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Abstract

In this paper I propose a new method for computing equilibrium in economies
featuring heterogeneous agents, incomplete markets and aggregate uncertainty. The
new method approximates the endogenous joint distribution of wealth and income
by replacing stochastic simulation procedures with iteration on distribution functions.
By construction, the approximate distribution satisfies an intratemporal consistency
condition that imposes stationarity on both the distribution and the law of motion
for aggregate state variables. I show that the Method of Mixture Distributions is
capable of obtaining a solution faster than existing computational algorithms while
attaining a high level of accuracy. Lastly, I provide an extension of the algorithm for
computing equilibrium in an economy with non-trivial market clearing, showing that
the algorithm is suitable for computing models in which prices cannot be forecasted
by a finite set of moments from the distribution.
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1 Introduction

This paper develops a new method for computing equilibrium in models with hetero-
geneous agents, incomplete markets and aggregate uncertainty. I illustrate this new
method’s mechanics within the context of Krusell and Smith’s (1998) production econ-
omy. I compare this paper’s computational method to other prominent methods and
find that it is faster and approximately as accurate.

In the presence of aggregate uncertainty, heterogeneous agent macroeconomic models
with incomplete markets are notoriously difficult to compute. These economies are
not generically Pareto efficient1 and therefore solving for equilibria requires explicitly
computing prices. Furthermore, in models with a continuum of heterogeneous agents,
such as Krusell and Smith’s (1998) model, model inhabitants must infer future prices
from the entire distribution of individual actions. Because this distribution is an infinite
dimensional object, including it as a state variable is computationally intractable.

The method developed in this paper overcomes these computational hurdles by incorpo-
rating three main features. First, it follows previous work in reducing the size of the state
space by replacing the distribution with a finite set of distributional moments. Second, it
follows Reiter (2010) in non-parametrically representing the distribution as a function of
a finite set of its moments. And third, this paper extends Young’s (2010) procedure for
non-stochastically updating distributions by developing a new method for constructing
an ergodic set of distributions by iteration instead of simulation.

In effect, this third feature provides a new technique for constructing a distribution
from its moments and it is the crux of this paper. Conceptually, I construct the set of
distributions that would arise endogenously if model inhabitants could compute future
prices from a finite set of distributional moments. In such a counterfactual environment,
distributions and the law of motion for moments must be mutually consistent: future
distributions can be computed from the law of motion for their moments, and likewise
future moments can be computed from the contemporaneous distribution. It is precisely
this consistency that I exploit to iteratively construct the ergodic set of distributions.

The numerical implementation of this method constructs distributions by iterating on a
fixed point operator. At each step of the procedure, this operator enforces the mutual

1Dávila, Hong, Krusell, and Ríos-Rull (2012) characterize the source of inefficiency in this class of models,
both theoretically and quantitatively.
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consistency between distributions and the law of motion for moments. At a stationary
point, the set of distributions that characterize wealth and income before individuals
engage in market activity will equal the set of distributions that attain after markets clear.
Consistency is enforced when the operator constructs a new iteration of distributions as
mixtures of distributions from the previous iteration. Hence this computational method
is called the “Method of Mixture Distributions.”

The Method of Mixture Distributions has an important advantage over Krusell and
Smith’s (1998) original computational algorithm: the Method of Mixture Distributions
replaces the simulation of distributions with a faster iterative procedure that constructs
an ergodic set of distributions on which the law of motion for moments can be computed
directly. Put differently, the Method of Mixture Distributions computes the ergodic set of
distributions at grid points on the aggregate state space and directly computes the rela-
tionship between aggregate moments today and tomorrow from the policy function and
distributions. More generally, constructing mixture distributions can provide an alterna-
tive to simulation in a large class of computational methods. I provide one such example
in the final section of this paper, in which I apply the Method of Mixture distributions
to an endowment economy.

In a series of numerical tests, I compare the Method of Mixture Distributions to alterna-
tive methods featured in the Journal of Economic Dynamic’s symposium (see Den Haan,
Judd, and Juillard (2010)). Relative to those methods, I find that the Method of Mixture
Distributions is over 20 times faster and is just as accurate.

Finally, in terms of programming complexity, this method is fairly simple to code. This
paper’s algorithm is very similar to Aiyagari’s (1994), except (i) it generalizes the com-
putation of distributions, and (ii) computes a multi-dimensional fixed point rather than
a one-dimensional fixed point. While these two differences are important for tackling
the problem at hand, they do not add much in terms of programming time.

2 Method of Mixture Distributions

In this section I will discuss the key features of my computation algorithm, define the
computational problem, and lastly provide details on the numerical implementation of
the algorithm. Whereas the first part of this section provides a heuristic characterization,
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it is in the final part of this section that I more rigorously define the key features of the
computational method.

2.1 Key Features

Near Rationality I assume that agents do not observe the entire joint distribution over
wealth and income. Instead, I assume that agents observe a finite set of moments from
the distribution and make decisions using this restricted information set. Therefore, in
order to forecast future prices, agents must forecast the future values of distribution
moments. This assumption of near rationality has become a standard device in computa-
tional algorithms for reducing the dimensionality of the state space.2

Approximate Distributions In order to check whether market clearing conditions are
satisfied, I must compute aggregate outcome that are implied by individual policy func-
tions. Put in the context of Krusell and Smith’s (1998) economic environment (to be
explicated in section the next section), I must check whether individual behavior is con-
sistent with the aggregate law of motion for capital, and I must compute the level of
aggregate capital that is implied by the policy function for savings. However, in order to
compute aggregate capital, I must know the joint distribution over wealth and income.
Following Reiter (2010), I approximate the true joint distribution using a mapping from
the aggregate state space to the space of distributions.3

Intratemporal Consistency A novel feature in this computational algorithm is the
choice of mapping from the aggregate state space to distributions. Conceptually, I choose
the mapping that would endogenously arise under the counterfactual assumption that
the true economy in fact only required a set of moments to perfectly characterize the
distribution. In such a counterfactual economy, the law of motion for the distribution is
uniquely determined from the law of motion for the aggregate state variables.

More concretely, I consider the set of mappings that have the following moment consis-
tency condition: if I choose a set of moments from the aggregate state space, then the

2See Den Haan (1996), Krusell and Smith (1998) and Castañeda, Díaz-Giménez, and Ríos-Rull (1998) for
early examples. There are too many subsequent uses of this assumption to provide a comprehensive list
here.

3Reiter (2010) calls this mapping a “distribution selection function.” He approximates the distribution by
defining a metric for the distance between distributions and finding the closest distribution (under the
metric) to the steady state distribution without aggregate uncertainty. The solution is chosen from the set
of distributions that have the desired moments.
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mapping generates a distribution with the selected set of moments. In this way, the
mapping allows us to condition the family of constructed distributions on a finite set of
moments.

However, an additional condition is needed to ensure that the endogenous law of mo-
tion for distributions generates subsequent distributions that also satisfy the moment
consistency condition. I call this additional condition the intratemporal consistency con-
dition: if the distribution at the beginning-of-period satisfies the moment consistency
condition then so will the new distribution at the end-of-period, that is generated by
agents’ savings decisions.

Put together, the two conditions ensure that the distribution and the law of motion for
the aggregate state are uniquely determined by a finite set of moments. Furthermore,
when the conditions hold, the law of motion for the distribution’s moments will induce
an end-of-period distribution that also satisfies the moment consistency condition.4

2.2 Approximate Equilibrium

Environment To build notation, we will define the approximate equilibrium that will
be computed. For the sake of parsimony, I will only consider recursive competitive
equilibrium and leave issues of existence and uniqueness aside.5 For a richer description
of the economic environment, see Den Haan, Judd, and Juillard (2010).

The economy consists of a continuum of individuals and a representative firm. Time is
discrete and infinite.

Individual agents have preferences over consumption described by u(c) = c1−σ/(1− σ),
for σ > 1. In the recursive problem, let the individual agent’s state vector be (a, ε, k, z),
which consists of individual savings a ∈ A, individual employment status ε ∈ E , ag-

4While Reiter (2010) uses the moment consistency condition on distributions, he only uses it to define
the set of distributions in his minimization routine (see footnote 3). He then assumes that the set of
distributions is ergodic and computes the law of motion that is induced by policy functions and the
approximate set of distributions. Instead, my method simultaneously computes distributions and the
laws of motion for moments, without such a minimization procedure. Instead my method iterates on
the law of motion for moments and constructs a set of distributions that satisfy the two consistency
conditions at each step of the iteration.

5Miao (2006) proves the existence of a sequential equilibrium of an environment that generalizes the
Krusell and Smith (1998) economy. However, Miao (2006) cannot prove that his sequential formulation
yields Krusell and Smith’s (1998) wealth-recursive representation.
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gregate capital k ∈ K and the aggregate productivity shock z ∈ Z . The space of assets
is given by A = [

¯
a, ∞) where the lower bound is due to a constraint on how much an

individual agent may borrow in any period. Employment status is a binary variable, in-
dicating that an agent is either employed (ε = 1) or unemployed (ε = 0). Likewise, the
aggregate productivity shock only takes on two values, Z = {

¯
z, z̄} with

¯
z < z̄. Lastly,

the space of aggregate capital is K = [0, ∞).

Implicit in this definition of the state vector is the assumption that the first moment of
the distribution, k, is sufficient to characterize the distribution. This assumption is made
to simplify explication of the method, but could easily be relaxed by adding additional
moments to the state vector.

The representative firm operates a constant returns to scale production technology, tak-
ing aggregate capital and labor as inputs at given factor prices. Let the production
technology take the Cobb-Douglas form zkαl(z)1−α, for α ∈ (0, 1). Aggregate labor l(z)
is a given function of z, while gross rents, R(k, z), and the wage rate, w(k, z), are given
functions of (k, z). Implicit in the rental rate is the depreciation of aggregate capital,
denoted δ ∈ (0, 1).

Stochastic state variables evolve according to a four-state Markov chain, in which the dis-
tribution of idiosyncratic shocks changes with the aggregate shock, and the aggregate
shock evolves independently. The conditional probability that the aggregate shock z′ is
realized next period given this period’s shock is z is denoted πz(z′|z). The joint condi-
tional probability that an agent realizes individual shock ε′ and aggregate shock z′ next
period given today’s individual and aggregate shocks are (ε, z) is denoted π(ε′, z′|ε, z).

Equilibrium Now define a near rational recursive competitive equilibrium as a value func-
tion v : A× E ×K×Z → R, a policy function g : A× E ×K×Z → A, a law of motion
for aggregate capital G : K×Z → K, indexed distributions6 F : B ×K×Z → [0, 1] and
prices w : K×Z → R+ and R : K×Z → R+ such that

(i) Given (w, R, G), v solves the Bellman equation:

v(a, ε, k, z) = max
c,a′∈Γ(a,ε,k,z)

u(c) + β ∑
ε′

∑
z′

π(ε′, z′|ε, z)v(a′, ε′, k′, z′)

Γ(a, ε, k, z) =
{

c ≥ 0, a′ ≥
¯
a
∣∣∣ c + a′ ≤ w(k, z)ε + R(k, z)a

}
6As is standard, B denotes the Borel σ-algebra on A× E .
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k′ = G(k, z)

with associated policy function for savings: g.

(ii) Given (w, R), firms choose (k, l) optimally by setting marginal products to factor
prices:

w(k, z) = (1− α)
zkαl(z)1−α

l(z)

R(k, z) = α
zkαl(z)1−α

k
+ (1− δ)

(iii) Asset and labor markets clear:

k = ∑
ε

∫
A

a F(da, ε; k, z)

l(z) = ∑
ε

∫
A

ε F(da, ε; k, z)

(iv) and; (g, G, F) satisfy the intratemporal consistency condition:

F(â, ε; k̂, z) =
∫
K

1
[

G(k, z) = k̂
] (∫

A
1 [g(a, ε, k, z) = â] F(da, ε; k, z)

)
dk

Discussion A brief discussion of the moment and intratemporal consistency conditions
is warranted. Notice that the moment consistency condition is built into the definition
of asset market clearing. That is, given a level of capital demanded by the representative
firm (k), the asset market clearing condition imposes a condition on the distribution.
That condition is the moment consistency condition: the first moment of the indexed
distribution F(a, ε; k, z) must equal its index moment, k.

Next, the intratemporal consistency condition simply states that the distribution is gener-
ated by the agents’ optimal savings decisions and the aggregate law of motion for aggre-
gate capital. The condition defines a fixed point operator on the distribution, which en-
sures that the beginning-of-period distribution can be recovered from the end-of-period
distribution.7

7To see this, the distribution on the right hand side of the intratemporal consistency condition is the dis-
tribution that agents observe at the beginning of the period. After agents save resources for next period,
in a way that is consistent with the law of motion for aggregate capital, there is a new distribution over
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Put together, the moment and intratemporal consistency conditions ensure that both the
beginning-of-period and end-of-period distributions can be indexed by a finite set of
their moments. Therefore, if the intratemporal consistency condition is satisfied, then
the moment consistency condition must hold on the end-of-period distribution. The
first moment of the end-of-period distribution is therefore equal to the level of capital
implied by the law of motion for capital:

G(k, z) = ∑
ε

∫
A

g(a, ε, k, z)F(da, ε; k, z)

which, by the moment consistency condition, means that next period’s distribution over
(a, ε) is given by F(a, ε; G(k, z), z′) for any z′.

2.3 Numerical Implementation

Heuristic Algorithm The algorithm is organized into three main steps at each iteration.

• Step 0: (Iteration 0)
Guess an initial aggregate law of motion for capital, G0(k, z).

• Step 1: (Iteration n)
Given Gn(k, z), compute the optimal policy function, g(a, ε, k, z|Gn).

• Step 2: (Iteration n)
Given Gn(k, z) and g(a, ε, k, z|Gn), compute the intratemporally consistent distribu-
tions, F(a, ε; k, z|Gn).

• Step 3: (Iteration n)
Check whether the convergence criterion is satisfied. If so, stop. Otherwise, update
the guess on the aggregate law of motion to obtain Gn+1(k, z) and return to Step 1
(Iteration n + 1).

In the remainder of the section, I will define the convergence criterion and solver choice
for the aggregate law of motion for capital in the outer loop (Step 3), discuss the solution
method for the policy function (Step 1)and then finally provide details about computing

savings. This end-of-period distribution is given by the left hand side of the intratemporal consistency
condition.
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the intratemporally consistent distributions (Step 2). I spend the most time providing
details on distributions, as this is the novel component of the computational method.

Preliminaries I select gridpoints in both the a and k directions. The grid over savings
contains na discrete nodes and the grid over aggregate capital contains nk discrete nodes.
The grids over savings and aggregate capital are denoted, respectively, by:

Ga , {a1, a2, . . . , ana} ⊆ [
¯
a, ā] ⊂ A

Gk , {k1, k2, . . . , knk} ⊆ [
¯
k, k̄] ⊂ K

Furthermore, define the grids over the stochastic state variables as Gε , {0, 1} and
Gz , {¯

z, z̄} for the idiosyncratic and aggregate shocks, respectively.

Computing the Law of Motion The objective of the numerical algorithm is to find a
function G : K × Z → K, approximated by a continuous piecewise linear function on
discrete collocation points Gk ×Gz, that satisfies the moment and intratemporal consis-
tency conditions (up to the required precision). Accordingly, at each iteration, check
whether the aggregate law of motion satisfies the convergence criterion:

sup
k,z
|en(k, z)| < ε for ε > 0

where for all (k, x) ∈ Gk ×Gz the residual function at iteration n is given by:

en(k, z) , Gn(k, z)−∑
ε

∑
a

g(a, ε, k, z|Gn) f (a, ε; k, z|Gn)

and f (a, ε; k, z|Gn) is the density function (to be further discussed below) associated with
distribution F(a, ε; k, z|Gn) and a given law of motion Gn(k, z). If the convergence crite-
rion is not satisfied, update the guess for the law of motion for capital.8

Computing Policy Functions The inner loop consists of finding the policy function,
g(a, ε, k, z|Gn), that solves the individual agent’s maximization problem given aggregate

8Following Gaspar and Judd (1997), I update the guess on the aggregate law of motion for capital using
Fixed Point Iteration:

Gn+1(k, z) = Gn(k, z)− ∆ · en(k, z|Gn)

= (1− ∆)Gn(k, z) + ∆ ·∑
ε

∑
a

g(a, ε, k, z|Gn) f (a, ε; k, z|Gn)

where the relaxation parameter ∆ > 0 governs the speed and stability of convergence.
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law of motion Gn(k, z). There are many algorithms that can quickly and accurately
compute a solution. I find that methods that operate on the Euler equation, such as
variants of Carroll’s (2006) endogenous gridpoint method, or Maliar and Maliar’s (2013)
envelope condition method are both fast and accurate in this application.9

Computing Distributions Given the policy function, the next step is to compute the
intratemporally consistent distribution over (a, ε) ∈ Ga ×Gε, for each point in the ag-
gregate state grid (k, z) ∈ Gk × Gz. Following Reiter (2010), it will be useful to work
with non-parametric density functions, specified as histograms with mass on gridpoints
Ga ×Gε.

Similar to economies without aggregate uncertainty,10 I compute densities as the fixed
point of an operator on probability measures. However, in the context of the current
economic environment with aggregate uncertainty, I compute a set of densities that are
generated by the policy function and the law of motion for aggregate capital. Each
density in the set is associated with a point on the aggregate state grid (Gk ×Gz). Fur-
thermore, the intratemporal consistency condition defines the fixed point operator in
this environment. Therefore, any set of densities that satisfy the moment and intratem-
poral consistency conditions will be ergodic, in the sense that the operator maps a set
of densities into itself. This is the set of densities that endogenously arise under the
equilibrium evolution of the economy.

In order to numerically implement the fixed point operator that defines an intratempo-
rally consistent distribution (this is Step 2 of the overall algorithm, stated at the beginning
of section 2.3), I will proceed according to the following heuristic outline:

• Step 2 : (Iteration 0)
Given Gn and g(a, ε, k, z|Gn), guess an initial beginning-of-period density, denoted
f0(a, ε; k, z|Gn).

• Step 2a: (Iteration i)
Given the beginning-of-period density fi(a, ε; k, z|Gn), compute the end-of-period den-

9Generally, Carroll’s (2006) endogenous gridpoint method is preferable for computing policy functions
in Aiyagari-Bewley-Huggett economies because the programmer can avoid all root-finding procedures.
In economic environments where the “inversion step” of the endogenous gridpoint method cannot be
performed without a root-finding procedure, other computational methods may be preferable. See Maliar
and Maliar (2013) for speed and accuracy benchmarks for fixed point iteration when computing the
neoclassical growth model.

10See Huggett (1993) and Ríos-Rull (1997) for an extensive overview of these methods.
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sity:
f ′i (â, ε; k, z|Gn) , ∑

a∈Ga

ωa
(
â, g(a, ε, k, z|Gn)

)
fi(a, ε; k, z|Gn)

where â ∈ Ga and the function ωa : Ga ×A → [0, 1] will be defined below.

• Step 2b: (Iteration i)
Given the end-of-period density f ′i (a, ε; k, z|Gn), compute the first moment of the end-
of-period density:

Γi(k, z) , ∑
ε∈Gε

∑
a∈Ga

a f ′i (a, ε; k, z|Gn)

• Step 2c: (Iteration i)
Given the end-of-period density f ′i (a, ε; k, z|Gn), compute the beginning-of-period den-
sity for iteration i + 1:

fi+1(a, ε; k̂, z|Gn) = ∑
k∈Gk

ωk
(
k̂, k, |Γi(·, z)

)
f ′i (a, ε; k, z|Gn)

where k̂ ∈ Gk and the function ωk : Gk ×Gk → [0, 1] will be defined below.

• Step 2d: (Iteration i)
Verify whether the density satisfies the convergence criterion, for some η > 0 small:

sup
(a,ε,k,z)

∣∣∣ fi+1(a, ε; k, z|Gn)− fi(a, ε; k, z|Gn)
∣∣∣ < η

If so, stop and go to Step 3 (iteration n). If not, go to Step 2a (iteration i + 1).

Next I must define and characterize the functions ωa and ωk. These functions govern
how a set of distributions is mapped into itself and, therefore, are crucial for constructing
the ergodic set of densities.

First I characterize the function ωa(a, a′). This function governs the mapping from the
set of beginning-of-period densities into the set of end-of-period densities.11 To com-
pute the end-of-period density, I find the level of assets today (a) for which an agent
will save â, and then allocate that beginning-of-period mass of agents with savings a to
the end-of-period density associated with savings â. However, the value of a for which

11The function ωa is nearly equivalent to the transition function in standard Aiyagari-Bewley-Huggett
economies (see Ríos-Rull (1997) for a detailed characterization). The main difference between ωa and
the transition function is that ωa takes stochastic state variables (idiosyncratic and aggregate shocks) as
constants, hence the nomenclature, “intratemporal consistency condition.”
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g(a, ε, k, z|Gn) = â is not necessarily on the asset grid, Ga. In order to ensure the density
is defined on gridpoints, I follow Young (2010) by introducing a lottery that probabilis-
tically assigns mass from the beginning-of-period to end-of-period densities.12

Let a′ , g(a, ε, k, z|Gn) for some (a, ε, k, z) on the grid. For all aj ∈ Ga with j = 2, . . . , na,
the lotteries are given by the following function:

ωa
(
aj, a′

)
,



aj+1 − a′

aj+1 − aj
if a′ ∈ [aj, aj+1]

a′ − aj−1

aj − aj−1
if a′ ∈ [aj−1, aj]

0 elsewhere


In words, when the value of the policy function g(a, ε, k, z|Gn) falls in between asset
grid points [aj, aj+1], assign complementary fractions of the mass in the beginning-of-
period density to each of those nodes. That is, assign a fraction (aj+1− a′)/(aj+1− aj) of
fi(a, ε; k, z|Gn) to node (aj, ε; k, z) and a fraction (a′− aj)/(aj+1− aj) to node (aj+1, ε; k, z).

Next I characterize the function ωk(k̂, k|Γ(·, z)). This function governs the mapping from
the set of end-of-period densities back into the set of beginning-of-period densities. To
compute the beginning-of-period density, I first find the level of aggregate capital today
(k) for which the law of motion for aggregate capital implies that tomorrow’s aggregate
capital is k̂. However, the value of k for which Γi(k, z) = k̂ is not necessarily on the
aggregate capital grid, Gk. This is problematic because, as before, I wish to construct
density functions that are defined on gridpoints. Because densities are indexed by the
aggregate state, we cannot use simple lotteries to redistribute mass in such a way that the
constructed density has k̂ as a first moment. To address this issue, I develop the method
of mixture distributions as follows.

I construct a conditional distribution over end-of-period densities, f ′i (a, ε; k, z). The con-
ditional distribution probabilistically allocates distributions over (a, ε) to aggregate states
(k, z),13 thereby constructing the beginning-of-period density as a mixture distribution.
By construction, the conditional distribution over densities will generate a mixture dis-

12Because this economy consists of a continuum of agents, an argument invoking the law of large numbers
ensures that these lotteries do not introduce any cross-sectional sampling variation.

13Similar to footnote number 12, since there is a continuum of model agents, an argument invoking the law
of large numbers ensures that mixture distributions do not introduce any time-series sampling variation.
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tribution with the desired first moment, k̂ ∈ Gk.

The conditional distribution function is given by ωk : Gk ×Gk → [0, 1]. For j = 2, . . . , nk,
let k j ∈ Gk and let z ∈ Gz. The conditional distribution function is given by:

ωk
(
k̂, k|Γ(·, z)

)
,



k̂− Γ(k j, z)
Γ(k j+1, z)− Γ(k j, z)

if k̂ ∈ [Γ(k j, z), Γ(k j+1, z)] and k = k j+1

Γ(k j+1, z)− k̂
Γ(k j+1, z)− Γ(k j, z)

if k̂ ∈ [Γ(k j, z), Γ(k j+1, z)] and k = k j

0 elsewhere


In words, first find the adjacent end-of-period distributions for which k̂ falls in between
their first moments. That is, find {k j, k j+1} for which k̂ ∈ [Γ(k j, z), Γ(k j+1, z)]. Then
assign a fraction (Γj+1 − k̂)/(Γj+1 − Γj) of the end-of-period density f ′i (a, ε; k j, z) and a
complementary fraction (k̂− Γj)/(Γj+1 − Γj) of the end-of-period density f ′i (a, ε; k j+1, z)
to the beginning-of-period density fi+1(a, ε; k̂, z). A generic mixture distribution takes
the form:

fi+1(a, ε; k̂, z) =

(
1−

k̂− Γj

Γj+1 − Γj

)
f ′i (a, ε; k j, z) +

(
k̂− Γj

Γj+1 − Γj

)
f ′i (a, ε; k j+1, z)

where Γj , Γi(k j, z) and Γj+1 , Γi(k j+1, z).

I will end this discussion by verifying that the mixture distribution in fact has k̂ as a first
moment.

Proposition 1: The first moment of the mixture distribution

fi+1(a, ε; k̂, z) = ∑
k∈Gk

ωk(k̂, k|Γ(·, z)) f ′i (a, ε; k, z)

is k̂ when the conditional distribution is ωk(k̂, k|Γ(·, z)), which is given above.

Proof: We can verify the proposition directly. Take k̂ ∈ [Γ(k j, z), Γ(k j+1, z)]. Define ωk ,

(k̂− Γj)/(Γj+1 − Γj) for Γj , Γ(k j, z).

k̂ ?
= ∑

ε∈Gε

∑
a∈Ga

a fi+1(a, ε; k̂, z)
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k̂ ?
= ∑

ε∈Gε

∑
a∈Ga

a
[
(1−ωk) f ′i (a, ε; k j, z) + ωk f ′i (a, ε; k j+1, z)

]
k̂ ?
= (1−ωk)Γ(k j, z) + ωkΓ(k j+1, z)

k̂ ?
=

Γ(k j+1, z)− k̂
Γ(k j+1, z)− Γ(k j, z)

· Γ(k j, z) +
k̂− Γ(k j, z)

Γ(k j+1, z)− Γ(k j, z)
· Γ(k j+1, z)

k̂ X= k̂

Therefore the conditional distribution ωk over densities f ′i (a, ε; k, z) induces a beginning-of-period
distribution with the desired first moment.�

Initialization The algorithm requires initial guesses on both the distribution and the
aggregate law of motion for capital. A good initial guess on the aggregate law of capital
should satisfy the following properties: (i) G(k, z) is strictly increasing in both k and
z, (ii) G(k, z) is (weakly) concave in k, (iii) there exist k̄ and

¯
k such that G(k̄, z̄) = k̄,

G(
¯
k,

¯
z) =

¯
k and k̄ >

¯
k.

An initial guess on distributions is obtained by a variant of Reiter’s (2010) method. In
effect, I compute the steady state distribution (without aggregate uncertainty), then I
choose a desired first moment from the grid, and finally I normalize the domain of the
distribution so that the transformed distribution has the desired first moment.

3 Numerical Tests

In this section I compare the Method of Mixture Distributions to alternative methods.
Comparisons focus on the speed and accuracy of each method. The section ends with a
discussion of the differences between each computational method.

3.1 Computational Details

I use the same parameter values as Den Haan et al. (2010) in their symposium on com-
puting the incomplete market model with aggregate uncertainty. These parameter values
are standard in the literature.
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In the following numerical tests, I will compete different computational methods against
each other. In order to facilitate a direct comparison across methods, I will use the same
interpolation method, the same discretization of state variables (e.g. grids) and the same
convergence criteria. In particular, only linear interpolation is used. Furthermore, I use
the same grids for each method. The asset grid is divided into na = 250 non-uniformly
spaced nodes on the interval [

¯
a, 200], with the following polynomial rule14 governing

node placement:

aj = ¯
a +

(
j− 1

na − 1

)2

(200−
¯
a) ∀ j = 1, 2, . . . , na

The aggregate capital grid is divided into nk = 12 uniformly spaced nodes on the in-
terval [33, 45]. All programs were run on a 3.0 GHz Intel Core i7-3450M processor. No
programs were parallelized despite multi-core processing capability. All code was writ-
ten in Matlab R2014a.

3.2 Results: Computational Time

In order compare computational speed across methods, I will consider two experiments.
The reported times are the average across 50 runs of an algorithm.

Experiment 1 In the first experiment, taken from Den Haan et al.’s (2010) JEDC sympo-
sium, I compute a solution when the coefficient of relative risk aversion equals σ = 1.1.
Then I use this solution as a starting guess for solving the model with a CRRA coeffi-
cient equal to σ = 1. In Table 1, I have reproduced Table 2 in Den Haan (2010), which
reports the results of this experiment across each method in the JEDC symposium. Since
Den Haan and Rendahl’s (2010) method of “Explicit Aggregation” was the fastest, I
have normalized its speed to unity and provided the relative speeds for the other meth-
ods. We observe that Reiter’s (2010) method, on which this paper’s method builds, is
the second fastest. Young (2010) performs an updated version of Krusell and Smith’s
(1998) algorithm, which is 44 times slower than Den Haan and Rendahl’s (2010) Explicit
Aggregation algorithm.

Now I run numerical experiment 1 on my method, Den Haan and Rendahl’s (2010)
method and Young’s (2010) version of the Krusell and Smith (1998) algorithm, denoted

14See Maliar et al. (2010) for more details about this node placement method.
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Table 1: Computational Time for JEDC Symposium

Method Time, normalized*

Den Haan and Rendahl (2010) 1
Reiter (2010) 6.7 times slower than Explicit Aggregation
Young (2010) 44 times slower than Explicit Aggregation
Maliar, Maliar, and Valli (2010) 46 times slower than Explicit Aggregation
Algan, Allais, and Den Haan (2010) 391 times slower than Explicit Aggregation

*Times normalized to Den Haan and Rendahl (2010) method.

respectively as “MIX,” “XPA” and “KSY.” To facilitate comparison, I coded each method
using the same grids, interpolation routines, parameter values and convergence criteria.
In principle, all remaining differences in computation time is due to pure differences
in methods. The research reported in Table 1 was not coded in such a comparable
manner, and therefore elapsed time comparisons are confounded by simple differences
in programming conventions.

The results, which are reported in Table 2, show that the Method of Mixture Distributions
is 20.1 times faster than Den Haan and Rendahl’s (2010) Explicit Aggregation method
and 118.3 times faster than Krusell and Smith’s (1998) method.

Table 2: Computational Time

Experiment 1 Experiment 2
Method Inner Outer Total Inner Outer Total

KSY 42.1 sec. 135.4 sec. 177.4 sec. 87.1 sec. 210.9 sec. 298.0 sec.
XPA 27.4 sec. 2.8 sec. 30.2 sec. 149.5 sec. 13.1 sec. 163.6 sec.
MIX 1.0 sec. 0.5 sec. 1.5 sec. 2.2 sec. 1.3 sec. 4.6 sec.

KSY/MIX 42.1 270.8 118.3 36.4 175.9 62.9
XPA/MIX 27.4 5.6 20.1 51.8 9.3 27.4

Experiment 2 For the second experiment, I time the computational speed of the Method
of Mixtures, the Explicit Aggregation method and the Young’s (2010) algorithm under
an alternate specification for initial guesses. In this experiment, initial guesses are not
computed in advance of timing the methods. Instead, the length of time required to
initialize guesses is also timed. This experiment contrasts with the first, in which ini-
tial guesses on policy functions and laws of motion for capital (and the distribution, for
the Intratemporally Consistent Distributions) were computed before the methods were
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timed.

This experiment disproportionately slows the Method of Mixtures, which computes the
steady state distribution in order to provide an initial guess on the intratemporally con-
sistent distribution. On the other hand, I assume that the Explicit Aggregation algorithm
and the Krusell-Smith algorithm are given a standard guess for the initial law of motion:
G(k, z) = (1− δ)k. It turns out that this guess is a relatively close approximation to the
solution.

Table 2 shows that the Method of Mixtures is 27.4 times faster than the Explicit Aggrega-
tion and 62.9 times faster than the Krusell-Smith algorithm. These faster computational
speeds exist despite the advantages given to the Explicit Aggregation and Krusell-Smith
algorithms in terms of initial guesses.

3.3 Results: Accuracy

Following the JEDC symposium (Den Haan, Judd, and Juillard (2010)), I perform three
accuracy tests on the Krusell-Smith method, Explicit Aggregation method and Method
of Mixtures. These tests measure the percent error in Euler equations and the aggregate
law of motion for capital. The details are described in the JEDC symposium. The results
are reported in Table 3, in which I present the mean (L1), maximum (L∞) and 99-th
percentile (P99) of the simulated errors under each test.

Table 3: Accuracy Tests*

Static Euler Dynamic Euler Aggregate Law of
Equation Errors Equation Errors Motion Errors

Statistic KSY XPA MIX KSY XPA MIX KSY XPA MIX

L1 0.0022 0.0234 0.0028 0.0106 0.0254 0.0112 0.0506 0.4811 0.1089
P99 0.0076 0.1710 0.0091 0.0315 0.1860 0.0336 0.1387 0.6815 0.3084
L∞ 0.0297 0.2424 0.0268 0.1966 0.3222 0.1875 0.1643 0.7254 0.3791

*Numerical values are statistics from the distribution of percent errors generated from a 10,000
period simulation. L1, L∞ and Px are, respectively, the average and maximum errors in percentages
and the x-th percentile of the distribution of percent errors.

Table 3 contains the accuracy results. We observe that the Method of Mixtures and
the Krusell-Smith method yield nearly identical results across both static and dynamic
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Euler equation errors, while the Explicit Aggregation method’s errors are an order of
magnitude higher. The Krusell-Smith method has the highest accuracy for the aggregate
law of motion, while the Method of Mixtures generates roughly 2 times higher errors,
and the Explicit Aggregation methods generates roughly twice as large errors as the
Method of Mixtures.

3.4 Discussion

Simulation and Regression The classic algorithm, originally proposed by Krusell and
Smith (1998) and updated by Young (2010), computes the ergodic set of distributions
over a long sample path for idiosyncratic and aggregate shocks. Using the realized dis-
tributions, the algorithm computes the law of motion for aggregate capital by computing
the time-series for aggregate capital from the time-series of distributions and estimating
the log-linear relationship between aggregate capital today and tomorrow from the sim-
ulated data.

The Method of Mixture Distributions, on the other hand, replaces simulation with an
iterative procedure. The method computes the ergodic set of distributions at grid points
on the aggregate state space and directly computes the relationship between aggregate
capital today and tomorrow from the policy function and distributions. Therefore the
law of motion for aggregate capital can be any arbitrary function that maps an aggregate
state vector today into aggregate capital tomorrow.

The iterative method proves faster than simulation-based techniques (such as Young’s
(2010) reformulation of Krusell and Smith (1998) or Reiter’s (2010) reference distribu-
tions). Simulation in Krusell and Smith’s (1998) computational method is time intensive
and significantly slows down convergence.

Simulation and Reference Distributions Reiter’s (2010) method and the Method of
Mixture Distributions differ critically in how they update distributions. Reiter (2010)
solves for the policy function and aggregate law of motion implied by a particular
mapping from distributional moments to distributions. Upon obtaining a solution, his
method simulates distributions implied by the policy function and uses a weighted av-
erage of these simulated distributions to provide a new mapping between distributional
moments and distributions.
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The Method of Mixture Distributions, on the other hand, does not use simulation at any
step. As established, simulation is time consuming relative to iteration. And while both
methods update distributions as weighted averages of prior distributions, the Method of
Mixture Distributions imposes an additional condition on how exactly this is performed.
15

Explicit Aggregation Den Haan and Rendahl’s (2010) Explicit Aggregation method
does not require computing distributions. In principle, this feature of their method
should make Explicit Aggregation faster than the Method of Mixture Distributions.
However, the version of Explicit Aggregation advocated by Den Haan and Rendahl
(2010) requires an aggregate state space containing aggregate shocks and the total capital
held by both unemployed and employed agents. The Method of Mixture Distributions
only requires aggregate shocks and aggregate capital and therefore has a smaller aggre-
gate state vector. It is this feature that makes the Method of Mixture Distributions the
faster algorithm.16

4 Non-Trivial Market Clearing

In Krusell and Smith’s (1998) production economy, market clearing prices can be recov-
ered from the representative firm’s optimality conditions. As a result, a solution to the
model can be written in terms of a law of motion for the aggregate state variables. In-
stead, now consider an endowment economy,17 in which agents trade a non-contingent
bond that is in zero net supply. The market clearing price ensures that for every agent
who wishes to borrow resources, there exists an agent who is willing to lend those
resources. Consequently, the market clearing price must be computed using the distri-
bution over debt position and cannot be simply recovered from a representative firm’s
optimality conditions.

In this section, I demonstrate how to use the Method of Mixture Distributions to compute
15Algan, Allais, and Den Haan (2010) also provide a mapping between distributional moments and dis-

tributions. They parameterize the distribution and, at each iteration of the algorithm, perform a root-
finding procedure to update the distribution. However, the root-finder slows the overall algorithm.
Furthermore, Algan et al. (2010) use Reiter’s (2010) simulation method to recover “reference moments”
to increase the accuracy of the parameterized distribution.

16Note well that (although I have not yet tested this statement) the Explicit Aggregation method may be
the faster method when the state space is restricted to only aggregate shocks and aggregate capital. The
next draft will explore this possibility.

17See Huggett (1993) or Den Haan (1997).
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the set of market clearing prices in an endowment economy with aggregate uncertainty.
It turns out that the method easily extends to the computation of an endowment econ-
omy. The main difference is that in the endowment economy, we know the first moment
of the distribution: market clearing requires that it is zero. Therefore, we will construct
mixture distributions that enforce market clearing prices at each iteration. Furthermore,
as was the case for the Krusell and Smith (1998) model, the Method of Mixture Distribu-
tions can be viewed as an extension of Young’s (2010) method that replaces simulation
with iteration.

In the remainder of this section I will describe the algorithm for endowment economies
and then report the results of speed and accuracy comparisons. The description will
follow the same steps as the previous sections.

4.1 Pure Exchange Economy

Environment Agents in the endowment economy trade a non-contingent bond, b ∈ B,
at a price q ∈ Q. Agents solve the following dynamic program:

v(b, ε, q, z) = max
(c,b′)∈Γ(b,ε,q,z)

u(c) + β ∑
ε′

∑
z′

π(ε′, z′|ε, z)v(b′, ε′, q′, z′)

Γ(b, ε, q, z) =
{

c ≥ 0, b′ ≥
¯
b
∣∣∣ c + qb′ ≤ zε + b

}
q′ = Q(z′)

The associated policy function for bond holdings is denoted g(b, ε, q, z) and is indexed
by the aggregate endowment shock and the contemporaneous bond price. Q : Z → Z
is the equilibrium pricing function, which agents use to forecast future bond prices.

The market clearing condition requires:

∑
ε

∫
B

b f (b, ε; z)db = 0

∑
ε

∫
B

g(b, ε; Q(z), z) f (b, ε; z)db = 0

where f (b, ε; z) is the density over bond holdings and idiosyncratic income shock which
is indexed by the aggregate endowment shock. The first market clearing condition re-

20



quires that bonds are in zero net supply at the beginning-of-period, before trade occurs.
This is an equilibrium restriction on the density function. The second condition ensures
that prices q = Q(z) clear bond markets after trade occurs at the end-of-period, given
policy functions.

4.2 Numerical Implementation

Preliminaries We will place the endogenous state variables on a bond grid b ∈ Gb ⊆ B
with nb nodes and price grid q ∈ Gq ⊆ Q with nq nodes. As before, the exogenous state
variables are placed on grids given by Gz and Gε.

Computing Equilibrium Prices To compute the bond prices, first guess that Q0(z) is
the initial equilibrium price function. At each iteration (n), compute a new price function
Q′n(z) from a given guess Qn(z). To update the guess, we again follow Gaspar and Judd
(1997) in using Fixed Point Iteration:

Qn+1(z) = Qn(z) + ∆ ·
(

Q′n(z)−Qn(z)
)

Iterate until Q′n(z) equals Qn(z) up to the required precision.

Computing Policy Functions Given a price function Qn(z), we will compute the policy
function g(b, ε, q, z|Qn) for each bond price on the grid q ∈ Gq. Agents use Qn(z′)
to forecast future prices and take q ∈ Gq as today’s bond price. As before, I use the
Endogenous Gridpoint Method.

Computing Densities I compute a density function f (b, ε; z) that satisfies an intratem-
poral consistency condition of the following form:

f (b̂, ε; z) =
∫
Q

1 [Γ(q, z) = 0]
(∫
B

1
[

g(b, ε, q, z|Q) = b̂
]

f (b, ε; z)db
)

dq

Γ(q, z) = ∑
ε

∫
B

g(b, ε, q, z|Q) f (b, ε; z)db

This condition requires that the beginning-of-period distribution is consistent with the
end-of-period distribution, in the same way that was discussed above. However, in-
tratemporal consistency changes in one distinct way: the market clearing condition re-
quires that the first moment of the bond-holding distribution is zero.
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In order to numerically implement the fixed point operator that defines an intratempo-
rally consistent density, I will proceed according to the following heuristic outline:

• Step 0 : (Iteration 0)
Given Qn and g(b, ε, q, z|Qn), guess an initial beginning-of-period density, denoted
f0(b, ε; z|Qn).

• Step 1: (Iteration i)
Given the beginning-of-period density fi(b, ε; z|Qn), compute the end-of-period den-
sity:

f ′i (b̂, ε; q, z|Qn) , ∑
b∈Gb

ωb
(
b̂, g(b, ε, q, z|Qn)

)
fi(b, ε; z|Qn)

where b̂ ∈ Gb and the function ωb : Gb ×B → [0, 1] will be defined below.

• Step 2: (Iteration i)
Given the end-of-period density f ′i (b, ε; q, z|Qn), compute the first moment of the end-
of-period density:

Γi(q, z) , ∑
ε∈Gε

∑
b∈Gb

b f ′i (b, ε; q, z|Qn)

• Step 3: (Iteration i)
Given the end-of-period density f ′i (b, ε; q, z|Qn), compute the beginning-of-period
density for iteration i + 1:

fi+1(b, ε; z|Qn) = ∑
q∈Gq

ωq
(
q|Γi(·, z)

)
f ′i (b, ε; q, z|Qn)

where the function ωq : Gq → [0, 1] will be defined below.

• Step 4: (Iteration i)
Verify whether the density satisfies the convergence criterion, for some η > 0 small:

sup
(b,ε,z)

∣∣∣ fi+1(b, ε; z|Qn)− fi(b, ε; z|Qn)
∣∣∣ < η

If so, go to Step 5: (Iteration i) and recover the price function.
If not, go to Step 1 (iteration i + 1).

• Step 5: (Iteration n)
Given f (b, ε; z|Qn) has converged, use the corresponding Γ(q, z) to find market clear-
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ing prices for each z ∈ Gz. That is find Q′n(z) such that

Γ
(
Q′n(z), z

)
= 0 ∀ z ∈ Gz

Continue to updating the price function (as detailed above).

Next I must define and characterize the functions ωb and ωq. These functions govern
how a set of distributions is mapped into itself and, therefore, are crucial for constructing
the ergodic set of densities. The function ωb is defined equivalently to ωa in Section
2.3. The function ωq is similar to ωk (defined in Section 2.3), but has some important
differences that will now be discussed.

The function ωq governs the mapping from the set of end-of-period densities back into
the set of beginning-of-period densities. To compute the beginning-of-period density, I
first find today’s bond price (q) for which the bond market clears (e.g. the distribution
has a first moment equal to zero). However, the value of q for which Γi(q, z) = 0 is not
necessarily on the bond price grid, Gq. To find the density function that corresponds to a
the market clearing bond price, I develop the Method of Mixture Distributions as follows.

I construct a conditional distribution over end-of-period densities, f ′i (b, ε; q, z). The con-
ditional distribution probabilistically allocates distributions over (b, ε) to aggregate states
(z) and contemporaneous bond prices (q), thereby constructing the beginning-of-period
density as a mixture distribution. By construction, the conditional distribution over den-
sities will generate a mixture distribution with the desired first moment of zero.

The conditional distribution function is given by ωq : Gq → [0, 1]. For j = 2, . . . , nq, let
qj ∈ Gq and let z ∈ Gz. The conditional distribution function is given by:

ωq
(
q|Γ(·, z)

)
,



−Γ(qj, z)
Γ(qj+1, z)− Γ(qj, z)

if Γ(qj, z) ≤ 0 ≤ Γ(qj+1, z) and q = qj+1

Γ(qj+1, z)
Γ(qj+1, z)− Γ(qj, z)

if Γ(qj, z) ≤ 0 ≤ Γ(qj+1, z) and q = qj

0 elsewhere


In words, first find the adjacent end-of-period distributions that have first moments
around zero (the market clearing first moment). That is, find {qj, qj+1} for which 0 ∈
[Γ(qj, z), Γ(qj+1, z)]. Then assign a fraction (Γj+1)/(Γj+1 − Γj) of the end-of-period den-
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sity f ′i (b, ε; qj, z) and a complementary fraction (−Γj)/(Γj+1 − Γj) of the end-of-period
density f ′i (b, ε; qj+1, z) to the beginning-of-period density fi+1(b, ε; z). A generic mixture
distribution takes the form:

fi+1(b, ε; z) =

(
1−

−Γj

Γj+1 − Γj

)
f ′i (b, ε; qj, z) +

(
−Γj

Γj+1 − Γj

)
f ′i (b, ε; qj+1, z)

where Γj , Γi(qj, z) and Γj+1 , Γi(qj+1, z).

4.3 Numerical Tests

Computational Details I use the same parameters in Den Haan’s (1997) baseline spec-
ification. The asset grid is divided into nb = 250 non-uniformly spaced nodes on the
interval [

¯
b, 10] according to the polynomial rule:

aj = ¯
b +

(
j− 1

nb − 1

)2

(10−
¯
b) ∀ j = 1, 2, . . . , nb

where the borrowing limit is set to
¯
b = −1.0. The asset price grid is divided into nq = 12

uniformly spaced nodes on the interval [0.99, 1.10].

Computational Time I repeat versions of the two experiments in section 3.2. In the
first experiment, I compute the solution when the coefficient of relative risk aversion
equals σ = 3.0. Then I use this solution as a starting guess for solving the model with a
coefficient of σ = 1.5. In the second experiment, I time the computational speed of each
method under standard guesses. For each method I guess the initial policy function is
b′(b, ε; q, z) = (1− β)b. For the Method of Mixtures, I must initialize distributions by
computing the steady state distribution and find the implied price function. The initial
price function for the other two methods is set to Q(z) = z.

Results are reported in Table 4. The table shows that the Krusell-Smith algorithm is 91
times and 33 times slower than the Method of Mixtures in experiments 1 and 2, respec-
tively. With respect to the Explicit Aggregation method, computation under experiment
1 did not converge under a wide set of starting values. For experiment 2, while the Ex-
plicit Aggregation method converged quickly, we will see that the solution is inaccurate.
From this set of observations, I conclude that this paper’s particular implementation of
the Explicit Aggregation method is not well equipped to compute the equilibria of Pure
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Exchange economies. Further work is needed to determine whether another implemen-
tation may be more robust.

Table 4: Computational Time

Experiment 1 Experiment 2
Method Total Total

KSY 721.4 sec. 791.4 sec.
XPA ∞ sec. 154.6 sec.
MIX 7.9 sec. 24.3 sec.

KSY/MIX 91.3 32.6
XPA/MIX ∞ 6.4

Accuracy Accuracy results for each of the three tests in section 3.3 are reported in
Table 5. We observe that the Method of Mixtures and the Krusell-Smith method yield
nearly identical accuracy results across each test, while the Explicit Aggregation method
has higher errors across each test. Note that the high errors are a result of the simple
specification for the bond prices. In principle, if prices were conditioned on additional
aggregate state variables then agents’ forecasts of future prices would be more accurate.
The results in Table 5 are meant to be suggestive of the relative accuracies across methods
under a common set of assumptions on primitives, not the absolute accuracy achievable.

Table 5: Accuracy Tests*

Static Euler Dynamic Euler Aggregate Law of
Equation Errors Equation Errors Motion Errors

Statistic KSY XPA MIX KSY XPA MIX KSY XPA MIX

L1 2.3526 3.3576 2.3247 2.4461 3.3258 2.4433 0.3813 4.1632 0.3829
L∞ 4.8535 5.4582 4.8287 18.3377 21.9826 18.2313 1.2102 7.1987 1.0526

*Numerical values are statistics from the distribution of percent errors generated from a 10,000
period simulation. L1 and L∞ are, respectively, the average and maximum errors in percentages.

4.4 Discussion

The extension of the Method of Mixture Distributions for the endowment economy is
very similar to the method as it is applied to a production economy. The main difference
is that the market clearing condition for an endowment economy requires that bonds

25



be held in zero net supply. Therefore, the Method of Mixture Distributions constructs
distributions that satisfy the market clearing condition.

Furthermore, the Method of Mixture Distributions can be thought of as an extension of
Young’s (2010) method. Young’s (2010) method essentially guesses a market clearing set
of prices as a function of the aggregate state, computes policy functions and then sim-
ulates distributions to recover the relationship between prices and aggregate states. In
terms of computational intensity, simulation in an endowment economy requires finding
a market clearing bond price at each period of time along the sample path. Given that
simulation requires a long sample path, a large number of root-finding computations
must be implemented.

The Method of Mixture Distributions replaces simulation in Young’s (2010) method with
iteration. Iteration on the intratemporally consistent density operator constructs densi-
ties as mixtures over conditional distributions (ωq) in a way that induces market clear-
ing. Therefore iteration avoids implementing root-finding computations, except upon
convergence when a root-finder recovers the market clearing prices directly. Therefore,
the speed gains from iteration can be large. Furthermore, this method allows for an ar-
bitrary pricing function whereas simulation specifies a particular function and estimates
its parameters.

5 Conclusion

This paper provided a new method for computing equilibrium in a large class of economies
featuring heterogeneous agents, incomplete markets and aggregate uncertainty. Follow-
ing the Journal of Economic Dynamics and Control’s January 2010 symposium, I illustrated
this new method’s mechanics within the context of Krusell and Smith’s (1998) production
economy. I additionally provided an extension of the method to endowment economies,
in which market clearing prices must be solved explicitly. I compared the Method of
Mixture Distributions to other methods in the JEDC symposium and found that it is
faster and approximately as accurate.

The Method of Mixture Distributions can be regarded as an alternative to stochastic
simulation, such as Young’s (2010) method, that avoids both cross-sectional and time-
series sampling error. The Method of Mixture Distributions approximates the ergodic

26



set of distribution functions through an iterative procedure, instead of simulating a long
sample path of distributions. As a result, the Method of Mixture Distributions is faster
and does not require parametric specifications for either the law of motion for aggregate
state variables (or for bond price functions in an endowment economy).

Lastly, the Method of Mixture Distributions only requires a parsimonious aggregate state
vector. Therefore, relative to methods that do not utilize any sort of simulation, such as
Den Haan and Rendahl’s (2010) method of Explicit Aggregation, the Method of Mixture
Distributions is capable of computing equilibrium faster – it does not require as many
functional evaluations over the aggregate state space.
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A Appendix: Pseudo Algorithms

(0) Obtain initial distribution

• Compute the steady state density function over Ga × Gε, denoted fss

• Transform fss to f0 s.t. for each S ≡ (k, z) ∈ Gk × Gz:

∑
ε

∫
A

a f0(a, ε; k, z) = k (MCC)

• Transformation 1 (Reiter): Rescale Ga so that MCC holds and then interpolate f0

back onto grid.

• Or Transformation 2 (Sager): Compute steady state for kL and kH corresponding
to different β and use:

f (a, ε; k, z) = (1−ω(k))λss(kL) + ω(k)λss(kH) ∀k ∈ Gk

where the MCC is guaranteed by setting weights as:

ω(k) =
kH − k

kH − kL

(1) Compute policy function given fi

• Guess g = g1(a, ε; k, z)

• Compute

G(k, z| fi) = ∑
ε

∫
A

g(a, ε; k, z) fi(a, ε; k, z)da

• Compute gi(a, ε; k, z) given G(k, z| fi) via EGM

c(a′, ε; k, z) = u−1
c

(
β ∑

ε′,z′

π(ε′, z′|ε, z)
π(z′|z) uc

(
y(s′| fi)− g(s′| fi)

)
R(G(k, z| fi), z′)

)
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â(a′, ε; k, z) = R(k, z)−1 (c(a′, ε; k, z) + a′ − w(k, z)ε
)

g(a′, ε; k, z) = Φ
(
â(a′, ε; k, z), a′|a′ ∈ Ga

)
• If gi+1 = gi, stop.

(2) Iterate once on distribution fi → fi+1

• Compute

f̂i(a′, ε; k′, z) =
∫
K

∫
A

1[gi+1(a, ε; k, z| fi) = a′, G(k, z| fi) = k′] fi(a, ε; k, z)dadk

such that
G(k, z| fi) = ∑

ε

∫
A

gi+1(a, ε; k, z) fi(a, ε; k, z)da

• Update
fi+1(a, ε; k, z) = (1− δ) fi(a, ε; k, z) + δ f̂i(a, ε; k, z)

• Return to (1)

A.1 Pure Exchange Economy

Here I outline the pseudo-algorithm for computing equilibria of the pure exchange econ-
omy studied in Den Haan (1997), as was featured in the main text.

(0) Obtain initial distribution

• Compute fss

• Transform fss to f0 s.t. for each z ∈ Gz:

∑
ε

∫
B

b f0(b, ε; z) = 0 (MCC)

• Transformation 1 (Reiter): Rescale Gb so that MCC holds and then interpolate f0

back onto grid.

• Or Transformation 2 (Sager): Compute steady state for zL and zH to initialize
f0(b, ε; z).

– Set g0(b, ε; q, z) = gss(b, ε; Qss(z), z) ·
(

1− q
Qss(z)

)κ
, κ > 0
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(1) Compute policy function given fi(b, ε; z) and initial guess gi(b, ε; q, z)

• Compute
Qi(z) =

{
q s.t. ∑

ε

∫
B

gi(b, ε; q, z) fi(b, ε; z)db = 0

}

• Compute gi+1(b, ε; q, z) given Qi(z) and s′ = (b′, ε′; Q(z′), z′) via EGM

ci(b′, ε; q, z) = u−1
c

(
q−1β ∑

ε′,z′

π(ε′, z′|ε, z)
π(z′|z) uc

(
y(s′)−Qi(z′)gi(s′)

))

b̂i(b′, ε; q, z) = ci(b′, ε; q, z) + qb′ − zε

gi+1(b′, ε; q, z) = Φ
(

b̂i(b′, ε; q, z), b′|b′ ∈ Gb

)
• If gi+1 = gi, stop.

(2) Iterate once on distribution fi → fi+1

• Compute

f̂i(b′, ε; z) =
∫
Q

∫
B

1[gi+1(b, ε; q, z| fi) = b′, Gi(q, z) = 0] fi(b, ε; z)dbdq

such that
Gi(q, z) = ∑

ε

∫
B

gi+1(b, ε; q, z) fi(b, ε; z)db

• Update
fi+1(b, ε; z) = (1− δ) fi(b, ε; z) + δ f̂i(b, ε; z)

• Return to (1)

A.2 Production Economy with Two Moments in State Space

Consider the production economy in section 2.2. Let ν be the variance of the wealth
distribution and expand the aggregate state space to include both the first and second
moments of the distribution: S ≡ (k, ν, z).

Let s = (a, ε; k, ν, z). Compute four steady states corresponding to {ki, νi}i∈{L,H}. Trans-
form into initial guess f0(a, ε; k, ν, z) using bilinear interpolation on distributions.
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Forecasts:

Gk
i (k, ν, z) = ∑

ε

∫
A

gi(a, ε; k, ν, z) fi(a, ε; k, ν, z)da

Gν
i (k, ν, z) = ∑

ε

∫
A

gi(a, ε; k, ν, z)2 fi(a, ε; k, ν, z)da

Otherwise, inner loop stays the same: gi 7→ gi+1

Outer loop becomes: fi 7→ fi+1

f̂i(a, ε; k, ν, z) =
∫
K×V×A

Γi

(
â, k̂, ν̂|a, k, ν

)
fi(â, ε; k̂, ν̂, z)dâdν̂dk̂

Γi

(
â, k̂, ν̂|a, k, ν

)
= 1

[
gi+1(â, ε; k̂, ν̂, z) = a, Ĝk

i (k̂, ν̂, z) = k, Ĝν
i (k̂, ν̂, z) = ν

]
Ĝk

i (k, ν, z) = ∑
ε

∫
A

gi+1(a, ε; k, ν, z) fi(a, ε; k, ν, z)da

Ĝν
i (k, ν, z) = ∑

ε

∫
A

gi+1(a, ε; k, ν, z)2 fi(a, ε; k, ν, z)da

fi+1(s) = (1− δ) fi(s) + δ f̂i(s)

where the numerical implementation of Γ contains a two dimensional root finder over
(k, ν):

Ψ(k̂, ν̂|k, ν, z) =

Ĝk
i (k̂, ν̂, z)− k

Ĝν
i (k̂, ν̂, z)− ν

 =

0

0


This is the most computationally expensive step of the algorithm.

Instead of a root finder, split into two interpolation routines:

K̂(ν̂) ≡ Gk−1(k; ν̂)

H(ν̂) ≡ Gv(K̂(ν̂), ν̂)

ν̂∗ = H−1(ν)

k̂∗ = K̂(ν̂∗)

Relative to KS98 with two moments, I avoid the simulation step. However, I must solve
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a two-dimensional fixed point Ψ(k̂, v̂) = 0 for each element of the aggregate state space
S = (k, ν, z) at each iteration. As the number of included moments increases, it is
possible that simulation will be a faster method. This is because simulation automatically
generates a time series {kt, νt}T

t=0 and N-linear regressions will be faster to compute than
an N-dimensional fixed point for N sufficiently large.

kt+1 = βk + βkkkt + βkννt + εk

νt+1 = βν + βνkkt + βνννt + εν

A.3 Economy with Equity and Bonds

Following Krusell and Smith (1997), consider an economy in which agents have access
to two types of assets: one-period equity and one-period debt.

Let s = (a, b, ε; k, q, z). Compute four steady states and transform into initial guess
f0(a, b, ε; k, z) (elaborate).

Forecasts:

Gk
i (k, q, z) = ∑

ε

∫
A×B

ga
i (a, b, ε; k, q, z) fi(a, b, ε; k, z)dadb

Gq
i (k, q, z) = ∑

ε

∫
A×B

gb
i (a, b, ε; k, q, z) fi(a, b, ε; k, z)dadb

Qi(k, z) =
{

q s.t. Gq
i (k, q, z) = 0

}
Otherwise, inner loop stays the same: gi 7→ gi+1

• Define:
s′ =

(
ga

i (s), gb
i (s), ε′; Gk

i (k, q, z), Qi(k, z), z′
)

c′i(s
′) = y(s′)− ga

i (s
′)−Qi(z′)gb

i+1(s
′)

y(s) = w(S)ε + R(S)a + b

• Compute policy functions with EEb, EEa, BC (respectively):

ci+1(a, b, ε; k, q, z) = u−1
c

(
β ∑

ε′,z′

π(ε′, z′|ε, z)
π(z′|z) uc

(
c′i(s
′)
)

R(S′)

)
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ga
i+1(a, b, ε; k, q, z) = u−1

c

(
q−1β ∑

ε′,z′

π(ε′, z′|ε, z)
π(z′|z) uc

(
c′i(s
′)
))
·

ga
i (s)

ci+1(s)

gb
i+1(a, b, ε; k, q, z) = q−1

(
y(s)− ci+1(s)− ga

i (s)
)

Outer loop becomes: fi 7→ fi+1

• Update the distribution:

f̂i(a, b, ε; k, z) =
∫
K×Q×A×B

Γi

(
â, b̂, k̂, q̂|a, b, k

)
fi(â, b̂, ε; k̂, z)dâdb̂dk̂dq̂

Γi

(
â, b̂, k̂, q̂|a, b, k

)
= 1

[
Ψs

i (â, b̂, ε; k̂, ν̂, z|a, b) = 0, ΨS
i (k̂, q̂, z|k, 0) = 0

]
fi+1(s) = (1− δ) fi(s) + δ f̂i(s)

• The numerical implementation of Γ contains a two two-dimensional root finders. The
first gives the aggregate state today that delivers the aggregate state tomorrow:

ΨS
i (k̂, q̂, z|k, 0) ≡

Ĝk
i (k̂, q̂, z)− k

Ĝq
i (k̂, q̂, z)− 0


Given the aggregate state, the second fixed point gives the individual state today that
delivers the individual state tomorrow:

Ψs
i (â, b̂, ε; k̂, q̂, z|a, b) ≡

ga
i (â, b̂, ε; k̂, q̂, z)− a

gb
i (â, b̂, ε; k̂, q̂, z)− b


where

Ĝk
i (k, q, z) = ∑

ε

∫
A×B

ga
i+1(a, b, ε; k, q, z) fi(a, b, ε; k, z)dadb

Ĝq
i (k, q, z) = ∑

ε

∫
A×B

gb
i+1(a, b, ε; k, q, z) fi(a, b, ε; k, z)dadb

This is the most computationally expensive step of the algorithm.

Alternatively to a two-dimensional root finder for the aggregate fixed point:

K̂(q̂) ≡ Gk−1(k; q̂, z)
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H(q̂) ≡ Gq(K̂(q̂), q̂, z)

q̂∗ = H−1(0)

k̂∗ = K̂(q̂∗)

A.4 Heterogeneous Firm Economy

Following Khan and Thomas (2008), consider an economy with heterogeneous firms that
are subject to frictions that distort investment decisions.

Let s = (a, ε; k, p, z). Compute steady states and transform into initial guess f0(a, ε; k, z).

Forecasts:

Gk
i (k, p, z) = ∑

ε

∫
A

gi(a, ε; k, p, z) fi(a, ε; k, z)da

Grc
i (k, p, z) = ∑

ε

∫
A
[y(a, ε; k, p, z) + (1− δ)k− ci(a, ε; k, p, z)] fi(a, ε; k, z)da

Pi(k, z) =
{

p s.t. Gk
i (k, p, z) = Grc

i (k, p, z)
}

Otherwise, inner loop stays the same: gi 7→ gi+1

• Compute policy functions of Bellman equation:

π(s) = max
n
{zεF(k, n)− w(k, z)n + (1− δ)k}

V(s) = pπ(s)− pw(k, z) ·
∫ ξ̄

0
ξG(dξ) + G(ξ̄)W(ε, k, p, z) + (1− G(ξ̄))Wc(ε, k, p, z)

W(s) = max
a′
−γpa′ + β ∑

ε′,z′
π(ε′, z′|ε, z)V(a′, ε′; Gk

i (k, p, z), Pi(Gi(k, p, z), z′), z′)

Wc(s) = max
a′∈[κa,κa]

−γpa′ + β ∑
ε′,z′

π(ε′, z′|ε, z)V(a′, ε′; Gk
i (k, p, z), Pi(Gi(k, p, z), z′), z′)

Outer loop becomes: fi 7→ fi+1

• Update the distribution:

f̂i(a, ε; k, z) =
∫
K×P×A

Γi

(
â, k̂, p̂|a, k

)
fi(â, ε; k̂, z)dâdk̂dp̂
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Γi

(
â, k̂, q̂|a, k

)
= 1

[
Ψs

i (â, ε; k̂, p̂, z|a) = 0, ΨS
i (k̂, p̂, z|k, 0) = 0

]
fi+1(s) = (1− δ) fi(s) + δ f̂i(s)

• The numerical implementation of Γ contains root finders. The first gives the aggregate
state today that delivers the aggregate state tomorrow:

ΨS
i (k̂, p̂, z|k, 0) ≡

 Ĝk
i (k̂, p̂, z)− k

Ĝrc
i (k̂, p̂, z)− Ĝk

i (k̂, p̂, z)


Given the aggregate state, the second fixed point gives the individual state today that
delivers the individual state tomorrow:

Ψs
i (â, ε; k̂, p̂, z|a) ≡ gi(â, ε; k̂, q̂, z)− a

where

Ĝk
i (k, p, z) = ∑

ε

∫
A

gi+1(a, ε; k, p, z) fi(a, ε; k, z)da

Ĝrc
i (k, p, z) = ∑

ε

∫
A
[y(a, ε; k, p, z) + (1− δ)k− ci+1(a, ε; k, p, z)] fi(a, ε; k, z)da

This is the most computationally expensive step of the algorithm.

A.5 Indivisible Labor and Incomplete Markets

Following Chang and Kim (2007), consider a production economy similar to Krusell and
Smith (1998) in which agents receive idiosyncratic income shocks and choose whether
or not to be employed each period.

Let s = (a, ε; k, z) be the state vector. If an agent is employed they work a fixed number of
hours, denoted h̄, and otherwise an agent works zero hours but receives an unemploy-
ment benefit. Let the value of being employed be denoted by ve(a, ε; k, z) and the value
of being unemployed be denoted by vu(a, ε; k, z). The agent’s labor decision is denoted
h(a, ε; k, z) ∈ {0, h̄} and is chosen according to:

v(a, ε; k, z) = max
h∈{0,h̄}

{(
1− h/h̄

)
vu(a, ε; k, z) +

(
h/h̄

)
ve(a, ε; k, z)

}
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Guess {vu
0(s), ve

0(s), g0(s), f0(s)}. Compute steady states and transform into initial guess
f0(a, ε; k, z). Use guesses on (vu, ve) to compute v(s) and h(s).

Forecast capital and compute future prices:

Gi(k, z) = ∑
ε

∫
A

gi(a, ε; k, z) fi(a, ε; k, z)da

li(k, z) = ∑
ε

∫
A

εhi(a, ε; k, z) fi(a, ε; k, z)da

r′i(k, z, z′) = αz′Gi(k, z)α−1li(Gi(k, z), z′)1−α − δ

w′i(k, z, z′) = (1− α)z′Gi(k, z)αli(Gi(k, z), z′)−α

Inner loop: gi 7→ gi+1, vi 7→ vi+1

• Compute policy and value functions for each type, where (ĝi, ĉi) are recovered from
the budget constraint and Euler equation:

v̂i(s) = max
h∈{0,h̄}

{(
1− h/h̄

)
vu

i (s) +
(
h/h̄

)
ve

i (s)
}

v̂u
i (s) = u(ĉi(a, ε; k, z), 0) + βv̂i(a, ε; k, z)

v̂e
i (s) = u(ĉi(a, ε; k, z), h̄) + βv̂i(a, ε; k, z)

• Dampen (vu, ve, g)

• Recover employment decision and savings decision:

hi+1(s) = arg max
h∈{0,h̄}

{(
1− h/h̄

)
vu

i+1(s) +
(
h/h̄

)
ve

i+1(s)
}

ĝi(s) =
(
1− hi+1(s)/h̄

)
ĝu

i (s) +
(
hi+1(s)/h̄

)
ĝe

i (s)

Outer loop becomes: fi 7→ fi+1, li 7→ li+1

• Update the distribution:

f̂i(a, ε; k, z) =
∫
K×A

Γi

(
â, k̂|a, k

)
fi(â, ε; k̂, z)dâdk̂

Γi

(
â, k̂|a, k

)
= 1

[
gi(â, ε; k̂, z) = a, Gi(k̂, z) = k

]
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fi+1(s) = (1− δ) fi(s) + δ f̂i(s)
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