1,0 ββ  and 2β  are fixed coefficients and X is a known predictor variable. As in Section 2, we used 
8.0=γ , and R=2. In addition, we used X generated from a normal distribution with mean equal to 0 and 

standard deviation equal to 0.5. We then partitioned the population into K=8 groups. Group member ship 
was determined by whether a given unit had its X value contained in the intervals [-∞, x0.125], [x0.25 , x0.375], 
(x0.375 , x0.5], (x0.5 , x0.625], (x0.625 , x0.75], (x0.75 , x0.875], (x0.875 , ∞), respectively, where qx   is defined to equal 

the q-th quantile of the )25.0,0(Ν distribution. Thus, K=8 and 125.0=kf for each k=1,…,8. 
Also, in a logistic regression extension of Drew and Fuller (1980, p. 639) , we defined 

{ })exp(1/)exp( kLkLkq += where 2
210 kAkAkL βββ ++= and kA equals the ( ) Kk /5.0− quantile 

of the )25.0,0(Ν distribution. 
Based on model (1.1) with value qk  determined by expression (3.2) and specified coefficient 

vectors  ( )βββ 2,1,0 equal to ( )01.0,25.0,0 , ( )10.0,25.0,0 or ( )50.0,25.0,0 , we computed the resulting 

probability vectors ),...,( 28110 ββββ ππππ = . For  each of the sample sizes n=250, 500, 1000, we 
generated 1000 independent random vectors  (n0, n11,…, n28) according to a multinomial 

),( βπn distribution.  

For each generated random vector ),...,( 28110 nnn , we then fit two models: the correctly 
specified quadratic logistic model (3.2) and the incorrectly specified linear logistic model 

{ }[ ] XXqXq 10)(1/)(log ββ +=−        (3.3) 
In all cases, we used PROC NLP to compute the resulting vector of point estimators 

)2
ˆ,1

ˆ,0
ˆ,ˆ( AAAA βββγ    for model (1.1)-(3.2) and )1

ˆ,0
ˆ,ˆ( BB βββγ   for model (1.1)-(3.3) .  

 
3.2 Numerical Results for Large Sample Sizes 
 
 Table 2 displays results for the mean, standard deviation, mean squared error and quantiles of γ̂  

for each combination of n= 1000, and =2β 0.01, 0.10 and 0.50, and based on inclusion or exclusion, 

respectively, of 2β  from the fitted model. Note especially that except for the case in which 50.02 =β , 

the mean squared errors for γ̂  are smaller (usually slightly smaller) for the misspecified model (1.1)-(3.3) 

relative to the correctly specified model (1.1)-(3.2). Thus, for the cases studied here, misspecification of the 

logistic regression model appears to have a relatively small impact on the performance of
^
γ , the estimator 

of the proportion of the population outside the hard-core nonresponse group. Qualitatively similar 

conclusions applied to numerical results for n=250 and 500, which are not presented here in detail. 

To study further the effect of model misspecification, we computed the true response probabilities 
)}exp(1/{}exp{ kLkLkp += γ where 2

210 kAkAkL βββ ++= ; the estimated probabilities based on 



the correctly specified model fit )}ˆexp(1/{)ˆexp(ˆ krALkrALkrAp +=  where  
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In the notation above, the subscript r refers to the r-th replication in our simulation study.  

We then computed the differences kkrAkrA ppd −= ˆ     and  kkrBkrB ppd −= ˆ  
for each k=1, 2, …,8 and for each combination of n=250, 500, 1000 and β 2  =0.01, 0.10, and 0.50. Table 3 

shows the resulting simulation based means ∑
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for the cases =2β  0.01, 0.10, and 0.50 and for 8,...,1=k . The corresponding true probabilities, kp  are 
also displayed in each table. 

Note that the estimated biases Akd .  and Bkd .  are small relative to kp  for =2β 0.01, and are 

still fairly small for =2β 0.10. However, for =2β  0.50, the estimated biases Bkd .   for the misspecified 

model case are no longer small relative to kp  , especially for the tail-quantile groups 1 and 8. 
 
4. Discussion 
 
4.1 Summary of Results 
 
 This paper has studied some properties of maximum-likelihood estimators arising from a 
nonresponse-callback model developed by Drew and Fuller (1980). Section 2 considered a relatively 
simple form of the model, with primary emphasis on the estimators γ̂  (the proportion of the population not 

classified as “hard-core nonrespodents”) and kq̂   (the per-call response probability for sample units in 

subpopulation k). For relatively large sample sizes, the point estimators γ̂  and kq̂ , and associated 
confidence interval estimators, had properties that were generally consistent with standard large-sample 
theory. For relatively small sample sizes, however (e.g. n=50 or 100), the likelihood surface was irregular 
in a substantial number of cases, leading to issues related to multiple local maxima and boundary-case 
global maxima. 

Section 3 considered a more complex case, in which the units that were not “hard-core 
nonrespondents” had response probabilities that followed a logistic regression model with a link function 
that was a quadratic function of a single predictor X. The simulation work in Section 3 evaluated properties 
of point estimators forγ  and for unit-level response probabilities under two models: 

(a) the correctly specified quadratic-logistic model; and 
(b) an incorrectly specified linear-logistic model 

Comparison of results from cases (a) and (b) led to evaluation to the extent to which the estimators are 
sensitive to model misspecification. 
 
4.2 Future Work 
 
The simulations work presented here could be extended to several additional evaluations of properties of 
estimators under callback models that are properly specified or mis-specified, respectively. Prominent 
examples include callback-adjusted estimators of population means, totals and related nonlinear  
parameters. In addition, one may evaluate the properties of the same estimators under: (1) a complex 
sample design; and (2) a callback design that depends on auxiliary data for all sample units, and that may 
involve additional interventions like change in collection mode or follow-up by specialists in conversion of 
relevant respondents. For example, many household and establishment surveys use designs that include 
stratification, multistage sampling, and unequal probabilities of selection.  
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Table 1: Iterations of PROC NLP with Initial Starting Points of  0.8 

Iteration γ  q1 q2 q3                                            q4      Log-likelihood 
0 0.8 0.8 0.8 0.8 0.8 -187.7108716 
1 0.798124342 0.800594735 0.800718235 0.82 0.8002368 -187.3299358 
2 0.792967528 0.801841563 0.807140666 0.854088797 0.794811743 -186.5240792 
3 0.781165147 0.803911994 0.821236984 0.913236762 0.778853691 -184.9718122 
4 0.780004406 0.804185146 0.822911747 0.921913086 0.776838353 -184.758612 
5 0.77668641 0.804684807 0.826667591 0.937910477 0.771714462 -184.3330267 
6 0.77557638 0.804880021 0.828049032 0.944119429 0.769835902 -184.1721235 
7 0.772475701 0.805218872 0.830979773 0.956074728 0.765519987 -183.8458697 
8 0.762817178 0.806534544 0.841345368 0.999955231 0.750526227 -182.7008457 
9 0.762817171 0.806534562 0.841345434 0.999959708 0.750526142 -182.7007507 

10 0.762816874 0.806534886 0.841346908 0.999972477 0.750524205 -182.7004598 
11 0.762815976 0.806535256 0.841349022 0.999983311 0.750521315 -182.7001967 
12 0.762814337 0.8065356 0.841351363 0.999993749 0.750517974 -182.6999342 
13 0.762814214 0.806535619 0.841351507 0.999994374 0.750517762 -182.6999183 
14 0.762814082 0.806535638 0.841351653 0.999994997 0.750517548 -182.6999023 
15 0.762813949 0.806535656 0.841351798 0.999995621 0.750517334 -182.6998864 
16 0.762813681 0.806535694 0.841352089 0.999996868 0.750516905 -182.6998544 
17 0.762813144 0.806535768 0.841352672 0.999999361 0.750516046 -182.6997905 
18 0.762813131 0.80653577 0.841352687 0.999999425 0.750516024 -182.6997889 
19 0.762813103 0.806535774 0.841352716 0.999999553 0.75051598 -182.6997856 
20 0.762813048 0.806535782 0.841352776 0.999999808 0.750515892 -182.6997791 
21 0.762813044 0.806535782 0.841352781 0.999999827 0.750515885 -182.6997786 
22 0.762813036 0.806535783 0.84135279 0.999999866 0.750515872 -182.6997776 
23 0.762813019 0.806535786 0.841352808 0.999999943 0.750515846 -182.6997756 
24 0.762813018 0.806535786 0.841352809 0.999999948 0.750515844 -182.6997755 
25 0.762813015 0.806535786 0.841352812 0.99999996 0.75051584 -182.6997752 
26 0.76281301 0.806535787 0.841352817 0.999999983 0.750515832 -182.6997746 
27 0.75725268 0.829074546 0.908111833 0.999999983 0.665848579 -182.1898916 
28 0.765442893 0.8262262 0.8935267 0.999999983 0.616961793 -182.1092089 
29 0.76691338 0.825870342 0.89056497 0.999999983 0.612353133 -182.1080021 
30 0.7669314 0.825864053 0.890470816 0.999999983 0.61231573 -182.1080014 

 0.7669314 0.825864053 0.890470816 0.999999983 0.61231573 -182.1080014 



Table 2: Properties of γ
∧

 Under Misspecified and Correctly Specified Models for Response Probabilities 
 

 

 

 

Table 3: Differences Between Estimated Model Probability and True Probability for β 2=0.01, 0.10, and 0.50 with n=1000 
 
 
 

 

 

 

 

 

 

True Value 
β 2 

SampleSize n   β 2in  
estimated model?

   Mean Standard 
Deviation

MSE=(Mean-.8)2  

+Variance 
      q.05        q.25        q.50        q.75        q.95 

0.01 1000 Y .810673 .05009 .002624 .738633 .774378 .805883 .843706 .897679 

0.01 1000 N .808625 .04989 .002564 .736384 .773012 .803033 .840452 .895482 

0.10 1000 Y .810168 .04770 .002379 .740177 .777672 .803543 .839627 .896274 

0.10 1000 N .805726 .04755 .002294 .736436 .772796 .800243 .834305 .891577 
0.50 1000 Y .806844 .03387 .001197 .754706 .783063 .805138 .827515 .863406 
0.50 1000 N .782682 .03033 .001220 .736899 .761982 .781228 .801638 .838138 

True Value o
β 2 

Sample 
Size NT 

β 2 in 
model? 

Mean  d1 Mean d2 Mean d3 Mean d4 Mean d5 Mean d6 Mean d7   Mean d8 

0.01 1000 Y -0.00034 -0.00048 -0.00031 -0.00022 -0.00020 -0.00022 -0.00034 -0.00162 

0.01 1000 N -0.00258 -0.00014 0.000769 0.001110 0.001052 0.000560 -0.00064 -0.00403 

0.01  True P 0.328769 0.357379 0.376068 0.392185 0.407914 0.424884 0.44573 0.480307 

0.10 1000 Y -0.00080 0.00014 0.000448 0.00045 0.00024 -0.00019 -0.00098 -0.00394 

0.10 1000 N -0.02571 0.003131 0.012908 0.016263 0.015354 0.010071 -0.00199 -0.03320 

0.10  True P 0.370419 0.371432 0.380355 0.392630 0.408359 0.429165 0.459650 0.519971 

0.50 1000 Y 0.00030 -0.00032 -0.00092 -0.00101 -0.00074 -0.000004 0.001475 0.002417 

0.50 1000 N -0.13315 0.009448 0.060106 0.077939 0.074327 0.049064 -0.00757 -0.12682 

0.50  True P 0.550820 0.434261 0.399451 0.394609 0.410338 0.448095 0.51932 0.661116 



Figure 1: Surface Graph of the Likelihood Surface for Replicate 558 
 

 
 
 
 
 
Figure 2: Likelihood Surface in the Neighborhood of the Final Point Estimates for 
Replicate 558 
 

 


