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Regression Tree Models for Analyzing Survey Response 
 

Daniell Toth∗ Polly Phipps† 

Abstract 

Modeling various conditional response propensities for a survey based on known unit character- 

istics or contact history is important when analyzing survey response. One increasingly important 

technique is to model these conditional response propensities using non-parametric regression tree 

models. Regression trees provide mutually exclusive cells with homogeneous response propensities 

that make it easier to identify interpretable associations between class membership characteristics 

and response propensity, compared to other regression models. We provide examples of how re- 

gression trees have been used to analyze survey response, including: gaining insight into how char- 

acteristics of sample members are associated with response, incorporation of auxiliary variables and 

para-data for use in adaptive designs and follow-up procedures, and the identification of auxiliary 

variables for nonresponse adjustment. 

 

Key Words: adaptive sampling; automatic interaction detection; non-parametric regression; non- 

response; propensity models; survey data. 

 
1. Introduction 

Large scale surveys generally have sample units that do not provide the desired data. 

Such units are considered nonrespondents. The missing information resulting from non- 

response could have a negative impact on the quality of the information the survey pro- 

vides. Specifically, a biased estimate could result from using data obtained from a survey 

with missing responses if the responses obtained from responding units tend to differ from 

those of nonresponding units. For example, the bias for an unadjusted mean estimator 

ȲR  = NR
−1  

i∈N yi is 

(1 − r)(ȲR  − ȲRl ), (1) 

where r is the response rate for outcome variable Y, and ȲR  and ȲRl  are the mean outcome 

for respondents and nonrespondents respectively. Thus, the bias of an unadjusted mean 

estimator using only the data from respondents depends on the difference between the mean 

of respondents and that of nonrespondents. 

If the variable Y is independent of response, the data is said to be missing completely 

at random (MCAR). In this case, ȲR  = ȲRl  and so by equation (1), the bias is zero even 

if the rate of nonresponse (1 r) is large. In this situation, the unadjusted estimator is 
unbiased and therefore no adjustment for nonresponse is necessary.  This is unlikely to 

occur in practice. A less aggressive assumption, is that the nonresponse data is missing  

at random (MAR). That is, Y is independent of response given the auxiliary variables X. 

In this situation, the estimator is unbiased after being adjusted for the differing values of 

X. An even weaker assumption is that the missing data due to nonresponse is missing not 

at random (MNAR). Under this assumption, Y  is not independent of the response rate 

even conditionally given the auxiliary variables X. In this situation ȲR   = ȲRl  even after 

adjusting for X. However, if the variable of interest Y  is associated with X, the bias of the 
estimator due to nonresponse can be reduced using the auxiliary data. 
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Therefore, identifying auxiliary variables from the set of known variables X, which are 

associated with the variable of interest and response propensity is very important for both 

analyzing and mitigating the effect of nonresponse on the quality of the data (Kreuter et al. 

2010). It is also helpful to have a good model of the probability of response given X, to 

better understand the potential impact of nonresponse on a given survey. 

Let xi, and R(xi) be the known auxiliary data and the response indicator given the 

auxiliary data for unit i, respectively. The probability that unit i responds given the units’ 

known auxiliary data, 

P (Ri = 1 | Xi = xi, yi) = p(xi), (2) 

is usually modeled using data from the responding units and all known auxiliary data. A 

good model is also helpful in assessing the likely impact that a change in data collection 

procedures will have on the response rate of a given survey. The model may incorporate 

auxiliary data available from the sample frame, as well as data obtained during the attempts 

to collect the survey data (paradata).  This usually provides a large number of variables  

to potentially include in the model and nonresponse is often determined by a number of 

interactions between the variables. This could make modeling the response propensity 

difficult (Schouten 2007). 

In this article we review a number of applications of the nonparametric approach, Auto- 

matic Interaction Detection (AID), also known as regression trees, used to address survey 

nonresponse. We give a brief review of how survey nonresponse is currently handled in 

Section 2. A much more comprehensive review can be found in Brick (2014). In sec-  

tion 3 we show how tree models, in comparison to the more often used logistic regression 

models, allow for easy identification of characteristic variables that are associated with re- 

sponse propensity, and their coefficients are easy to interpret. A comprehensive review of 

regression trees and their history is given in Loh (2014). In Section 4 we provide several 

examples of the use of regression trees to analyze and adjust for survey nonresponses found 

in the literature and suggest potential future applications. 

 
2. Addressing Survey Nonresponse 

In order to mitigate the effects of nonresponse on survey estimates, adjustments are made 

to the data collection procedure while the data is being collected, or more likely, to the 

estimator after the data has been collected, or both. Either approach requires identifying 

auxiliary variables X that are associated with response indicator variable R and the variable 

of interest Y (see Kreuter et al. 2010). 

Attempting to reduce the chance of nonresponse bias for a survey estimate by changing 

the collection procedure during data collection is referred to as responsive (or adaptive) 

data collection. For examples of how adaptive data collection is used in practice, see Mohl 

and Laflamme (2007) and Wagner et al. (2012), and Section 4.3. Based on models using 

unit characteristics, the response propensity of each unit is estimated and sample alloca- 

tion, collection efforts, and other resources are distributed in order to balance the obtained 

sample. This is undertaken with the idea that the closer the characteristic proportions of the 

obtained sample matches the characteristic proportions of the population, the less likely the 

estimates are to be biased (Peytcheva and Groves 2009 and Schouten, Cobben and Bethle- 

hem 2009). 

One option for adjusting the dataset to reduce or remove nonresponse bias after data 

collection is to impute the missing data using a model (implicitly or explicitly) estimated 

from the observed data (Brick and Kalton 1996). Another option is to adjust the weights 

of the observed units to account for the units that are missing. For example, the weight for 
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each observed sample unit is itself weighted by the inverse of the estimated probability to 

respond for that unit. 

This could lead to extreme weights, so more often, weight adjustment is done by using 

weight adjustment cells. The predicted probability of response is used to divide the sample 

units into cells of homogeneous response propensities and then each unit in the cell is 

given the same non-response weight adjustment. These cells are then used in adjusting 

estimates for nonresponse bias (see Vartivarian and Little 2002). This is the case when 

either weighting (see for example Kim and Kim 2007) or calibration is used to adjust for 

nonresponse (Kott and Chang 2010). 

A common tool used to model the response propensity is the parametric logistic regres- 

sion model (Rosenbaum and Rubin 1983; Little 1982). The response propensity for unit i 

given characteristic variables xi, is modeled by 

p̂(xi) = (1 + exp{−zi})−1
, (3) 

where zi = βxi = β0 + β1xi1 + . . . + βpxip. In order to produce mutually exclusive 

response cells for which the propensity is approximately equal, the units are often grouped 

according to the quantiles of their predicted propensities (see Eltinge and Yansaneh 1996). 

For the the logistic regression model assumption to hold, the response rate must be 

monotonic with respect to the model variables. Let 

logit(p(x)) = log (p(x)) − log (1 − p(x)), 

then for the logistic model to hold, we can see from equation (3) that 

logit(x) = βx, (4) 

must be linear. If the modeler fails to find a set of variables that result in a linear relation- 

ship, the model will suffer from lack of fit. For a set of variables, X to satisfy equation (4) 

adequately, a number of interaction terms are often needed. This can make the resulting 

model and the formed groups very difficult to interpret. 

 
3. Regression Trees 

When the primary goal requires the identification of a set of unit characteristics that par- 

tition the units into groups of similar responding establishments, regression trees are very 

helpful. Tree regression is a nonparametric approach that automatically results in mu- 

tually exclusive response cells, C1, . . . , Ck+1, based on unit characteristics. Classes are 

constructed using characteristic variables known for all sampled units such that each cell 

contains units with homogeneous propensity scores. 

A recursive partitioning algorithm is used to build a binary tree that describes the asso- 

ciation between an unit’s characteristic variables and its propensity to respond. A recursive 

partitioning algorithm begins by splitting the entire sample, , into two subsets 1 and 2 

according to one of the characteristic variables. The desired value (in this case the propor- 

tion of respondents) is then estimated for each subset separately. 

At each step, the split that minimizes the loss function being used to evaluate the model 

is chosen from among all possible splits on the auxiliary variables. For example, if esti- 

mated mean squared error is the criteria used to evaluate a model fit, then the split that 

results in the largest decrease in the estimated mean squared error will be selected. To es- 

timate p(x, ) the mean value p(x) for each subset, j, j = 1, 2, is estimated separately, 

using 
 

  

i∈S 

{xi∈Sj } 

−1 
i 

i∈S 

{xi∈Sj } 
. (5) 
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j=1 

It is easy to incorporate sampling weights into this estimator to obtain a regression tree that 

provides design consistent estimates for the response propensity, p(x) (see Toth and Eltinge 

2011). 

This results in a set of mutually exclusive response cells, C1, . . . , Ck+1, based on unit 

characteristics, that contain units with homogeneous propensity scores. The resulting tree 
model can then be written as 

p(x) = µ1C1(x) + . . . + µk+1Ck+1(x), (6) 

where Ci is the indicator function of whether a given unit’s characteristics designate mem- 

bership to class i. 

For example, if class Ci is defined as satisfying the first d splits and not satisfying the 

rest, then the estimated propensity of establishments in that class is given by 
 

µi = β0 + . . . + βd, 

for some set of {βj}k . More generally, in this form, the response propensity for a given 

unit is β0, plus the sum of all the coefficients βi for which the unit’s characteristics satisfy 

split Si. 

 
4. Applications of Regression Trees in Survey Nonresponse 

We now discuss three areas of application for regression trees concerned with nonresponse: 

adjusting for nonresponse; analyzing nonresponse; and adaptive data collection. 

 
4.1 Nonresponse Adjustment 

One way of dealing with nonresponse (or missing values in general) is to model the under- 

lying probability distribution of the data and impute the missing values. Regression trees 

are not usually used for imputation because of the potential instability of estimates from a 

regression tree model estimates and the lack of methods for estimating the standard errors 

for estimates. However, Borgoni and Berrington (2013) develop a tree based imputation 

method to impute missing multivariate Y and apply the method to the 1970 British Cohort 

Study. 

More often, regression trees have  been used to form nonresponse adjustment cells.  

A chi-square loss function with the Rao-Scott correction is often used for the regression 

tree construction algorithm (CHAID) in order to form response adjustment cells for survey 

nonresponse (Rao and Thomas 2003). There are many examples in the literature where 

the CHAID algorithm has been used for selecting the variables and forming nonresponse 

adjustment cells. For example Hogan et al. (2013) use CHAID to adjust for nonresponse 

in the Program for International Assessment of Adult Competencies Survey; Roth, Mon- 

taquila and Chapman (2006) apply it to the National Household Education Survey; Rizzo, 

Kalton and Brick (1996) apply it to the Survey of Income and Program Participation; Wun 

et al. (2004) apply it to the Medical Expenditure Panel Survey; Van de Kerckhove, Kren- 

zke, and Mohadjer, L. (2009) apply it to the 2003 Adult Literacy and Lifeskills Survey; and 

Göksel, Judkins and Mosher (1992) use an AID algorithm for producing response cells for 

the National Survey of Family Growth (NSFG). 

An area for potential future innovation is to use different loss functions to build the 

regression tree. For example, Schouten and de Nooij (2005) propose a new loss function 

designed specifically to produce response adjustment cells that minimize nonresponse bias 

after adjustment. Crafting a loss function tailored to the specific application could lead 
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Figure 1: This displays the regression tree estimating an establishment’s propensity to respond  

to the OES for a given set of characteristics. This model was estimated using the May 2006 OES 

data. The top value in the box is the estimated response rate for the May 2006 data used to build the 

regression tree model. 

 
to more efficient tree growing procedure and give more meaningful results. For example, 

it has been suggested (Phipps and Toth 2012 among others) that the resulting tree nodes 

could be used in an adaptive data collection procedure. Instead of minimizing the MSE of 

the obtained data, a loss function designed to identify the cells with the highest bias after 

adjusting for nonresponse could be used. The obtained tree using this loss function could 

potentially better inform a nonrespondent followup sample. 

Another application where a tailored loss function could be helpful is the use of a 

regression tree model for collapsing strata in an over stratified design. One could build a 

regression tree on the strata indicators using a loss function that minimizes the bias of a 

variance estimate for each node, then prune (collapse) the splits that reduce the bias the 

least. There seems to be a number of potential applications for regression trees with a 

customized loss function when analyzing and adjusting survey nonresponse that have not 

been explored. 

 
4.2 Nonresponse Analysis 

In this application the analyst is concerned, not with adjusting the data or removing po- 

tential bias from the data due to nonresponse, but rather with understanding the patterns 

of nonresponse. For example, they would like to identify characteristic groups that have 

higher than average nonresponse and/or higher potential risk of bias. 

 
4.2.1 Easily Interpretable Nonparametric Model for Nonresponse 

An example of the use of tree regression to identify groups based on establishment char- 

acteristics is the nonresponse analysis for the BLS Occupational Employment Statistics 

(OES) survey conducted by Phipps and Toth (2012). Figure 1 shows the results of a regres- 

sion tree model of response propensities using May 2006 semi-annual panel data. Nine 

characteristics of business establishment sample members are included in the analysis. 

Four of the characteristics have a significant impact on the propensity to respond. The 

splits include: employment size, industry, multi (whether the establishment was part of a 

multi-establishment), and size of metropolitan area. 

The results indicate that small, single unit establishments are most likely to respond 

(82% and 89%) in comparison to small multi-establishment units (73%); establishments 

IND ∈ WCS IND ∈/ WCS 

EMPL ≤ 20 

.644 .474 .747 .666 
.888 .818 

.730 
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with larger employment have lower response rates, particularly in white-collar service in- 

dustries (WCS; finance, information and professional and business services) that are multi- 

establishments (48%); and large establishments in other industries located in the largest 

metropolitan areas also have lower response rates (67%). These results are easily explained 

to and understood by survey programs and sponsors. In comparison, the OES model using 

logistic regression with both continuous and categorical variables and numerous interac- 

tions, 

logit(p(x)) = β0 + β1 log((EMPL) + β2IND + β3MSA + β4MULTI 
+β5 log(EMPL) ∗ IND + β6 log(EMPL) ∗ MSA 
+β7IND ∗ MSA + β8IND ∗ MULTI 

+β9 log(EMPL) ∗ IND ∗ MSA 

(7) 

is much more difficult to interpret. The model used here came from a stepwise logistic 

regression procedure. 

Deciding on a logistic model in this situation, with many continuous and categori-  

cal variables and interaction terms, is non-trivial. In an attempt to fit the logistic model 

using the OES survey, it was determined that the assumption of log-linearity for multi- 

establishment units indicates a lack of fit. Figure 2 shows that the assumption of linear- 

ity is plausible for single establishments (MULTI = 1), but seems invalid for multi- 

establishment units (MULTI > 1). 

Similarly, Yu and colleagues (2007) find that SAT scores have a significant positive 

effect on response using logistic regression, but when students are partitioned by score 

distribution, the response pattern changes, with high and low scoring groups having higher 

response than the middle scoring group. This shows that lack of fit with logistic models 

pose a potential problem when specified vectors fail to include predictors that fully account 

for curvature or interactions. Regression trees have an advantage in that they automatically 

account for non-linear relationships. 

Figures 3 – 5 shows tree model results for the BLS Job Openings and Labor Turnover 

Survey (JOLTS) for different phases of the data collection process, including locating an es- 

tablishment or address refinement, requesting participation enrollment; and the data collec- 

tion once a potential respondent has agreed to participate (Earp, Toth, Phipps, and Oslund 

2013). These models use auxiliary variables similar to the OES models, allowing survey 

managers to compare nonresponse across surveys. The address refinement model (Figure 

3) indicates that federal government establishments (12.1%) and large private establish- 

ments in the trade, transportation and utilities industry (14.8%) are the establishments most 

likely to be nonrespondents during this phase of collection as they are difficult to locate. 

In contrast at the enrollment phase (Figure 4), nonresponse is more likely among private- 

compared to public-sector establishments, especially those with a larger number of employ- 

ees (14.8%). At the data collection phase (Figure 5), similar to OES, WCS establishments 

are the most likely to be nonrespondents, especially those with a large (> 180) number of 

employees (40.8%). 

These results are of interest to survey programs and to BLS as an agency as they easily 

identify units that are more likely to be nonrespondents and warrant additional data collec- 

tion. The San Francisco region of the BLS has used tree models to identify hard to collect 

units for survey managers as they decide how to allocate workload across field interviewers. 

The National Agricultural Statistics Services also has used tree models to analyze nonre- 

sponse and to identify hard to reach units prior to data collection (McCarthy and Jacob 

2009). 
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Figure 2: The logit function logit p(x) = log p(x) log  1  p(x)  for the smoothed response 

rates r by the log transformed establishment size. This is displayed for establishments in the profes- 
sional and business services industry category located in an MSA with over a million people. The 
circles represent the log-odds ratio by log size for establishments with MULTI = 1, the triangles 

are establishments with MULTI = 2, and the diamonds are establishments with MULTI 3.  
The response rate by transformed establishment size is estimated by a loess smoother. 

 
4.2.2 Regression Trees in Linear Form 

One particularly convenient form for a regression tree model is a linear function of the 

splits. Any resulting tree model (6) can be cast as a linear regression of the form 

p(x) = β0 + β1S1(x) + . . . + βkSk(x), (8) 

where Si for i = 1 . . . k are indicator functions representing each split. That is, S1(x) = 1, 

if x S1, where S1 is a subset of the population defined by splits on X. 
For example, the analysis of nonresponse for the OES survey resulted in the tree given 

in Figure 1, can be written as the series of indicator functions on splits and corresponding 

coefficients given in Table 1. Figure 6 gives the tree shown in Figure 1 with color splits 

matching the color of their corresponding rows in Table 1. Each row gives a split of the tree 

and its corresponding coefficient on the function indicator of whether the establishment has 

the defined characteristic or not. In this form, the coefficients 

(β0, β1, . . . βk) (9) 

are interpreted as the association between a specific characteristic with a unit’s propensity 

to respond. 
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Split 

1 
EMPL > 20 

EMPL > 20 & IND ∈ WCS 

EMP L > 20 & IND ∈/ WCS & MSA = 6 
EMPL > 20 & IND ∈ WCS & MULTI > 1 

EMPL ≤ 20 & MULTI > 1 
EMPL ≤ 20 & MULTI = 1 & EMPL ≥ 10 

May Response 

Coefficient 

0.8883 

-0.1411 

-0.1036 

-0.1691 

-0.0810 

-0.1579 

-0.0707 

 

JOLTS 

Address Refinement 

Nonresponse Rate 

 

 

 
 

Federal Government Not Federal 

 

IND ∈ Trade, Trans., Utility IND ∈/ Trade, Trans., Utility 

  
EMPL ≤ 182 EMPL > 182 

  

  

Figure 3: This displays the regression tree estimating the probability that an establishment will not 

respond during the address refinement phase of the JOLTS survey for a given set of characteristics. 

This model was estimated using the July 2012 JOLTS data, where overall 1.5% of establishments 

that made it to this phase did not respond. The value in the box is the estimated rates of nonresponse 

for the given group of establishments. 

 

 
JOLTS 

Enrollment 

Nonresponse Rate 

 

 

Private Public 

  
EMPL ≤ 74 EMPL > 74 

  

  

Figure 4: This displays the regression tree estimating the probability that an establishment will not 

respond during the enrollment phase of the JOLTS survey for a given set of characteristics. This 

model was estimated using the July 2012 JOLTS data, where overall 9.0% of establishments that 

made it to this phase did not respond. The value in the box is the estimated rates of nonresponse for 

the given group of establishments. 

 

 

Table 1: The splits represented as indicator functions along with their coefficients in the 

linear model 

.148 .064 
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Figure 5: This displays the regression tree estimating the probability that an establishment will 

not respond during the collection phase of the JOLTS survey for a given set of characteristics. This 

model was estimated using the July 2012 JOLTS data, where overall 22.7% of establishments did 

not respond during this phase. The value in the box is the estimated rate of nonresponse for for the 

given group of establishments. 
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Figure 6: The regression tree used to model response propensity to the OES survey. The 

splits are colored to correspond to their corresponding coefficient given in Table 1. 
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Split 

May Response 

Response Coefficient 

May Wage 

Wage Coefficient 

1 0.8883 8261 

EMPL > 20 -0.1411 -970 

EMPL > 20 & IND ∈ WCS 

EMPL > 20 & IND ∈ WCS & MULTI > 1 

-0.1036 

-0.1691 

4818 

1298 

EMP L > 20 & IND ∈/ WCS & MSA = 6 
EMPL ≤ 20 & MULTI > 1 
EMPL ≤ 20 & MULTI = 1 & EMPL ≥ 10 

-0.0810 
-0.1579 

-0.0707 

1706 
3394 

-559 

Table  2:  Results from the recursive partitioning of the OES mail survey data.  Column  
1 displays coefficients for the set of splits estimating response propensity for May 2006. 
Column 2 displays November 2006 response coefficients, based on the May tree model. 
Column 3 displays coefficients for the tree model to estimate May 2006 average wage per 
employee. 

 
4.2.3 Bias Analysis 

This parametric form of a regression tree has some potentially useful applications. For 

example, using an available proxy for the variable of interest, new model parameters (9) 

are estimated replacing the response indicator with this proxy. This results in a model of the 

proxy variable conditioned on the splits from the response propensity model. The potential 

bias of an estimator can be evaluated by looking at the resulting coefficients of this model. 

This type of analysis was done by Phipps and Toth (2012) for the OES survey using 

available administrative record wage data for every establishment in the sample as proxy 

for occupational wage data collected by OES. Table 2 shows the estimated coefficients for 

response indicator and for the wage proxy variable. This shows which of the characteristic 

variables used in the model, that are known to be associated with nonresponse, are also 

associated with the variable of interest. 

Another advantage of using a proxy, rather than the actual variable of interest, is that a 

comparison between respondents and nonrespondents on the value of the proxy variable can 

done for each of the partition groups. Since these groups were identified by the regression 

tree for nonresponse, we already know that they are associated with differing propensities of 

response. Figure 7 shows a graphical display of the difference in the reported wage variable 

between respondents and nonrespondents within the groups identified by the regression tree 

in the OES analysis. A difference within these groups suggests that weighting, using these 

response cells is likely to be inadequate for eliminating bias from the estimate (Horton, 

Toth and Phipps 2014). 

 
4.3 Adaptive Data Collection 

Difficulties in achieving and maintaining response rates are leading survey organizations 

to focus on potential respondents and how to direct additional data collection efforts most 

efficiently. One possible application of tree regression is to identify units to focus efforts 

on during data collection. The trees natural structure that partition the units and automatic 

selection of variables allows for the easy identification of units that are more likely to be 

nonrespondents and warrant additional collection effort. 

For example, tree models using JOLTS, identify public- versus private-sector owner- 

ship characteristics as important to response at the early stages of collection, and industry 

type at later stages. If outcome variables, such as turnover, were identified as related to 

nonresponse, the JOLTS would be a possible candidate for an adaptive design procedure. 

They may monitor the rates of response in each of the identified cells and adjust efforts and 

resources to achieving higher response rates in cells as they are identified. 
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Figure 7: For the seven categories of mail survey-collected establishments defined by the regres- 

sion tree model the average wage is plotted by response rate. The average wage per employee is 

given for responding establishments (red) and nonresponding establishments (blue). The line be- 

tween the two estimates gives a visual representation of the difference between responding and 

nonresponding establishments within each category. All wage estimates are for the second quarter 

of 2005 and are produced from the QCEW records. 
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The OES tree models show that respondents and nonrespondents differ on wages, a 

major survey outcome. The resulting bias concerns make it a strong candidate for im- 

plementing an adaptive design procedure, such as focused contact or nonresponse follow 

up for groups with low response propensity and high wage differentials. Earp, Mitchell, 

McCarthy and Kreuter (2012) used tree modeling to evaluate nonresponse bias and direct 

collection efforts. Using auxiliary data, in this study the authors used an ensemble of clas- 

sification trees to identify sample units that were likely to be nonrespondents then assigned 

the units to either a treatment or control group. The treatment group received additional 

refusal prevention and conversion efforts, such as personal enumeration visits, customized 

letters, data products, and small incentives. 

 
5. Discussion 

Regression trees are a powerful tool to explore survey response issues. Interactions be- 

tween sample members characteristics often are important in nonresponse models, whether 

it is between employment size and industry in the case of business surveys or household 

income and age in household surveys. The automatic interaction detection inherent in trees 

provides a straightforward method to account for and easily interpret interactions between 

auxiliary data and paradata and the propensity to respond. Similarly, tree models can be 

used to identify potential bias and to prioritize cases for collection, or at the end of collec- 

tion to adjust for nonresponse. While regression trees have not been used extensively to 

analyze response, direct data collection, or adjust for survey nonresponse, their application 

holds great potential. 
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