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Abstract  
We propose a new method for evaluating the mean square error (mse) of a possibly biased estimator 1̂θ , 
or, rather, the class of estimators to which it belongs.  The method uses confidence intervals c of a 
corresponding unbiased estimator θ̂  and makes its assessment based on the extent to which c includes  

1̂θ .  The method does not require an estimate, implicit or explicit, of the bias of 1̂θ , is indifferent to the 
bias/variance breakdown of 1̂θ ’s mse, and does not require surety of a model on which 1̂θ  is based. 
 

1. Introduction. The Problem 
 
Suppose one is presented with the task of choosing between two or more methods of estimating quantities 
of interest in a given context, for example, synthetic estimators or hierarchical Bayes estimators in a small 
area estimation context.  In other words, suppose the real interest is in comparing classes of estimators in 
a given context.  One might wish to do this on the basis of which class tended to have estimators having 
smaller mean square error for the variety of quantities targeted.  But estimating the mean square error of a 
(possibly) biased estimator is not easy (cf., for example, Rao 2003, Section 4.2.4).   
 
As an example, suppose a regularly administered survey provides hundreds of estimates of wages for 
different occupations, and for budgetary reasons direct estimates for many of the targeted occupations 
will not be stable or even necessarily available.  Suppose different approaches for indirect estimation have 
been suggested and one wants to choose between them.  One might hope to get the mean square error of 
all the estimates for each of the indirect approaches and choose the approach which tends to have the 
smaller mean square errors, occupation by occupation.  However, such “point” estimation of mean square 
error can itself be sufficiently imprecise (due to the difficulties of estimating the latent biases involved) as 
to leave doubts about whether a satisfactory comparison has been made.   
 
In this paper we present a way of making the comparison that relies on the availability of unbiased 
estimators (for at least some sizeable subset of the desired estimates).  Individual calculations of mean 
square error are eschewed; the problem of estimating bias or bias squared is circumvented.  The basic idea 
is to evaluate how often the (possibly) biased estimators lie within corresponding confidence intervals 
generated by the unbiased estimators and their variance estimates.  It turns out that such coverage is a 
good reflection of the overall mean square error of the (class of) biased estimators.  
 
In the next section we lay out the basic evaluation-through-coverage idea, considering two cases: (a) 
variance of unbiased estimator known, (b) variance of unbiased estimator not known.  In Section 3 we 
state the conditions in which our results may reasonably be applied and note some practical 
considerations.  Section 4 describes an application to an occupational wage survey.  Section 5 concludes. 
 

2. The basic coverage idea 
 

 Suppose we wish to evaluate the mean square error (mse) of a possibly biased estimator 1̂θ  and we have 
many repetitions of the process (sample and estimation) yielding realizations of 1̂θ  and likewise of an 
unbiased estimator θ̂  with its corresponding variance estimate.  The  
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method  we suggest uses confidence intervals c  of the corresponding unbiased estimator θ̂  and 
determines the extent to which c includes  1̂θ .  Roughly speaking, the greater the percent included, the 
lower the mse of 1̂θ . 
 
This methodology does not require an estimate, implicit or explicit, of the bias of 1̂θ , nor, in fact, of its 
variance.  It is indifferent to the bias/variance breakdown of 1̂θ ’s mse.  It does not require surety of a 
model on which 1̂θ  might be based. 
 
To be explicit, assume we have unbiased estimates ĝθ  ,  corresponding to estimates of interest 1̂gθ , for g 

=1,…,G.  Form ( )1 100%α−  ci’s ( )ˆ ˆˆ ˆ,g g g g g g gc t v t vα α αθ θ= − + , where ˆgv  is a variance estimate for 

var( ĝθ ), gt α  is the ( )1 / 2 100%α−  percentile of  the t-distribution                                            with degrees 

of freedom (δ )  appropriate to ˆgv .  We ask what proportion p of 1̂gθ  are in gc α .  This proportion allows 

us to assess the mean square error (mse) of estimators of type 1̂gθ  relative to mse ( ĝθ ) = var( ĝθ ) 

Roughly speaking, the smaller p, the larger mse( 1̂gθ )/mse( ĝθ ).  We first consider the preliminary, non-

practical case where the variance of θ̂  is known. 
    
Result 1.  Suppose ( )ˆ ~ ,N vθ θ  and, independently, ( )1 1 1

ˆ ~ ,N vθ θ .  Suppose the target is θ  so that 

1b θ θ= − is the bias of 1̂θ  and ( ) ( )2 2 2
1 1
ˆ ˆmse b v f v f mseθ θ≡ + = ≡ ⋅ .   

Consider  ( )ˆ ˆ, ,C t v t vθ θ= − +  t a positive constant.   Let ( ).Φ  be the cumulative distribution function 

for the standard normal distribution.   

Then the inclusion probability p that 1̂θ  lies in C is 
1 1

t v b t v bp
v v v v

   − − −
= Φ −Φ      + +   

  

      = 
2 2

1 1

1 1

t v f v v t v f v v
v v v v

   − − − − −
   Φ −Φ
   + +   

       

        =
( ) ( )2 2 2 21 1

t v b t v b

f v b f v b

   
− − −   Φ −Φ      + − + −   

.   

 
We note: 
 1.  Normality for θ̂  and 1̂θ  is reasonable, given that they will tend to be averages of some sort.  
 2.  The expressions for p are invariant under scale changes, that is, when 'v k v= , 1 1'v k v= , and 

'b kb= ± .  This fact implies there is no loss of generality in assuming 1v =  in making the calculations 
described below (for example, in Figure 1).   
 3.   If we take t = zα , zα the ( )1 / 2 100%α−  percentile of  the standard normal distribution, so as to have 

a  ( )1 100%α−  confidence interval ( )ˆ ˆ,C z v z vα α αθ θ= − + ,    
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then the probability p that 1̂θ  lies in Cα is 
1 1

z v b z v bp
v v v v

α α
   − − −

= Φ −Φ      + +   
. 

 4.  The unknown ratio f  of root mean square error (rmse) of 1̂θ  to rmse of θ̂  can arise from an infinity of 
possible combinations of bias b and variance v1 of 1̂θ . 
 
Most importantly:  
 
 5. For a given ratio of rmse’s f ,  p is virtually constant over the range of possible biases b.   
 
For example, for f = 1 and taking 0.05α = , we have for b = 0 and v1 =v, i.e. when 1̂θ  is unbiased, 

that 0.8342
2 2

z zp α α−   = Φ −Φ =   
   

.  At the other extreme, when the mse of 1̂θ is simply its bias 

squared, i.e. for b v= ±  and v1 = 0, we find ( ) ( )1 1 0.8300p z zα α= Φ − −Φ − − = .  Indeed, it turns out, 

by straight calculation, that so long as f = 1, the probability p that 1̂θ  lies within the 95% confidence 
interval forθ̂ , is about 83%.   
The bias squared/variance breakdown of mse( 1̂θ ) has miniscule impact on p. This remarkable result is 
depicted in Figure 1.  Please note the narrow range of the vertical scale. 
 
Similar statements can be made for other values of f. This means that we can work backwards:   
knowing the percentage of times that 1̂gθ ’s fall within intervals for ĝθ ’s,  we can gauge the mse of 1̂θ  

relative to θ̂ .  Since we can estimate the mse of θ̂  by standard variance estimation techniques, we can 
get the mean square error of 1̂θ , or rather some (fairly narrow) bounds on it.  Furthermore, if we carry out 
the same procedure for another (possibly) biased estimator 2̂θ , we should be able to gauge the relative 
sizes of mse( îθ ), i = 1, 2.  This can be useful in comparing competing approaches to estimating θ .   
 
2.1 The case of unknown variance 
In practice the variance of θ̂ is unknown.  We now consider the unknown variance case. 
 
Result 2.  Suppose ( )ˆ ~ ,N vθ θ  and, independently, ( )1 1 1

ˆ ~ ,N vθ θ . Suppose the target is θ  and 

1b θ θ= − is the bias of 1̂θ  and that ( ) ( )2 2 2
1 1
ˆ ˆmse b v f v f mseθ θ≡ + = ≡ ⋅ .  Let v̂  be an estimate of v.  

Consider ( )ˆ ˆˆ ˆ, .c t v t vθ θ= − +    

With ˆs v= ,  let ( )
1 1

ts b ts bF s
v v v v

   − − −
= Φ −Φ      + +   

.   

Then the probability p that 1̂θ  lies in c is 

 ( ) ( )
0

sp F s f s ds
∞

= ∫ , where ( )sf s  is the density function of ˆs v= .   

 
We note: 
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6.  The expression for p is invariant under a constant transformation of bias and standard errors. 
7.  Taking t = tα ,  the ( )1 / 2 100%α−  percentile of a t-distribution with degrees of freedom 

δ appropriate to v̂ , gives the ( )1 100%α−  confidence interval ( )ˆ ˆˆ ˆ,c t v t vα α αθ θ= − +  and 

( )
1 1

t s b t s bF s
v v v v
α α

   − − −
= Φ −Φ      + +   

.   

 

 

8. If v̂ vδ is distributed as a chi-square with δ degrees of freedom, then ( )
2

2s
s sf s
v vδ

δ δχ
 

=  
 

, where 

( )δχ • is the density function for the chi-square distribution with δ degrees of freedom. 
 
9.  The integral can be closely approximated by calculating a finite sum of components on a fine mesh: 

( ) ( )1

N
j s jj

p F s f s
=

≈ ∆∑ , where sj = j ∆ , j = 1,…,N, with ∆ small and N∆  large enough that further  
terms do not materially affect the approximation. 
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And again, most importantly, 
 
10.  for given confidence coefficient α , for given degrees of freedom δ , for particular rmse ratio f, the 
probability p that 1̂θ  is in the confidence interval cα is virtually constant.   
We show this with some tabulations.  It is convenient to refine the notation for the inclusion probability at 
this point, taking into account the variables it can depend on.  We let p = ( ), , ,p f bα δ , 

( ) ( ){ }min , , min , , , ;0p f p f b b f vα δ α δ= ≤ ≤   and ( ) ( ){ }max , , max , , , ;0p f p f b b f vα δ α δ= ≤ ≤ .  
For fixed , , fα δ , ( )max , ,p fα δ  and ( )min , ,p fα δ  are the outer bounds on p over the possible  

bias/variance breakdowns of mse ( )1̂θ ; the min, for example, may occur at 0 bias, 0 variance, or 

someplace in between.   
 
Tables 1 – 2 give values of pmin,  pmax respectively (as percents) for alpha = .05, corresponding to  95% 
confidence intervals for theta.hat, using a grid of values of b over which to estimate these quantities.  One 
thing to note is that in both tables changes in p are very gradual as the degrees of freedom change.  
Similar tables can be constructed for say 90% and 99% confidence intervals.   
 
Table 1. Minimal p for α  = .05 
 f   0.2  0.4  0.6  0.8  0.9    1  1.1  1.2  1.4  1.6  1.8    2 
δ  
3   94.8 94.0 92.8 91.1 90.0 88.9 87.6 86.2 83.0 79.4 75.5 71.1 
4   94.7 93.9 92.4 90.4 89.1 87.8 86.2 84.6 80.8 76.4 71.6 66.4 
5   94.7 93.7 92.1 89.9 88.5 87.0 85.3 83.4 79.2 74.3 69.0 63.2 
6   94.7 93.6 91.9 89.5 88.1 86.4 84.6 82.6 78.0 72.8 67.1 60.9 
7   94.7 93.6 91.8 89.2 87.7 86.0 84.1 82.0 77.2 71.7 65.7 59.2 
8   94.6 93.5 91.7 89.0 87.4 85.6 83.7 81.5 76.5 70.8 64.6 57.9 
9   94.6 93.5 91.6 88.9 87.2 85.4 83.3 81.1 75.9 70.1 63.7 56.9 
10  94.6 93.5 91.5 88.7 87.0 85.2 83.1 80.7 75.5 69.5 63.0 56.0 
11  94.6 93.4 91.4 88.6 86.9 85.0 82.8 80.5 75.1 69.1 62.4 55.4 
12  94.6 93.4 91.4 88.5 86.8 84.8 82.6 80.2 74.8 68.7 61.9 54.8 
13  94.6 93.4 91.3 88.4 86.7 84.7 82.5 80.1 74.6 68.3 61.5 54.3 
14  94.6 93.4 91.3 88.3 86.6 84.6 82.3 79.9 74.3 68.0 61.1 53.9 
15  94.6 93.4 91.2 88.3 86.5 84.5 82.2 79.7 74.1 67.8 60.8 53.5 
16  94.6 93.3 91.2 88.2 86.4 84.4 82.1 79.6 73.9 67.5 60.5 53.2 
17  94.6 93.3 91.2 88.2 86.3 84.3 82.0 79.5 73.8 67.3 60.3 52.9 
18  94.6 93.3 91.2 88.1 86.3 84.2 81.9 79.4 73.6 67.2 60.1 52.7 
19  94.6 93.3 91.1 88.1 86.2 84.2 81.9 79.3 73.5 67.0 59.9 52.4 
20  94.6 93.3 91.1 88.1 86.2 84.1 81.8 79.2 73.4 66.9 59.7 52.2 
30  94.6 93.2 91.0 87.8 85.9 83.7 81.3 78.7 72.7 65.9 58.6 51.0 
40  94.6 93.2 90.9 87.7 85.7 83.6 81.1 78.4 72.3 65.5 58.0 50.3 
50  94.6 93.2 90.9 87.6 85.7 83.4 81.0 78.2 72.1 65.2 57.7 49.9 
60  94.6 93.2 90.9 87.6 85.6 83.4 80.9 78.1 71.9 65.0 57.5 49.7 
70  94.6 93.2 90.8 87.6 85.6 83.3 80.8 78.0 71.8 64.9 57.3 49.5 
80  94.5 93.2 90.8 87.5 85.5 83.3 80.8 78.0 71.8 64.8 57.2 49.4 
90  94.5 93.2 90.8 87.5 85.5 83.2 80.7 77.9 71.7 64.7 57.1 49.3 
100 94.5 93.2 90.8 87.5 85.5 83.2 80.7 77.9 71.6 64.6 57.0 49.2
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Table 2. Maximum p for α  = .05 
 
 f   0.2  0.4  0.6  0.8  0.9    1  1.1  1.2  1.4  1.6  1.8    2 
δ  
3   94.8 94.0 92.8 91.1 90.1 89.0 87.8 86.6 83.9 81.0 78.0 75.0 
4   94.7 93.9 92.4 90.4 89.2 87.9 86.5 85.0 81.8 78.5 75.1 71.8 
5   94.7 93.7 92.2 89.9 88.6 87.1 85.6 83.9 80.5 76.9 73.3 69.8 
6   94.7 93.7 92.0 89.6 88.1 86.6 84.9 83.2 79.5 75.8 72.0 68.4 
7   94.7 93.6 91.8 89.3 87.8 86.2 84.4 82.6 78.8 75.0 71.1 67.5 
8   94.6 93.5 91.7 89.1 87.5 85.8 84.1 82.2 78.3 74.4 70.5 66.7 
9   94.6 93.5 91.6 88.9 87.3 85.6 83.8 81.9 77.9 73.9 70.0 66.2 
10  94.6 93.5 91.5 88.8 87.1 85.4 83.5 81.6 77.6 73.5 69.5 65.7 
11  94.6 93.4 91.5 88.7 87.0 85.2 83.3 81.4 77.3 73.2 69.2 65.4 
12  94.6 93.4 91.4 88.6 86.9 85.1 83.2 81.2 77.1 72.9 68.9 65.1 
13  94.6 93.4 91.4 88.5 86.8 84.9 83.0 81.0 76.9 72.7 68.7 64.8 
14  94.6 93.4 91.3 88.4 86.7 84.8 82.9 80.9 76.7 72.5 68.5 64.6 
15  94.6 93.4 91.3 88.4 86.6 84.7 82.8 80.7 76.6 72.4 68.3 64.4 
16  94.6 93.4 91.3 88.3 86.5 84.7 82.7 80.6 76.4 72.2 68.1 64.3 
17  94.6 93.3 91.2 88.2 86.5 84.6 82.6 80.5 76.3 72.1 68.0 64.1 
18  94.6 93.3 91.2 88.2 86.4 84.5 82.5 80.5 76.2 72.0 67.9 64.0 
19  94.6 93.3 91.2 88.2 86.4 84.5 82.5 80.4 76.1 71.9 67.8 63.9 
20  94.6 93.3 91.2 88.1 86.3 84.4 82.4 80.3 76.1 71.8 67.7 63.8 
30  94.6 93.3 91.1 87.9 86.1 84.1 82.0 79.9 75.5 71.2 67.1 63.2 
40  94.6 93.2 91.0 87.8 85.9 83.9 81.8 79.7 75.3 70.9 66.8 62.9 
50  94.6 93.2 90.9 87.7 85.8 83.8 81.7 79.6 75.1 70.8 66.6 62.7 
60  94.6 93.2 90.9 87.7 85.8 83.8 81.6 79.5 75.0 70.7 66.5 62.5 
70  94.6 93.2 90.9 87.6 85.7 83.7 81.6 79.4 75.0 70.6 66.4 62.5 
80  94.6 93.2 90.9 87.6 85.7 83.7 81.6 79.4 74.9 70.5 66.3 62.4 
90  94.6 93.2 90.9 87.6 85.7 83.6 81.5 79.3 74.9 70.5 66.3 62.3 
100 94.5 93.2 90.9 87.6 85.7 83.6 81.5 79.3 74.8 70.4 66.2 62.3 
 
Figures 2 and 3 give graphical representation of ( )max , ,p fα δ  and ( )min , ,p fα δ for selected values of α  
and δ .  In each of these figures the lower curve represents the smallest value of f compatible with the 
level of coverage p, and the upper curve the largest value.  The shape of the area between these lines 
varies in detail when we change α  and δ but in general is a cornucopia opening to the upper left.  Thus, 
we can note that it is easier to precisely assess small f  than large f  from their corresponding compatible 
inclusion probabilities. 
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What level coverage intervals might be best to use?  A 95% confidence intervals is probably best, for a 
combination of reasons:  
(a) for f  near 1, it has the narrowest band, and the estimators we are interested in comparing are most 
likely to have f in this region 
(b) although it will be harder to be precise when f  > 1, this may not be of too much concern, since 
estimators with a really large f are not likely to be estimators we’d want to use anyway.  It won’t matter 
that much what the exact value of f is for f known to be large already. 
 

3. Practical considerations 
 
Suppose we are interested in comparing two or more methods of estimation, each giving rise to families 

of estimates, say { }1̂g g G
θ

∈ , { }2̂g g G
θ

∈ .   Each g might correspond to a different target, for example, wage of 
a particular occupation.  It is of course possible that rmse will vary with g because of the population 
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structure for different targets, even where the amount and type of data available for the estimates is the 
same.  Thus in comparing the methods we must rely on overall relative rmse’s f 1,  f2, which we can hope 
will reflect the average of f’s we would get, if we could repeatedly estimate each target many times.   
  

We assume we can get { }ĝ g G
θ

∈ , the corresponding family of unbiased estimators, and their respective 

confidence intervals { }g g G
c α ∈ .  Then we estimate the inclusion probabilities p1 and p2 by the fraction of 

times 1̂g gc αθ ∈  and 2̂g gc αθ ∈  respectively.   
   
Since the relationship between p’s and f’s depends on the degrees of freedom associated with the variance 
estimate of ĝθ , we will want to take our overall estimates over groups within which the amount of data is 
about the same for the constituent estimators.   We will also need to be able to at least roughly assess the 
degrees of freedom. 
 
We need furthermore to take into account two  assumptions that entered into the above Results: 
 (1) independence of the estimators θ̂  and 1̂θ  and 
 (2) normality of these estimators.   
 
To achieve independence, we can divide the sample into mutually equal-sized, exclusive, uncorrelated 
parts, calculating θ̂  on one part and 1̂θ  on the other.  In practice this may complicate calculation of 
variances and degrees of freedom, and reduce the chances of normality.  For this reason, auto-calibration 
is a good idea: f should equal 1, if the estimators on the two partial samples are both the unbiased 
estimator.  That is, we can assess the mean square error of 1̂θ = θ̂  calculated from one sub-sample by the 
amount of coverage of confidence intervals for θ̂  derived from the other sub-sample.  If this process 
yields coverage less (more) than that corresponding to f = 1 for the nominal degrees of freedom, we 
determine what degrees of freedom is needed to match the coverage we would get with f = 1.  We then 
assume this degrees of freedom in assessing the biased estimators. 
 
 
4. An Application 
 
Two approaches (labeled “ac” and “ic”) to estimating average annual wage for an occupation, depending 
on different assumptions and methodology, were applied to data from a occupation wage survey, for 
which a conventional design-unbiased estimator was available for many occupations.  These occupations 
were divided into sub-groups that were fairly homogeneous with respect to degrees of freedom, and the 
coverage method applied to each such group.  
Results are depicted in Figures 4a and 4b.  Each point gives the value of f1/f2  = mse( 1̂gθ )/mse( 2̂gθ ) for a 
different sub-group.  A ratio of one would have meant they were on a par.  The smaller this ratio, the 
better 1̂gθ .  In the first figure, there seems to be a high consistency of results, suggesting that the ac 
estimator is worse than the ic estimator. (Note that the miniumum value of f(ac) is being compared to the 
maximum of f(ic), which favors ac-.)  There seems little question that, by our test, ic has smaller mean 
square error, overall. 
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The procedure could equally well be done reversing the roles of the partial samples.  The second figure 
gives the results which are somewhat less clear cut.  There are some anomalies, but ic still seems favored 
overall.   
 

5. Conclusion 
 

This paper introduces a new way of evaluating classes of (possibly biased) estimators with respect to their 
mean square error.  This “coverage approach” rests on the availability of an unbiased estimator and on 
meeting certain assumptions, but is simple to implement and  in particular does not require tenuous 
estimates of bias or mean square error for individual estimators.  The assumptions are normality of the 
estimators involved, independence of the unbiased estimator from the tested estimator, and assessment of 
degrees of freedom.  Independence can be achieved by appropriate choice of data sets. The procedure 
seems fairly robust to some inaccuracy in assessing degrees of freedom.  It is likely vulnerable to sharp 
deviations from normality.  In practice, using the process above called “auto-calibration” may be a 
sufficient remedy for any lurking violations.  Some further exploration of the non-normal case would be 
helpful. 
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It would be desirable to explore the application of the new technique in a variety of circumstances.  One 
inviting venue is small area estimation (Rao, 2003).  The coverage approach also might provide a new 
tool for assessing the effectiveness and relative effectiveness of different forms of generalized variance 
estimation (Wolter 1985). 
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