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Abstract 
 
Labor Force surveys are often designed with rotating panels of households, where 
households remain in the survey for a set number of months and then rotate out of the 
sample. Rotation patterns often induce correlations that can be exploited to increase an 
estimate’s efficiency. To further improve precision, the US Current Population Survey 
(CPS) uses an AK Composite estimator that consists of two primary components: a 
calibrated estimate, and an estimate of change using overlapping panels between adjacent 
months. 
 
Panels may exhibit effects in their Labor Force estimates based on the number of months 
a panel remains in the survey—often called month-in-sample effects. Panel effects affect 
the AK Composite estimator in a particular fashion, and effects change over time. It’s 
important to consider carefully how these panel effects influence the Composite estimator. 
This paper looks at the practical aspects of panel effects, and how those practical 
considerations interact with theoretical considerations. In particular, we look at the 
following topics: choosing an estimator, estimation of inputs such as panel effects, and 
optimizing a Composite estimator for multiple estimates of change. 
 
Keywords: Labor Force Survey, Relative Bias, Linear Estimator, Month-in-Sample Bias, 
Mean Square Error 
 
 

1. Introduction 
 
Labor Force surveys are important tools to measure the state of an economy. To help ensure 
a quality, unbiased measure of the Labor Force, statistical agencies use a random sample 
of households, and one or more individuals are asked specific questions about Labor Force 
participation and demographic characteristics of each household member. Samples often 
use complex designs involving multiple stages of sampling and complex rotation patterns. 
The rotation patterns ensure that a household remains in the sample a specific number of 
months over the course of a year and between years. The month-in-sample (MIS) is used 
to refer to the number of months a household has been in the sample. 
 
Estimation methods typically involve nonresponse adjustments and some form of 
calibration to population totals to help reduce variances and ensure accurate population 

1 The opinions expressed in this paper are those of the author and do not reflect official policy at 
the Bureau of Labor Statistics. 



estimates for demographic categories such as race, sex, age ranges, ethnicity, and their 
various cross-classifications. The design creates positive correlations across time for 
various estimates, which makes estimates of changes more efficient. One method used by 
Labor Force surveys to increase efficiency is Composite estimation. The Composite 
estimation used by the Current Population Survey is a two-parameter model called the AK 
Composite estimator (Gurney and Daly, 1965; Ernest and Huang, 1981). While the 
estimator’s efficiency increases, the bias may also increase due to consistently different 
Labor Force estimates within each month’s panel, depending on how long the panel has 
remained in the sample. The phenomenon is often referred to as “month-in-sample bias.” 
The MIS bias patterns and their changes over time may impact the choice of composite 
estimate as well as the composite estimator’s parameters.  If no bias exists in the MIS, then 
a simpler estimator may be preferred. 
 
This paper looks at Composite estimation in the Current Population Survey, how Labor 
Force estimates differ between MIS, and the theoretical and practical impacts of those 
differences. The paper consists of 6 sections including the introduction.  Section 2 provides 
a brief overview of the Current Population Survey. Section 3 describes differences in 
month-in-sample effects. Section 4 describes different Composite estimators and their 
attempts to account for the MIS bias. Section 5 describes several practical considerations 
for Composite estimates as well as the theoretical considerations for each issue. Section 6 
provides a summary. 
 

2. Current Population Survey 
 
The CPS is a Labor Force survey conducted by the U.S. Census Bureau for the Bureau of 
Labor Statistics (BLS).  The CPS uses a multi-stage, stratified systematic sample of 
households. The first stage stratifies groups of similar counties by characteristics related to 
Labor Force participation and unemployment. A single primary sampling unit (PSU) is 
selected within each stratum, and a systematic random sample of households is drawn from 
within each PSU. The systematic sample allows samples of households to be easily divided 
into panels. Each panel consists of approximately 9,000 households. Panels follow a 4-8-4 
rotation design, where panels remain in the sample for 4 consecutive months, fall out of 
the sample for the next 8 months, and then return to the sample for a final 4 months. This 
rotation design allows a high level of household overlap between consecutive months and 
between the same months in consecutive years. 
 
An example may better illustrate the rotation design. In January, 2010, a panel enters the 
survey for the first month.  It remains in the sample for 3 additional months, through April, 
2010.  It then drops from the sample for 8 months. The panel enters the sample again in 
January, 2011, and finally exits the CPS after April, 2011. January, 2010 – April, 2010 are 
referred to MIS 1 – 4, and January, 2011 through April, 2011 are referred to a MIS 5 – 8. 
 
  



Estimation involves multiple stages of weight adjustments to account for nonresponse and 
proper accounting of different demographic groups. After the initial weighting steps for 
nonresponse, there are three main post-stratification weighting steps that align the survey 
estimates to population totals: 

 
1. A “State Coverage” and “National Coverage” adjustment.  
2. A raking step to match specific Age/Race/Ethnicity combinations at the National 

and State levels. The estimate is referred to as Second Stage (SS) estimator by CPS. 
It contains three distinct adjustments by Race, Ethnicity, and Age, for both 
National and State estimates. 

3. A Composite estimate combining the Ratio Raking estimate and a measure of the 
over the month change using the continuing panels. A weighting procedure aligns 
all estimates to a set of composite estimates for select demographic groups. 

 
Tech paper 66 from the U.S. Census Bureau provides more information on these estimation 
methods. 
 
The composite estimation step uses the AK Composite estimator of Gurney and Daly (1965) 
and discussed and studied for CPS by Ernst & Huang (1981). 
 

 ' '
1 1,

4ˆ1
3t t t t t tY K Y K Y A 

 
      

 
 

8
/

, 0 0
1

ˆ ˆ  ;  t i t

i

Y y Y Y


   

1, , , 1 , ,
2,3,4, 1,2,3, 1,5 2,3,4,

    6,7,8     5,6,7 6,7,8

1 ; 
3t t i t i t t i t i t

i i i i

y y y y 

   

         

 
where ,i ty  is a sum of Second Stage weights for a given Labor Force status for month-in-

sample i at time t, and t̂Y  is the Second Stage estimate. Provided that the expected value of 
each panels’ Labor Force estimate is unbiased, the Composite estimator is also unbiased 
(Rao & Graham, 1964). In the absence of any reliable measure of bias, we usually assume 
that the Second Stage estimates are unbiased. As we discuss in the following section, each 
MIS provides noticeably different Labor Force estimates.  
 

3. Panel Bias 
 
While the impact of MIS bias was noted in early research on Composite estimates, Bailar 
(1975) provides one of the more prominent discussions of its impact on the CPS. With 
consistent additive MIS effects, she shows how these effects impact Labor Force estimates 
of levels as well as changes. Solon (1986) discussed and challenged the assumption of 
additive MIS effects, and devised a test to determine the effect type. Erkens (2012) 
provides an updated overview of additive MIS effects’ impact by looking at the time series. 
In his paper, he provides the following definitions for MIS biases ,i td : 
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Yi,t are panel i’s estimate of the population value Yt. The ,
ˆ

i td are monthly estimates 
of the MIS bias for each panel. 
 
Provided that the MIS effects are constant, the bias of level estimates for the AK 
Composite estimator is  
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Note that only four MIS impact the bias. The AK Composite estimator provides a lower 
Labor Force estimate as the MIS effects for 1 and 5 increase and the effects of MIS 4 and 
8 decrease (Erkens, 2012). 
 
Figure 1 shows smoothed additive effects of unemployed for each MIS. A LOESS 
regression fit (smoothing parameter set to .35) is plotted instead of the actual time series to 
aid interpretation. The vertical reference lines indicate the 1994 and 2003 CPS redesigns. 
 

 
 Figure 1: Time series plot of MIS biases. Actual values  
 of Level estimates of Unemployed smoothed with LOESS. 
 
Inspecting MIS 1,4, 5, and 8 show that the necessary pattern mentioned before occurs over 
the time interval in Figure 1. Judging by this chart, the MIS biases were somewhat stable 
prior to 1990. After 1990, the bias patterns started to change. Erkens (2012) provides an 
additional discussion of MIS effects and their changes. The impact of these changing MIS 
effects is considered in section 5. 



 
4. Composite Estimation 

 
The CPS has used some form of a Composite estimator since 1954 (Tech Paper 66). Huang 
& Ernst (1981) reviewed the impact of the AK Composite on CPS Labor Force estimates, 
measured the impact of the variance and the Mean Square Error, and decided on 
appropriate parameters. 
 
Later research by Breau and Ernst (1983) provided a more general form for the Composite 
estimator called the Generalized Composite Estimator (GCE): 
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The AK Composite is a special form of the GCE in which the a and b parameters take the 
following values: 
 

MIS a b MIS a b 

1 1 – K + A 4/3 5 1 – K + A 4/3 

2, 3, 4 1 + (K – A)/3 4/3 6, 7, 8 1 + (K – A)/3 4/3 

 Table 1: a and b parameter values for the AK 
 Composite estimator using the GCE. 
 
The Composite estimator was extended beyond the CPS to general balanced rotation 
designs in a paper by Cantwell (1989), who makes the following assumptions: 
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The first condition states that the variance is stationary and constant across panels.  Shao, 
Zhou, and Cheng (2014) use a similar set of assumptions to optimize the AK Composite 
estimator. Those authors present a simulation showing improved MSEs for monthly level 
estimates, but the work did not extend the results to estimates of change—which are some 
of the more important estimates for the CPS. 
 
Cantwell’s work was extended by Park, Kim, and Hoi (2001). They defined the conditions 
for a balanced, rotating design, relaxed the Composite estimator’s independence and 
variance assumptions, and assumed the following correlation structure: 
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where /t t  and the panels at time periods t and /t  are from an adjacent systematic 
sample. In the CPS if a panel is in MIS 1 at time t, then a panel with similar households 
will enter the sample at time /t = t + 17. The households at the two distinct time periods 
are different, but the neighborhoods often have similar characteristics. Park et al (2001) 
calls this a second-order correlation, and notes that accounting for positive correlations has 
significant impact on the variances of Labor Force estimates (pp. 1491-1492). 
 
They also allowed the panel variances 2

i  to differ amongst the MIS. Given the generally 
categorical nature of the Labor Force responses, the variances for the CPS are described in 
terms of a binomial response, so a different proportion of Employed or Unemployed in a 
MIS may lead to a different variance. Park still maintains the stationary variances to 
develop his formulas and assumes stationary MIS effects, and we discuss and explore those 
assumptions later. 
 
Similar to Cantwell (1989), Park et al (2001) provides variance formula for different types 
of GCE estimates. Park also provides formulas for the MSE and Langragian equations to 
optimize the GCE for these quantities for multiple types of estimates. 
 
Erkens (2012) also worked with the GCE, but reformulated it and provided a simpler form 
to estimate optimal parameters. He worked with the MSE of a level estimate for 
Unemployment, but the results extend to other Labor Forces and estimates of change. 
Under his formulation both the variance and bias are quadratic. To achieve a quadratic 
form, sums over the t months are replaced with exponentially weighted moving averages. 
The final form is more simplistic, and only the parameter vectors a and b are optimized. A 
value of K must be selected beforehand and remain unaltered over time. 
 
We provide some additional exposition of that paper’s results here. The GCE’s recursion 
may be expanded to the initial month t = 0, which achieves the following form: 
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The summations involving K and indexed by j can also be expressed in terms of an 
exponentially weighted moving average. Consider a t-term exponential moving average: 
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Substituting  1  = K, the leftmost summand is similar to the weighted sums of t terms 
in the GCE, and those sums may be expressed as: 
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A derivation is in the appendix. The previous expression is associated with the GCE’s a 
parameters, and a similar expression is available for the b parameters. The ,1ˆt

iK y  acts as 
an intercept, but its influence degrades exponentially with time. When considering the bias 
and variance, we decided to ignore these intercept terms for the following two reasons: 
 

1. K is fixed, so variances from the intercept terms will exponentially decay. Even 
for employment with K = .7, variances decay to a marginal level after 12 months 
(.724  .02%). 

2. It is easier computationally to ignore the intercepts. 
3. We’re more interested in the long-term effects of compositing as MIS effects 

evolve over months and years.   
 
For these reasons we decided to ignore any product with Kt for large t. After doing so we 
have the following approximate value of the GCE: 
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The approximate variance of the GCE is therefore 
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where COV  is a variance-covariance matrix of the integrated moving averages of each 
MIS in months t and t-1, and  a b is the column vector of the a and b parameters from the 
GCE.  The  [ 1  -K ]  is a concatenation of row vectors where 1 is a 1 x 8 vector of 1, and 
K is a 1 x 8 vector of the parameter K. The  is a Hadamard product. 
 
We note again that terms with Kt are removed here since we’re most interested in optimal 
composite estimates over multiple years. After a single year, these terms have a negligible 
impact on the variance in the formula given above. These terms should be accounted for 
during the initial months following a composite estimates initialization. 
 



Cantwell (1989) and Park et al (2001) each use a correlation matrix in their variance and 
MSE formulas.  Equation (2) may be expressed in a similar form.  
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Where   is a vector of the 8 MIS standard errors, and COR  is a correlation matrix. The 

( )diag   is a square matrix with i  of the   vector in row i column i and zeroes 
elsewhere. 
 
To derive the GCE’s bias we may rewrite the GCE in terms of the MIS effects ,

ˆ
i td . After 

revising the GCE and ignoring terms with Kt, we have the following formula: 
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And the approximate bias is clearly  
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The squared bias expressed in matrix form is  
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where B is a row vector of the MIS biases.  The bias and variance both have a quadratic 
form, so the final formula for the MSE of the GCE is approximately 
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Note that the variance and the bias are separate components. The MSE has the same form 
for level estimates, estimates of change, and annual averages.  As a result, components 
from different estimators may be easily combined to optimize for different aspects of a 
Labor Force estimate – such as the variance of a change estimate and the bias of a level 
estimate.  This characteristic is explored in section 5. 
 

5. Practical Considerations 
 
When considering a survey estimator, we must consider both theoretical and practical 
aspects.  For example, the GCE contains more parameters and may likely give a more 
efficient estimate, but in the absence of MIS effects the efficiency gains are negligible. 
Previous Compositing research specifies some formulas and the assumptions behind those 
formulas—such as the variance and correlation assumptions noted in section 4. Estimating 
those inputs is not necessarily a simple process. The variances and MIS effects contain 
sampling error, so estimates may be imprecise and hurt the efficiency of Composite 
estimates. Some of the assumptions may also not hold true, which further effects efficiency. 



In this section we consider the following practical topics and their impact on the GCE: 
looking beyond the MSE, estimating MIS effects, estimating MIS variances, and 
optimizing for multiple estimates. 
 

5.1 Exploring both Variance and Bias components 
 
The two main versions of Compositing considered for the CPS have been the AK 
Composite estimator and the GCE. Each version of Compositing comes with benefits and 
drawbacks. The AK Composite provides a fairly transparent estimator that is easily 
described to data users, but it only possesses two parameters which may limit efficiency. 
The GCE contains many more parameters and greater flexibility, but its form is not as 
transparent for a nontechnical audience. For the loss of transparency, the GCE would need 
to provide some substantial benefits, which depend upon the impact of the MIS effects.  
 
Most papers discussing Composite estimation focus on the reduced variance and/or MSE 
of Composite estimates, but it’s important to consider the tradeoffs when accounting for 
the relative bias. Figure 2 and 3 plot respectively the relative biases and standard errors of 
the over-the-month changes for Unemployed level estimates for the Second Stage, the 
Current AK Composite, an Optimized AK Composite, and the GCE. We defaulted to the 
current values of K used in the CPS for Unemployed (K = .4). Instead of optimizing for an 
MSE, both of the optimized composite estimators target the bias of monthly level estimates 
and the variance of the OTMC.  All values are smoothed with LOESS to show the general 
pattern.  
 

 
 Figure 2: Relative Bias of level estimates optimized 

 
 



 
 Figure 3: Standard error of over-the-month change estimates for  
 Second Stage (Ratio) estimate and various composite estimates. 
 
While the relative biases of the AK and GCE are comparable, the optimized AK estimator 
(green) provides a larger standard error than the Second Stage estimator (gold). Some 
authors (Shao, Zhou, and Cheng, 2014) optimize the MSE alone for the AK. While their 
theoretical results are interesting, it’s important to consider both the variances and the 
biases of targeted estimates. If eliminating the bias in monthly levels is important, then 
previous charts indicate that the AK estimator may be insufficient, as its SEs tend to exceed 
the Second Stage estimate. 
 
5.2 Estimating MIS Effects 
 
Figure 1 showed smoothed MIS effects over 25 years, but those effects contain a significant 
amount of variation. Figure 4 plots additive MIS effects for Unemployment from 1996 – 
2013. The darker lines are LOESS smoothed values for effects from MIS 1 and 8, while 
the lighter lines show the actual time series for each MIS. 
 



 
 Figure 4: Plot of original and LOESS smoothed series of MIS  
 relative biases. 
 
 
Note that there’s a considerable amount of noise in the series. Some autocorrelation still 
exists in a first-differenced transformed series, but it is not large enough to construct good 
forecasts with an ARIMA model. Equation 1 shows that most of the bias comes from the 
first 4-6 months when Kt-1 is larger, so averaging MIS effects over a series of months seems 
problematic given the nonstationary behavior and the lopsided impact of near-term values. 
To better understand the impact, we ran a simulation with the following two different inputs 
for the MIS effects B for month t in equation 4:   
 

1. A mean average of MIS effects for months t – 24 through t 
2. The exponentially weighted moving average of each MIS effect through month t 

 
Figure 5 below shows the impact on the relative bias of 6-month change estimates for 
employed for the two different estimates of the MIS effects. Two characteristics are 
immediately noteworthy. First, most authors assume that MIS effects are constant. This 
assumption implies that estimates of levels may be biased while estimates of change remain 
unbiased, but for some measures of change this assumption is clearly not true. Second, how 
the MIS effects are measured affects the relative bias. The left panel in figure 5 uses 

 ˆ
t iS d  in the vector of bias terms in equation 4. The right panel uses MIS effects 

consistent with the stationary assumption. Even though the GCE produces a smaller 
relative bias for level estimates, the relative bias of a 6-month change appears to contain 
more relative bias in the right panel. If different monthly changes are important to a survey, 
then it’s important to assess how the relative biases in the GCE’s optimization impacts 
estimates of interest. 
 
 



 
 Figure 5: LOESS smoothed plots of relative biases of 6-month  
change estimates for Employed estimates. 

 
 
5.3 Estimating MIS Variances 
 
As shown in equation 4, month-in-sample variances are an important component of the 
GCE. Much previous research assumes the MIS variances and correlations in the GCE are 
constant. Variances for Labor Force estimates consist of the product of the binomial 
variance (n-1pq) and a design effect (McIllece, 2016), so changes in the Labor Force (such 
as the recession in 2008) could present significant changes in the variances. There’s also a 
significant amount of noise in the replicate variances for each MIS, which could make 
estimates of the variances volatile and changes over time hard to detect. We may reduce 
some of the volatility by using a Generalized Variance Function – a regression model 
relating replicate variances to characteristics of the survey design and its estimates (Wolter, 
2007). GVFs often group multiple estimates to calculate model parameters, but McIllece 
(2016) presents a GVF for a single series that we employ for each MIS. 
 
Figure 6 shows a time series plot of the replicate variance for MIS 1 as well as a 
Generalized Variance Function for the same series. 
 
 



 
 Figure 6: Time series of the replicate standard errors and GVF  
 standard errors for Employed in MIS 1. 
 
 
The GVF presents a much smoother series, and it indicates that variances may be 
nonstationary. The GVF series also exhibits behavior we might expect given the economic 
cycle. 
 
Nonstationary variances may be incorporated into equation 4 by a linear transformation of 
an MIS monthly variances. Recall that the non-zero components of ( )diag   are basically 
variances of the moving averages  tS y . 
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Assuming that any product with tK  for 12t   makes the associated term negligible, we 
have: 
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Since all components yj are independent we only need the Var(yj), which the GVFs provide. 
For an estimate of over-the-month change, we use the same general idea and isolate the 
individual jy . 
 
To test the efficacy of using GVFs in Composite estimation, we used the GVFs variances 
in place of averaged replicate variances in ( )diag  . Figures 7 and 8 are similar to figures 
2 and 3, but figures 7 and 8 are based on Employed. Once again, we estimate parameters 
to minimize the variance of the OTMC and the relative bias of monthly levels. 



 

 
 Figure 7: Relative biases for different Composited level  
 estimates of Employed.  
 
 
 

 
 Figure 8: Standard errors of different Composite estimate  
 for Employed. 
 
Figure 7 shows that the relative biases with and without the GVFs are comparable, but 
figure 8 shows that the resulting standard errors are about 5% lower when using the GVF 
variances for inputs, which indicates that the additional smoothing provides some benefits 
for the time period analyzed here. 



 
5.4 Optimizing for multiple estimates 
 
Some of the primary estimates from the CPS are estimates of Labor Force changes, but 
analysts use a variety of Labor Force estimates to better understand general trends and the 
economy’s current status.  Some of the estimates include: levels, 3-month changes, 6-
month changes, 12-month changes, and annual averages. If considering each estimate of 
change in optimization, each estimates’ components compete with each other. In figure 8 
we plotted standard errors of OTMC estimates after optimizing for the OTMC variance 
and the bias of level estimates. We could improve the variance if we eliminate the bias 
component from optimization, but the estimate’s bias would be considerably larger. 
 
The same tradeoffs occur for any estimate – optimization for one component affects other 
components – so we need to understand the tradeoffs and interactions of optimizing 
components for each estimate of interest. To balance between different estimates we may 
write the objective function in terms of the variance and bias terms in equation 4: 
 

      var, var, , ,
1

*( , ) ( , ) ( , )
m

c c bias c bias c

c

f a b w f a b w f a b


   (5) 

 
where f * is the objective function used in the quadratic minimization, and wVar,c and wBias,c 
are weights attached to the variance and bias components of equation 4 for estimate c. The 
higher a component’s weight the more influence that component has in the optimization. 
 
The AK composite estimator could be optimized by looking at each estimates’ bias-
variance tradeoffs on a grid of A and K parameter values, and selecting values that meet 
the desired outcomes. The GCE contains 17 parameters, so the same approach becomes 
much more complicated. To overcome this difficulty, we could borrow from the literature 
on large-scale simulation experiments. 
 
Sanchez and Wan (2015) describe the role of experimental designs in military simulation 
experiments. Military simulations often use a specified model and simulate multiple 
replications of that model to test a variable’s impact. Instead of varying one component at 
a time, experimental designs are employed to reduce the number of simulations and isolate 
the impact of each component. The impact may be measured by modeling the outcome (i.e., 
variance or bias) dependent on a component’s weight.  
 
 
To explore the impact of an experimental design, we used a Nearly Orthogonal Latin 
Hypercube (NOLH) design provided by the Naval Post Graduate School’s SEED center 
for data farming (Sanchez, 2011). These designs provide the following benefits: 
 

 Nearly orthogonal quantitative factors (absolute correlations won’t exceed .03) 
 Near orthogonality holds for all factors as well as first-order interactions. 
 Space filling properties that uniformly cover the range of interesting parameter 

values (Sanchez and Wan, 2015; Cioppa and Lucas, 2007) 
 Ability to add experiments by a simple permutation of the columns (Cioppa and 

Lucas, p. 52) 
 



Sanchez (2011) provides an Excel workbook with NOLH designs for a large number of 
quantitative factors. To test the design we used the bias and variance of three different 
estimates using six of the 7 columns in a 7-factor design. Weights wVar,c and wBias,c are taken 
from this design with a range [.01,1], and optimal parameters for the GCE calculated based 
on those weights. The left section of table 2 shows the first 6 rows of the design matrix 
from Sanchez for four factors. We used these values as objective function weights in 
equation 5. The right section of the table shows the weights in which a single factor is 
varied, which we use to test the NOLH design. 
 

 
Weights for simulation with Designed 

Experiment  
Weights for simulation for single 

varied factor 

Run wVar,otmc wBias,otmc wVar,Level wBias,Level   wVar,otmc wBias,otmc wVar,Level wBias,Level 

1 0.01 0.69 0.63 0.2   0.01 0.5 0.5 0.5 

2 0.07 0.26 0.88 0.57   0.07 0.5 0.5 0.5 

3 0.13 0.44 0.07 0.26   0.13 0.5 0.5 0.5 

4 0.2 0.63 0.32 1.00   0.2 0.5 0.5 0.5 

5 0.26 0.07 0.57 0.88   0.26 0.5 0.5 0.5 

6 0.32 1.00 0.81 0.38   0.32 0.5 0.5 0.5 
Table 2: First six rows of a experimental design matrix for an NOLH design (left) 
and a design with one factor varied. 
 
We calculated optimal GCE parameters and the resulting SEs for OTMC estimates using 
the two sets of weights in equation 5. Note that table 2 only shows the first six rows of the 
design matrix, while a total of 17 rows exist. 
 
To measure the impact of changing an input’s weight, we look at each simulations’ 
standard errors relative to the standard errors from optimizing the OTMC variance. All 
simulation are based on the Employed Labor Force. Table 3 shows regression parameters 
where the dependent variable is the relative SE and the independent variable is the input 
weight for the variance of the OTMC (wVar,otmc). The regression is run with and without the 
NOLH design. 
 
 

 
Parameter Estimates with and 
without a NOLH Design 

 

Variable Parameter 
Estimate 

Standard 
Error 

t Value 

Without 
NOLH 

Intercept 1.10831 0.00329 337.32 
wVar,otmc -0.03202 0.00558 -5.74 

 

    

With 
NOLH 

Intercept 1.10474 0.00325 340.12 

wVar,otmc -0.03425 0.00551 -6.21 

 Table 3: Univariate regression parameters for wVar,otmc in  
 simulations without and with the NOLH design. 
 
  



The regression parameters and their standard errors are very similar with and without the 
NOLH design. This test seems to indicate that the experimental design provides a 
reasonable method to explore relationships between the objective function’s input weights 
and different estimates’ characteristics. While experimental designs seem common in 
large-scale simulations, there use in survey estimation seems unexplored, so further 
exploration is prudent to verify that relationships and interactions are well-measured.  We 
also want to note that simulations provide an initial estimate of relationships that must be 
measured and verified with actual data. 
 

6. Summary 
 
Composite estimation is useful method to improve the efficiency of Labor Force estimates, 
but it may be biased if the MIS Labor Force estimates differ consistently from each other. 
The main inputs into the GCE are MIS effects, panel correlations, and panel variances. The 
MIS effects also evolve over time, and even short-term variations may cause changes to 
different measurements of Labor Force changes. Variances are also volatile, so 
measurement of each input impacts the efficiency of a Composite estimate. 
 
This paper looked at several different practical considerations with respect to inputs for the 
GCE. While practical, each one contains a theoretical consideration. The GCE shows that 
the impact of MIS effects are front-loaded to the most recent month. Replicate variances 
are very noisy and possibly non-stationary. For each input, it’s important to consider how 
to best measure that input to provide more reasonable measurements for a Composite 
estimator. We looked at several scenarios and alterations with real data, and can 
demonstrate a positive impact for the time period in our study. The final consideration 
looks at how we might properly balance between multiple estimates. While the CPS’ 
purpose is to make Labor Force estimates, it’s important to consider a Composite 
estimator’s impact of the many other estimates created by the CPS. 
 
 

Appendix 
 
Consider a t-term exponential moving average: 
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Substituting  1  = K, the leftmost summand is identical to the weighted sums of t 
terms in the GCE, and those sums may be expressed as: 
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  for large values of t since 0 < K < 1. 
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