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Abstract 
Most methods that deal with the estimation of response probabilities assume either 

explicitly or implicitly that the missing data are ‘missing at random’ (MAR). However, in 

many practical situations this assumption is not valid, since the probability of responding 

often depends on the outcome value or on latent variables related to the outcome.  The 

case where the missing data are not MAR (NMAR) can be treated by postulating a 

parametric model for the distribution of the outcomes under full response and a model for 

the response probabilities. The two models define a parametric model for the joint 

distribution of the outcome and the response indicator, and therefore the parameters of 

this model can be estimated by maximization of the likelihood corresponding to this 

distribution. Modeling the distribution of the outcomes under full response, however, can 

be problematic since no data are available from this distribution. Sverchkov (2008) 

proposed two approaches that permit estimating the parameters of the model for the 

response probabilities without modelling the distribution of the outcomes under full 

response. The approaches utilize relationships between the population, the sample and the 

sample-complement distribution derived in Pfeffermann and Sverchkov (1999) and 

Sverchkov and Pfeffermann (2004). The present paper extends one of these approaches.  
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1. Definitions and the result

Let { , ; }i iY X i U be a finite population from unknown pdf ( )i if Y X where “pdf” is the
probability density function when iY  is continuous or the probability function when iY is
discrete. Let { , ; }i iY X i S  be a sample drawn from finite population U with known 
inclusion probabilities Pr( )i i S . Let iY be the target outcome variable and

1( ,..., )K
i i iX X X be covariates (assumed to be fully observed). Denote by R a sample 



cR S R

If ( , )i ip Y X Pr( | , , )i ii R Y X i S were known then the sample of respondents could be 
considered as a sample from the finite population with known selection probabilities 

( , )i i i ip Y X and population model parameters (or finite population parameters) could 
be estimated as if there was no non-response.  

Also, if known, the response probabilities could be used for imputation via the 
relationship between the sample and sample-complement distributions (Sverchkov & 
Pfeffermann 2004),  
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(Here and in what follows if the outcome variable iY is discrete then the integrals have to 
be replaced by sums).  

Note that ( | , )i if Y X x i R refers to the observed data and therefore can be estimated 
by use of classical statistical inference. 

Most methods of estimation in the presence of non-response assume (explicitly or 
implicitly) that the missing data are ‘missing at random’ (MAR) (Rubin, 1976; Little, 
1982), Pr( | , , )i ii R Y X i S Pr( | , )ii R X i S . In many practical situations this 
assumption is violated: the probability of responding may depend directly on the outcome 
value. In this case methods that assume MAR can lead to large biases of parameter 
estimators and large imputation bias.  

The case where the missing data are not missing at random (NMAR) can be treated by 
postulating a parametric model for the distribution of the outcomes before non-response, 

[ | , ; ]i if Y X i S , and a model for the response probabilities, ( , ; )i ip Y X , the two
models define a parametric model for the joint distribution of the outcomes and the 
response indicators, therefore the parameters of these models can be estimated by 
maximization of the likelihood based on the joint distribution (Full Likelihood),  

( , | ; , )R S Sf Y I X ( , ; ) [ | , ; ] [1 ( ; , )]
c

i i i i j
i R j R

p Y X f Y X i S p X , 

where { ; }S kI I k S is the set of response indicators, 
( ; , ) ( , ; ) [ | , ; ]j j jp X p y X f y X j S dy and the sample outcomes are assumed to 

be independent. See, Greenlees et al. (1982), Rubin (1987), Little (1993), Beaumont 
(2000), Little and Rubin (2002) and Qin et al. (2002).  

of respondents (the sample with observed outcome values) and by  the 
corresponding sample of non-respondents. It is assumed that the response occurs 
stochastically, independently between units.   

The observed sample of respondents can be viewed therefore as the result of a two-phase 
sampling process: in the first phase the parent sample is selected with known inclusion 
probabilities and in the second phase the final sample is ‘self selected’ with unknown 
response probabilities (Särndal and Swensson, 1987).  



( ) ( , , ; )R R S SL f Y X I , the corresponding likelihood before non-response as 
( ) ( , , ; )s S S SL f Y X I . Then the MIP is,  

       ( ) log[ ( )]R Rsc L [ log ) , , ]S R S S

Observed

E L Y X I( | .                   

A similar identity defines the relationship between the information matrix after non-
response and the information matrix before non-response, which allows estimating the 
variances of the estimators.  See Breckling et al. (1994) and Chambers et al. (1998). 

Both approaches face the difficulty that modeling the distribution of the outcomes before 
non-response refers to partly unobserved data.       

The main result: Full Likelihood or MIP combined with the relationships between the 
population, sample and sample-complement distributions derived in Pfeffermann & 
Sverchkov 1999 and Sverchkov & Pfeffermann 2004 allow us to estimate the parameters 
of the response model without modeling the distribution of the outcomes before non-
response. We indicate how in Section 2 and 3.  

2. Full Likelihood without need to model the distribution of the outcomes
before non-response 

Pfeffermann and Sverchkov (1999) derived the relationship between the population 
distribution and the sample distribution which in the case of non-response can be written 
as,   
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Then, assuming for simplicity independence of the sample outcomes (Poisson sampling), 
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The Full Likelihood can be defined as 

Another way of defining the full likelihood is by application of the Missing Information 
Principle (MIP, Cipillini et al. 1955, Orchard and Woodbury 1972). The basic idea is to 
express the score function after non-response as the conditional expectation of the score 
function before non-response, given the observed data.  

Following Chambers (2003, Ch. 2), define the likelihood after non-response as, 
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where ( | , ; )i if Y X i R  is a model of the outcome distribution after non-response and it 
refers to the fully observed data! and therefore can be estimated by use of classical 
statistical inference. 

The response model can be estimated either by maximizing the Full Likelihood (B), in 
which case both sets of parameters,  and , are estimated simultaneously, or by 
estimating  based on the observed data and then maximizing ˆ( , | ; , )R S Sf Y I X  over

. 

3. Likelihood based on MIP without modeling the distribution of the
outcomes before non-response 

(Again, for simplicity assume Poisson sampling design.)  

By use Pfeffermann and Sverchkov (1999) pdf of the outcomes before non-response can 
be expressed as, 
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Therefore the log-likelihood before non-response can be defined as, 
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Then, following MIP, the score function based on the likelihood after non-response can 
be written as, 
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Again, the likelihood after non-response is a function of the response model and the 
distribution of the outcomes after non-response (and the latter can be modeled or 
estimated from the observed data). 

As in Section 2, the response model can be estimated either by solving the likelihood 
equations based on (C), ( , ) 0Rsc , in this case both sets of parameters,  and  are 
estimated simultaneously, or by estimating based on the observed data and then 
solving ˆ( , ) 0Rsc  over . 



Sverchkov (2008) consider another estimating procedure similar to the above also based 
on MIC.  

4. Remarks

Based on the full likelihood  (B) or the score function (C) one can define the classical 
information criteria like Akaike AIC, Schwarz BIC, etc. which can be used for selecting 
the response model. Also, one can define the information matrix based on (B) or (C) and 
therefore estimate the variance of the parameter estimators. The latter allow checking 
whether response is NMAR or MAR: if parameter estimates connected with the outcome 
variable are insignificant then the response is rather MAR (see Sverchkov 2008) and 
therefore the simpler methods that assume MAR can be applied for estimating the 
response probabilities.    
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