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Abstract

The International Price Program of the Bureau of Labor Statistics estimates monthly
indices on the changes in import and export prices for merchandise and services. The
data are collected through a complex sample of establishments using monthly reported
data. Consequently, in time series analyses of IPP data, there is potential interest in the
variances and autocorrelation functions of both sampling and measurement errors, as well
as the underlying true price-index series. This paper presents several analytic methods that
one may use to estimate the parameters of these terms.

Key Words: Auto-regressive moving average (ARMA) models, Bootstrap estimator,
International Price Program.

1. Introduction

1.1 The U.S. International Price Program

The International Price Program (IPP) of the Bureau of Labor Statistics (BLS)

produces two of the major price series for the United States: the Import Price indices
and the Export Price indices. The IPP, as the primary source of data on price change

in the foreign trade sector of the U.S. economy, publishes index estimates of price
change for internationally traded goods using three primary classification systems

- Harmonized System (HS), Bureau of Economic Analysis End Use (BEA), and
North American Industry Classification System (NAICS). For general background

on the IPP and its sample design, weight structure and index estimation, and on the
prospective bootstrap variance estimators, see Chapter 15 of the Bureau of Labor
Statistics Handbook of Methods, International Price indexes, Bobbitt et al.(2005,

2007), Chen et al.(2007), and Cho et al.(2007).

1.2 Time Series Models for Finite-Population Price Indices and Esti-

mation Errors

Consider a set of finite-population price indices θtg defined for periods t = 1, . . . , T

and two-digit product groups called chapters g = 1, . . . , G. In addition, define the
column vectors θ(T )g = (θ1g . . . , θTg)

′. We will assume that these finite-population

index vectors were generated through a superpopulation process ξ such that

Eξ (θtg|Xtg) = µtg = µtg (Xtg, β) (1)

where Xtg is a k×1 vector of known predictors and β is an r×1 vector of parameters.
In addition, define the finite-population deviation terms

atg = θtg − µtg (2)

and the vectors µ(T )g = (µ1g, . . . , µTg)
′ and a(T )g = (a1g, . . . , aTg)

′. Also, we will
assume that under the superpopulation model ξ, atg follows a stationary time series
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model, and we define the T × T covariance matrix

V(T )g = Vξ

(

a(T )g

)

. (3)

Based on the sample design and estimation methods reviewed in Section 2.1

and Appendix A, we produce an estimator θ̂tg of the finite-population index θtg. We
define the estimation errors

etg = θ̂tg − θtg (4)

and the vectors e(T )g = (e1g, . . . , eTg)
′ and θ̂(T )g =

(

θ̂1g, . . . , θ̂Tg

)

′

. We assume that

the errors etg follow a stationary time series model with mean equal to zero, and we

define the covariance matrix

V(T )eg = Vpξ

(

e(T )g

)

(5)

where Vpξ(·) refers to evaluation of a covariance function with respect to both the

sample design and the underlying superpopulation model. In some cases, it will be
useful to decompose this covariance matrix as

V(T )eg = V(T )Seg + V(T )NSeg (6)

where V(T )Seg represents the covariance matrix that e(T )g would have if estimation

error arose only from pure sampling error associated with the prescribed sample
design, and V(T )NSeg error covariance matrix arising from the effects of nonsampling

errors including, e.g., nonresponse, reporting error and imputation.

Under the conditions developed above,
(

θ
′

(T )g, θ̂
′

(T )g

)

′

has a mean vector

(µ
′

(T )g, µ
′

(T )g)
′ and a covariance matrix

(

V(T )g V(T )g

V(T )g V(T )g + V(T )eg

)

. (7)

Assume for the moment that all of the mean and covariance parameters are known.

Under the stated conditions, a linear least-squares predictor of θ(T )g is

θ∗(T )g = µ(T )g + V(T )g

(

V(T )g + V(T )eg

)

−1 (

θ̂(T )g − µ(T )g

)

. (8)

Specific versions of the predictor (8) have been considered by several authors within
the context of time series analysis of sample survey estimators. See, e.g., Scott and

Smith (1974), Scott, Smith and Jones (1977), Tiller (1992), Bell (1993, 1995), Pf-
effermann (1991), Brunsdon and Smith (1998), and references cited therein. Under

the stated conditions, the variance of the prediction error θ∗(T )g − θ(T )g is

V(T )g − V(T )g

(

V(T )g + V(T )eg

)

−1
V(T )g (9)

while the variance of the error θ̂(T )g − θ(T )g is V(T )eg .

1.3 Use of Time Series Methods to Improve Price Index Prediction and

Inference

The remainder of this paper uses the decompositions (2) and (4), to develop approx-
imations for the autocovariance functions of θtg, atg, and etg, and to suggest some



θ̂th =
∑

c∈Child[h]

wc Itc





∑

c∈Child[h]

wc It−1 c





−1

(10)

where wc is the weight of an element c of Child[h], and Itc the long term price ratio
of c at time t. θ̂th is then used in computing Ith, a long term ratio for a stratum h

at time t.

Ith =
t
∏

u=0

θ̂uh (11)

This general formula (10) and (11) are used until the desired aggregation level index

is obtained.

2.2 Estimated Parameters of the Mean Structure

θ(T )g can be modeled as a sum of mean and residual components, i.e.,

θ(T )g = T(T )g + S(T )g + I(T )g

S

applications to estimation and inference for the underlying true price index series. 
Section 2 reviews some simple estimators of a fixed price-index series, predictors of 
a corresponding random series, and some related estimators of parameters for the 
underlying mean function. Section 3 considers several methods for estimation of the 
autocovariance structure of estimation errors etg. Specifically, Section 3.1 reviews 
cross-sectional bootstrap methods used to estimate sampling error variances for the 
IPP, and discusses extension of these methods to provide a direct estimator V̂(T )eg 
of the T × T sampling-error variance-covariance matrix V(T )eg. Section 3.2 outlines 
the use of Yule-Walker methods to estimate the parameters of an autoregressive 
moving average (ARMA) model to the matrix V̂(T )eg. Section 4 presents a set of 
methods to estimate the autocovariance structure of estimation errors based on a 
large number of replicates from a simulation study. Section 5 reviews the primary 
results of this paper and Section 6 suggests several areas for additional research.

2. Improved Prediction of the True Index Series

2.1 Estimation of the Fixed Finite Population Index θ(T )g

The IPP uses items that are initiated and re-priced every month to compute its 
indices of price change. These indices are calculated using a modified Laspeyres 
index formula. For each classification system, the IPP calculates the estimates 
of price change using an aggregation tree structure beginning with items, weight 
groups, classification groups, stratum-lower, stratum-upper, . . . , and finally overall. 
Weight groups are defined by the intersection of establishment and product classifi-
cation group. Note that there could be many different levels, such as stratum-lower 
(which is right above the stratum-lower)and stratum-upper (which is above the 
stratum-lower). The formula is basically the same for all levels: each parent’s index 
is computed from its children’s indices. For example, a stratum index is computed 
from the stratum’s children’s indices. These children could be classification groups, 
stratum-lowers, stratum-uppers or any combination of them. Define Child[h] to be 
the set of all stratum-lowers, stratum-uppers or classification groups directly below 
stratum h in an aggregation tree. In practice, θth, a short term ratio (STR) for a 
stratum h at time t, is computed from the weighted long term ratios, Itc and It−1 c, 
from its children’s set.



where the mean term
µtg = T(T )g + S(T )g .

Under the conditions developed in section 1.2, one may consider estimation of the
regression-model parameters β through the method of ordinary least squares, e.g.,
through minimization of

T
∑

t=1

{

θ̂tg − µtg(Xtg, β)
}2

with respect to β, for a known set of predictors Xtg and known functional form

µtg(·, ·). In addition, one could consider construction of generalized least squares
estimators of µtg based on minimization of
(

θ̂(T )g − µ(T )g

)

′
(

V(T )eg + V(T )eg

)

−1 (

θ̂(T )g − µ(T )g

)

. Some simple examples of mean

functions are

µtg = β0 + β1t + β2 sin (β3 + β4t) (12)

for time trends and cyclical patterns; or

µtg = βmod12[t]

for month effects.

3. Use of Sample Data to Estimate the Autocovariance Structure of

Estimation Errors

In analysis of time series data as considered in Section 2, it is often important to have
estimators of the variances of the true series θ(T )g (and components thereof) and the

estimation error term e(T )g. For example, estimation of V(T )eg allows computation

of standard errors, for θ̂(T )g and related confidence intervals. This section reviews

bootstrap estimators V̂eg Boot of V(T )eg computed only from cross-sectional variation
in replicate-based estimators of θ(T )g, and considers alternative estimators of V(T )eg

based on imposition of time series parametric structure.

3.1 Use of Bootstrap Methods to Estimate Sampling Error Variances

and Covariances from Complex Sample Data

The bootstrap method for the iid case has been extensively studied since Efron
proposed his bootstrap method in 1979. The original bootstrap method was then

modified to handle complex issues in survey sampling, and results were extended to
cases such as stratified multistage designs. Rao and Wu (1988) provided an exten-

sion to stratified multistage designs and their main technique to apply the bootstrap
method to complex survey data was scaling. The estimate of each resampled cluster
was properly scaled so that the resulting variance estimator reduced to the standard

unbiased variance estimator in the linear case

V̂eg Boot = (B − 1)−1
B
∑

b=1

(

θ̂g(b) − θ̂g(·)

)2
. (13)

The methods reviewed here extended readily to the T -dimensional vectors θ̂(T )g =
(

θ̂1g, . . . , θ̂Tg

)

′

and lead to a bootstrap estimator of the T × T variance-covariance



matrix V̂(T )eg Boot of the sampling errors etg defined in expression (4) with (i, j)th
element

V̂(T )eg Boot ij = (B − 1)−1
B
∑

b=1

(

θ̂ig(b) − θ̂ig(·)

) (

θ̂jg(b) − θ̂jg(·)

)

′

. (14)

In principle, we may compute an estimated covariance matrix V̂(T )egBoot for large
values of T. However, as T increases, analyses of data from the IPP may encounter

issues with weights that are missing or unreliable (thus making it difficult or im-
possible to compute θ̂tg) or unreliable recorded values of item-level short term price

ratios (STRs).

3.2 Improving Autocovariance Matrix Estimators through Use of Par-

simonious Time Series Models

For moderate or large values of T , one may consider imposing some time series
parametric structure on the covariance matrix V̂(T )eg. Under conditions, this may

lead to an improved and more stable estimator, V ∗

(T )eg, say. For example, suppose

that our error terms etg follow the AR(1) model: etg = ρget−1,g + dtg where dtg
iid
∼

(0, σ2
dg), t = 1, . . .T . Then

V(T )eg =
σ2

dg

1 − ρ2
g

)















1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

ρ2 ρ 1 · · · ρT−3

...
...

...
. . .

...

ρT−1 ρT−2 ρT−3 · · · 1















. (15)

Note especially that the general T × T covariance matrix V(T )eg has T (T + 1)/2

parameters to be estimated while under the AR(1) model the simplified covariance
matrix (15) has only two parameters to be estimated: σ2

dg and ρ. For AR(1), we

considered estimating (σ2
dg, ρg) through a methods-of-moments fit of the bootstrap-

based T ×T matrix V(T )eg to (15). Define (σ̂2
dg, ρ̂g) to be resulting vectors of param-

eter estimators for the AR(1). In keeping with standard approaches (e.g., Shumway
and Stoffer, Section 3.6, 2006) Yule-Walker (YW) equations for AR(1) are given by

γ(1) = ρgγ(0) (16)

σ2
dg = γ(0)− ρgγ(1) (17)

where γ(h) = cov(et+h, et). Similarly, AR(2) can be expressed

etg = φ1get−1,g + φ2get−2,g + dtg .

Its YW equations are given by

γ(1) = φ1gγ(0)

γ(2) = φ1gγ(1) + φ2gγ(0)

σ2
dg = γ(0)− φ1gγ(1)− φ2gγ(2)

where γ(0) = T−1
T
∑

j=1
V̂(T )egjj the mean of the diagonal entries of V̂(T )eg, and γ(1) =

(T − 1)−1
T−1
∑

j=1
V̂(T )egj,j+1 the mean of the first off-diagonal entries of V̂(T )eg.



For a general AR(p) model: etg =
P
∑

l=1
φglet−l,g + dtg, YW equations in matrix

notation are given as

Vp φg = γp (18)

σ2
dg = γ(0)− φ

′

gγp . (19)

where Vp is a p × p variance-covariance matrix whose kth off-diagonal entry Ck is
given for k = 0, . . . , p− 1:

Ck = (p − k)−1
p−k
∑

j=1

V̂(T )egj,j+k .

By solving (18) and (19), YW estimators are:

φ̂g = V̂ −1
p γ̂p (20)

σ̂2
dg = γ̂(0)− γ̂

′

pV̂
−1
p γ̂p (21)

v̂(φ̂g) = n−1V̂ −1
p σ2

dg . (22)

Similarly under the MA(1) model: etg = αgdt−1,g + dtg

V(T )eg = σ2
dg(1 + α2

g)

















1 αg 0 · · · 0
αg 1 αg · · · 0

0 αg 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

















(23)

which again involves only two parameters to be estimated. For MA(1) model,

γ(0) =
(

1 + α2
g

)

σ2
dg

γ(1) = αg σ2
dg

ρ(1) =
αg

(1 + α2
g)

.

Solutions of this pair of equations in two unknown will lead to the estimators

α̂g =
1 −

√

1 − 4ρ̂(1)2

2ρ̂(1)

σ̂2
dg =

2γ̂(0) ρ̂(1)2

1 −
√

1 − 4 ρ̂(1)2
.

Similarly, an MA(2) model can be expressed as

etg = dtg + α1gdt−1,g + α2gdt−2,g

and its equations are:

γ(0) =
(

1 + α2
1g + α2

2g

)

σ2
dg

γ(1) = (α1g + α1gα2g) σ2
dg

γ(2) = α2g σ2
dg .



4. Use of Simulation Methods to Approximate the Autocovariance

Structure of Estimation Errors

In some cases, one may consider supplementation of the bootstrap-based estimator
V̂(T )eg with variance estimators obtained from a simulation study.

Specifically, consider a simulation study that generates a single finite population
U of size N , covering P periods. One then uses a given sample design D to select
R samples Sr, r = 1, . . . , R independently from U . Based on data from each sample

Sr, one computes the P - dimensional vector of index estimators θ̂(P )gr, r = 1, . . . , R.
The resulting P × P matrix of second moments is

Ṽ(P )g· = (R − 1)−1
R
∑

r=1

(

θ̂(P )gr − θ̂(P )g·

) (

θ̂(P )gr − θ̂(P )g·

)′

(24)

where θ̂(P )g· = R−1
R
∑

r=1
θ̂(P )gr . One may then consider two approaches to uses of

Ṽ(P )g· to estimate time series model parameters.
In parallel with the estimators developed in Section 3, one may compute esti-

mators of ARMA(p, q) parameters based on a method-of-moments fit of Ṽ(P )g· .

Call the resulting estimators
(

σ̃2
dg, ρ̃1g, . . . , ρ̃pg, α̃1g, . . . , α̃qg

)

. In addition, one may

compute estimators of ARMA (p, q) parameters based on a simultaneous method-
of-moments fit of the model to the second-moment matrices V̂(T )g and Ṽ(P )g· of
dimensions T × T and P × P , respectively. Let

(

σ∗

dg
2, ρ̃∗1g, . . . , ρ̃

∗

pg, α̃
∗

1g, . . . , α̃
∗

qg

)

be the resulting vector of combined-data estimators.

5. Numerical Results

Table 1 describes the seven two-digit strata (chapters) considered in this simulation
study. For a detailed description of the selected chapters, see Cho et al. (2007,

Section 3.5: Selecting strata).

Table 1: Description of Selected Strata

Stratum Stratum Description

P07 Edible vegetables, roots, and tubers

P08 Edible fruit and nuts; peel of citrus fruit or melons

P09 Coffee, tea, mate and spices

P22 Beverages, spirits, and vinegar

P61 Articles of apparel and clothing accessories

P74 Copper and articles thereof

P90 Optical, photographic, measuring and medical instruments

Figure 1 and Figure 2 show the time series plots of published STR P07 and P90 from
January 1999 to December 2009, respectively. A solid red line represents the locally
weighted regression smoothing predictors (loess). In locally weighted regression

smoothing, the nearest neighbors of each point are used for regression and the
number of neighbors is specified as a percentage of the total number of points. This

0



parameter estimate se

Lag 1 0.318 0.087

Lag 2 0.006 0.087

Table 2.2: ARIMA(0 0 1) with seasonal components for θ̂t,g

parameter estimate se

Lag 1 0.395 0.078

Table 2.3: Chi-Squared Tests for Groups of Regressors

in ARIMA(0 0 1) with seasonal components

Regression Effect df Chi-square p-value

Seasonal 11 47.09 < 0.001

percentage is called the span and the span size used in Figure 1 and Figure 2 is 2/3. 
A loess predictor showed that there is not much upward or downward trend in both 
P07 and P90 and values are almost constant around 1.

We applied some simple time series models to the IPP short term ratio price 
index values using X-13 RegARIMA estimation method. RegARIMA models com-
bine a linear regression model function with an ARIMA (autoregressive-integrated-
moving average) models. Some models include a fixed or deterministic seasonal 
effect and we started by examining some preliminary Akaike’s Information Crite-
rion (AIC) results as in Figure 3. AIC is defined as

AIC = −2 L̂ + 2 (number of model parameters)

where L̂ is the value of the log of the likelihood at the ML estimates. Other diag-
nostic tools used are used: the Ljung-Box statistic, Q, which is a summary statistic 
reflecting general presence of autocorrelation in the residuals over lags. Q can be 
compared against the chi-squared distribution to check for significant residual auto-
correlation; Bayesian Information Criterion (BIC); residual autocorrelation function 
(ACF) and partial autocorrelation function (PACF). Following are some results of 
log-transformed index estimates from the time span, January 1999 to December 
2009.

For Chapter P07, The ARIMA (0 0 2) model seemed an adequate nonseasonal 
model for the P07 in terms of the standard Ljung-Box goodness-of-fit statistics. Sev-
eral outliers were detected, including 4 Februarys. We observed that the ARIMA 
residuals contained a significant seasonal peak, an inadequacy of the model. Visu-
ally significant seasonal and trading day peaks have been found in the estimated 
spectrum of the RegARIMA residuals. The X-11 seasonal adjustment section in-
dicated that there was too much variability in the series to decompose the series 
reliably. The ARIMA (0 0 1) with seasonal component exhibited an adequate sea-
sonal model: a deterministic seasonal and otherwise MA(1) with a few outliers. The 
spectrum of the residuals from this model indicate no residual seasonality. So, this 
model including the seasonal component can be regarded as a reasonable model for 
the series P07.

Table 2.1: ARIMA(0 0 2) with no seasonal components for θ̂t,g



parameter estimate se

Lag 1 0.0655 0.08445

Lag 2 0.1519 0.08384

Lag 3 0.2075 0.08458

Table 3.2: ARIMA(0 0 3) with seasonal components for θ̂t,g

parameter estimate se

Lag 1 0.0683 0.08521

Lag 2 0.0573 0.08518

Lag 3 0.1050 0.08486

Table 3.3: Chi-Squared Tests for Groups of Regressors
in ARIMA(0 0 3) with seasonal components

Regression Effect df Chi-square p-value

Seasonal 11 41.15 < 0.001

For Chapter P90, seasonal regressors were not significant in the seasonal model.

The nonseasonal model appears more adequate in terms of Q statistics, AIC, BIC,
and ACF plots of residuals. MA(2) seems to fit the data better. AR models showed

the similar results as MA models.

Table 4.1: ARIMA(0 0 2) with no seasonal components for θ̂t,g

parameter estimate se

Lag 1 -0.0605 0.08443

Lag 2 -0.1915 0.08468

Table 4.2: ARIMA(0 0 2) with seasonal components for θ̂t,g

parameter estimate se

Lag 1 -0.0841 0.08429

Lag 2 -0.1973 0.08450

For Chapter P08, at least one visually significant seasonal peak has been found 
in the estimated spectrum of RegARIMA residuals both in nonseasonal and seasonal 
models. Although the ACF of the squared residuals was improved in the seasonal 
model, the seasonal peak was more prominent. Further there was not much im-
provement in terms of AIC (-530, -542) or BIC (-509, -496) for nonseasonal and 
seasonal models respectively. The coefficient estimate of MA(1) was not significant 
in the seasonal model. Differencing once did not make much improvement in terms 
of Q statistics, AIC, BIC, and a seasonal peak.

Table 3.1: ARIMA(0 0 3) with no seasonal components for θ̂t,g



Seasonal 11 10.57 0.48

Similarly to Chapter P07, ARIMA (0 0 3) with a deterministic seasonal compo-

nent exhibited an adequate seasonal model for P61. For the rest of chapters, P09,
P22, and P74, a seasonal regressor was not significant. Especially for P22 and P74,
a nonseasonal model seemed more adequate in terms of the standard Ljung-Box

goodness-of-fit statistics as in P07. While the seasonal peak became more promi-
nent in a seasonal model for P09, we observed an improvement in terms of the

statistic of squared residuals in a seasonal model for P09. This is similar to P08.
Tables 5.1 and 5.2 respectively, report results from fitting the estimation-error

covariance matrix V(T )eg to AR and MA models. Higher-order ARMA models were
considered in preliminary work not detailed here. For the AR(1) model fits, the

autoregressive coefficients were statistically significant for chapters P07 and P08, but
not for the other five chapters. For the MA parameter estimation using innovation

algorithm (Brockwell and Davis, 1991) showed similar results.

Table 5.1: AR(1) Parameter for etg using Yule-Walker equation

Chapter φ̂ se(φ̂ ) σ2

P07 0.080 0.032 0.003

P08 0.152 0.031 0.001

P09 -0.039 0.032 < 0.001

P22 0.004 0.032 < 0.001

P61 < 0.001 0.032 < 0.001

P74 0.019 0.032 < 0.001

P90 -0.006 0.032 < 0.001

Table 5.2: MA Parameter for etg using Innovation Algorithm

Chapter α̂1 α̂2 α̂3 σ2

P07 0.079 -0.009 -0.043 0.003

P08 0.131 0.105 0.096 < 0.001

6. Discussion

As T increases, analyses of data may encounter issues with weights that are missing
or unreliable. We may consider several extensions of the paper: Although we used

12x12 covariance matrix for the analysis, in principle, we may compute an estimated
covariance matrix for large values of T ; We may consider estimating time series

parameters for etg based on both simulation data in V(T )eg and the direct bootstrap
covariance estimators based on sample data; We may use estimated time series
parameters for θ̂tg and etg to produce improved estimators of θtg per literature cited;

We may apply estimated time series parameters to computation of generalized least
squares estimators of the mean structure µtg e.g., deterministic month effects.

Table 4.3: Chi-Squared Tests for Groups of Regressors

in ARIMA(0 0 2) with seasonal components 
Regression Effect df Chi-square p-value
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Appendix A: Sample Design - Stratification

The IPP divided the import and export merchandise universes into two halves re-
ferred to as panels. Each panel is sampled every other year using a three stage sam-

ple design. In the IPP sample design, the first stage selects companies independently
proportional to size (dollar value) within each broad product category (stratum).

The second stage selects detailed product categories (classification groups) within
each company using a systematic probability proportional to size (PPS) design with

single random start. Each company-classification can be sampled multiple times and
the number of times each company-classification is selected is then referred to as the

number of quotes requested (Bobbitt et al., 2005). The raking procedure is used to
adjust the second stage sample size in order to meet publication constraints across

the different classification systems and to reduce respondent burden. The third
stage of sampling is the selection of specific, repriceable items. The field economist
selects these items with the respondent’s help using the disaggregation method.

Appendix B: Simulation

The IPP drew 1000 samples from an actual import panel frame, specifically from
July 2002 to June 2003 import samples. This import panel included food and bev-

erages, crude materials and related goods, vehicles and transportation equipment,
and miscellaneous manufactures (Paben, 2006). The frame did not have item level

information but had information on classification group and company trading dollar
amounts. The IPP generated items based on the frame information of classification

group and company trading dollar amounts. For company-classification groups that
were selected more than once, multiple item STRs were created. To simulate price
relatives for the universe, the IPP used an historical database with 13 years (from

September 1993 to June 2005) worth of price relatives which were stored in combi-
nation with classification group and the month. The IPP created a universe of item

STRs using the following steps: the IPP obtained the maximum number of quotes
across the 1000 simulated samples for each company-classification group, and added

them up for a specific classification group to get classification group quotes; then
simulated price relatives from historical data using a simulation method (Chen,

2007).
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Figure 1: Published P07 STR Values from Dec 1991 to Jan 2010
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Figure 2: Published P90 STR Values from Dec 1991 to Jan 2010
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