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Abstract

Survey estimates may be susceptible to the influence of sample units having large design
weights associated with unusual observed values. Especially in smaller samples, these
sample units can influence estimates disproportionately causing them to be very unstable.
In this paper, we consider several model-based approaches for weight smoothing where
the design weights are modeled as a function of observed survey quantities. Using these
modeled weights, one hopes to reduce volatility in the weights, thus producing better
estimates. In this paper we extend prior work on the Current Employment Statistics
Survey (CES). Several prospective models are used for the weights, including LOESS
curves and Bayesian methods. The new "smoothed" weights are then used to create new
survey estimates and we compare these estimates to the true value. Analysis of the fitted
weights is performed in the end to find cases where "smoothed" weights may give worse
estimates.
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1. Introduction

Weight smoothing has been proposed as a method of adjusting survey weights to reduce
variance of survey estimates. In the classical design-based framework, sample weights
are viewed as fixed non-random quantities reflecting unequal sample inclusion
probabilities as well as possible adjustments usually related to survey nonresponse or
frame deficiency. It is well known that survey estimates may be inefficient if the design
weight is not related to the variable of interest or if this relationship is not strong.
Alternatively, under the model-based approach to inferences from survey sampling,
reviewed in Pfeffermann and Sverchkov (2009), or the generalized design-based
inference approach of Beaumont (2008), the sample weights are viewed as realizations of
a random vector. The advantage of viewing the problem in this manner is that it gives the
opportunity to model the survey weights conditioning on observed sample quantities.

With regard to the CES survey, we are interested in estimating the relative over-the-
month change of employment, Ry, defined as the ratio of the total employment in the

current month, Y, , to total employment in the previous month, Y, ,. The variable of
interest, reflecting the influence of individual measurements on the target estimate, is the
“residual”, rj; = yj¢ — Ryyjt—1, Where yj and yj;_, are the observed unweighted
employment for the current and previous month of sample unit j. (For the moment, we



suppose that R, in the above residual is known.) Using these quantities, we are interested
in models of the form w; = f(r]-,t) + ej, with w; being the survey weight for unit j, f() is
some function of the residuals and e; is some random error . After modeling, we use
these new “smoothed weights” to create estimates of R, which we hope are more
efficient than estimates based on the original weights. In previous work on weight
smoothing for CES, Gershunskaya and Sverchkov (2014) took this approach with some
success.

In this paper, we expand on the number of models and how their tuning parameters
considered in the previous CES work. The models include LOESS, Penalized B-Spline
models with restrictions on their tuning parameters and a Bayesian Model. We compare
the results to the currently used CES estimator that employs a two tail Winsorization
method.

2. The CES Survey

2.1 CES Frame and Sample Selection

The CES survey derives its frame from Quarterly Census of Employment and Wages
(QCEW) program. The QCEW is an administrative program that collects employment
and wage information from all establishments covered under the unemployment
insurance (UI) on a quarterly basis.

From the derived frame, CES chooses a stratified simple random sample of Ul accounts,
that is, when a UI account is chosen all establishments under that UI account are included
in the sample. Stratification is performed by state, industry supersector (a grouping of
North American Industrial Classification System codes), and total employment size.
Optimal allocation at a fixed constant cost per a unit is used to minimize the variance of
over the month change is used to allocate a fixed state sample size to the strata.

2.2 CES Estimator

The primary estimate of interest for the CES survey is the over the month change R,. The
estimator used is defined as follows:

= YjeseWiVjt
Rt =
Yjes WiYjt-1

where j denotes the establishments, t is the current month, yk: and Y1 denote the
employment of sample units in the current and previous months, and S; is the “matched
sample” or the set of sample units reporting positive employment in the current and
previous months.



To produce monthly estimates of levels, we use the annual census value produced from the
QCEW, Y,, and apply the ratio with ¥,—; = YyR,~; and subsequent months estimated as

Y, = Y,_1R;. For more details see the BLS Handbook of Methods.

2.3 Challenges of Estimation

As we described above, the optimal allocation used at the CES survey sample design stage
is aimed to minimize the variance of the over the month change estimate. Ideally, such
allocation strategy should produce “optimal” weights for the efficient survey weighted
estimator. However, in the realized sample, a sample unit with a large weight may grow at
a rate much faster than expected during the design stage; as a result, it may not necessarily
represent other units in the population to the degree its sampling weight might suggest.
This large change in employment in conjunction with the large weight overly influences
the ratio estimate. We can see this in the first order Taylor expansion on the

~ 1
Ry = Ry + EZjESt w; (¥t — ReVjt-1)s

where Yt is total employment in month t-1 and Ry is the change of employment from month

t-1to tand wj; is the design weight. Supposing that there is a large change in employment,

in the Taylor expansion a single unit can influence the ratio estimate by shifting it

wi(yjt=ReYje-1)
Yeq

year revisions or highly variable over the month changes.

units, which can be disproportionate in some cases causing large end of the

The current solution on the CES survey is a form of Winsorization where the cut offs are
determined by a method devised by Kokic and Bell (1994) and adapted to CES in
Gershunskaya and Huff (2004), Gershunskaya (2011). Weights are then either censored to
the cutoff values or in more extreme cases removed from the ratio altogether.

3. Weight Smoothing

In this section, we begin to consider weight smoothing as a solution to the challenges we
presented in the previous section. We start by considering the survey weights as random
rather than fixed quantities. We may then model the weights as a function of some
response variable, w; = f (r]t) + ej ¢, where f is some function we fit, 7;; is the residual
from the previous section, and e; is some error term. Our new smoothed weights would
then be v; = f (rj’t). The hope is that we can produce this new set of “smoothed” weights
with reduced variation in the weights and better aligned with the survey response to give
us increased efficiency in our estimates. Theoretical justifications and empirical evidence
for this approach have been presented in Beaumont (2008).



3.1 Application to CES

In our application of weight smoothing to the CES survey, we consider modeling the design
weights conditioned on our “residuals”, 7, = yj — R;Yj—1. We use an estimate of
R; since we do not observe the true value. A typical scatter plot of these two variables
is presented below. Some observations to make is that the variance of residuals tends to
decrease as weight increases, some amount of skewness in the scatter plot, and some
observations have a relatively large change in employment given its weight.
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For CES, the weight smoothing approach was first considered by Gershunskaya and
Sverchkov (2014). Their work considered using non-parametric LOESS models fit to the
data with encouraging results; the new smoothed weights produced estimates with
typically lower revisions and tracked the “true” changes in employment closer. We use
the values from the QCEW as a proxy for truth.

3.2 Models

Below is a survey of the models we used in our application of weight smoothing
and a brief description.

3.2.1 LOESS
LOESS, or locally weighted regressions (Cleveland 1979), is a non-parametric model that

creates regressions at each point using q nearest neighbors. The regressions are weighted
as a function of the distances from that point to its q nearest neighbors. To fit the model, a



few tuning parameters must be chosen. In general a “smoothing” parameter s € (0,1]
must be chosen. s is the percentage of data to be used in each regression.

As stated in the previous section, these models were first considered in the original CES
work performed by Gershunskaya and Sverchkov (2014). The models were fit in SAS
using their automatic parameter selection technique.

We will consider some restrictions on the smoothing parameter. The SAS Proc LOESS
procedure gives the user the option to set an upper and lower bound on the potential
smoothing parameter. SAS will perform its model selection based on the restricted
domain of smoothing parameters, choosing the one that minimizes some criteria. Please
see the SAS website for more details

3.2.2 Penalized B-Splines

Penalized B-splines (Eilers and Marx 1996) are another non-parametric model we tested
in our weight smoothing application. B-splines are piecewise polynomials connected at x
values called knots. We demand that adjacent polynomials be continuous at knots.
Furthermore with Penalized B-Splines we add a penalty on the estimates of coefficients
to not over fit the data. This penalty is controlled by the tuning parameter A, with larger
values of A producing smoother curves.

We fit the splines to the data using the SAS Transreg procedure letting SAS choose the
smoothing parameter with its automatic selection procedure. We consider different upper
bounds on the smoothing parameter A in our research.

3.2.3 Bayesian Model

We finally consider one Bayesian model to condition our weights on residuals using the
typical Bayesian formulation

P(wj|ry) < P(rj]w;)P(w))

Where P(a)]-) is our prior distribution holding our beliefs about the design weight of unit

j. P(rj|a)j) is our likelihood function for the residuals deciding how likely a residual is
given our weight. We placed a truncated normal prior on our weights with mean of the
design weight.

a)j~N(Wj, T) wj6[1,100]

Where wj is the original design weight and 7 is its precision. We use precision, defined as
the inverse of variance —, in lieu of variance as is tradition with much Bayesian statistics.

We place a prior on T as T~Uniform(.1,1). The idea is that the design weight w; is a good
initial guess and this information should be included into the prior.

We define our likelihood on the residuals as a Student’s t-distribution, once again using
precision for the scale parameter.
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We finally attempted to fit flat priors on the other parameters y, v with some trial and error
done to decide the parameters.
u~Normal(0,.001)
v~Uniform(20,100)
o~InvGamma(.01,.01)
a~Uniform(.01,2.5)

We finally used the JAGS (Just Another Gibbs Sampler) software package to perform our
MCMC (Markov chain Monte Carlo) sampling from the posterior distribution, P(wj|7;),
for each of the weights. From the samples we took the mean for each weight as our new
smoothed weight.

4. Results

4.1 Evaluation Criteria

Estimates were made for publication cells at the State, MSA, and Industry Classification
for the 2011,2012 and 2013 benchmark years. There were 2351 publication cells for 2011
and 2012 and there were 2199 publication cells for the 2013 benchmark year.

We fit models monthly by state and industry classification. We did not fit at MSA level
due to small sample sizes. Using the smoothed weights from the models, we produced
CES estimates as described in section 2.2. To evaluate the performance of our estimators
we used the following criteria. We use the QCEW as our proxy for truth in evaluation.
We denote 171,12 as our estimator at month 12 for publication cell i and Y] ;, as the QCEW
value at month 12 for publication cell i. First we consider the end of the year benchmark
revision.

rev; = (Yi,lz - Yi,12)
We also consider the relative benchmark revisions for publication

Yii, — Yi
relRev; = —( L1z 1'12)
~ Yi12
Denoting Y; ; as our estimator of month t for publication cell i and Y; ; as the QCEW
value at month t for publication cell i, we consider the average absolute difference in over

the month change to see how well the estimator matched changes in the QCEW.

12
1 ~ N
6= 2 |Fo = Fim2) = (i = Yigo)|
t=1

We calculate these criteria for all publication cells and present summary statistics of them
in the next section.



4.2 Model Results

We tried different models and restrictions on their tuning parameters, however for the
sake of brevity, we only include selected models that performed well. There also did not
appear to be a significant improvement by using one set of tuning parameters versus
another, Most differences were between types of models. We did note worse results for
2011 and 2013 for LOESS when restricting the lower bound of the smoothing parameter.

In the tables below we label the LOESS model as LOESS (LB, UB) where LB is the
lower bound on the tuning parameter and UB is the upper bound on the tuning parameter.
We label the Penalized B-Spline as Spline Lambda < UB where UB is the upper bound
of the smoothing parameter. No other variations on the Bayes model were attempted due
to time constraints, we simply label it Bayes.

Table 1 below contains summary statistics of benchmark revisions. One can see that in

most cases the absolute mean of the LOESS model is the smallest.

Table 1: Benchmark Revision Summary Statistics for Chosen Models

2011 Benchmark Year

Min | 1st Quartile | Median | Mean | 3rd Quartile Max
Robust Estimator -27140 -863 -101 -161 601 16970
LOESS (0, 0.8) -17770 -649 -14 2 558 35210
Spline Lambda < 1000 | -19220 -650 -32 -96 462 23570
Bayes -21890 -897 -177 -368 357 11020
2012 Benchmark Year
Min | 1st Quartile | Median | Mean | 3rd Quartile Max
Robust Estimator -48470 -1008 -109 -340 592 25500
LOESS (0, 0.8) -50200 -950 -128 -480 491 33540
Spline Lambda < 1000 | -50160 -952 -165 -589 404 27110
Bayes -49540 -932 -179 -462 381 24610
2013 Benchmark Year
Min | 1st Quartile | Median | Mean | 3rd Quartile Max
Robust Estimator -15490 -816 -81 -111 650 14270
LOESS (0, 0.8) -20820 -599 10 11 622 64350
Spline Lambda < 1000 | -18000 -640 -32 -138 499 21030
Bayes -14080 -776 -121 -283 386 10090

On the next page we include the summary statistics for Relative Benchmark Revision and

Average Absolute Difference of Over the Month Change Summary Statistics. ...




Table 2: Relative Benchmark Revisions Summary Statistics for Chosen Models

2011 Benchmark Year

Min 1st Quartile | Median | Mean | 3rd Quartile Max
Robust Estimator -38.97% -3.47% -0.45% | -0.36% 2.50% 96.97%
LOESS (0, 0.8) -43.73% -2.58% -0.10% | 0.08% 2.33% 208.50%
Spline Lambda < 1000 | -43.73% -2.53% -0.16% | -0.09% 2.01% 192.50%
Bayes -35.75% -3.25% -0.82% | -0.69% 1.61% 73.25%
2012 Benchmark Year
Min 1st Quartile | Median | Mean | 3rd Quartile Max
Robust Estimator -65.14% -3.77% -0.58% | -0.49% 2.40% 121.90%
LOESS (0, 0.8) -64.75% -3.58% -0.60% | -0.61% 2.31% 114.60%
Spline Lambda < 1000 | -64.23% -3.58% -0.80% | -0.88% 1.90% 108.00%
Bayes -63.97% -3.40% -0.82% | -0.67% 1.58% 133.90%
2013 Benchmark Year
Min 1st Quartile | Median | Mean | 3rd Quartile Max
Robust Estimator -48.58% -2.92% -0.44% | -0.27% 2.39% 46.97%
LOESS (0, 0.8) -48.24% -2.07% 0.05% 0.19% 2.37% 48.37%
Spline Lambda <1000 | -47.84% -2.24% -0.17% | -0.08% 1.96% 49.92%
Bayes -48.14% -2.67% -0.55% | -0.49% 1.65% 37.56%

Table 3: Average Absolute Difference of Over the Month Change Summary Statistics for

Chosen Models
2011 Benchmark Year
Min | 1st Quartile | Median | Mean | 3rd Quartile | Max
Robust Estimator 7 183 341 454 574 | 8930
LOESS (0, 0.8) 7 149 264 396 472 | 18040
Spline Lambda < 1000 6 151 282 479 542 | 7457
Bayes 8 161 272 377 462 | 4474
2012 Benchmark Year
Min | 1st Quartile | Median | Mean | 3rd Quartile | Max
Robust Estimator 6 206 389 653 725 | 13920
LOESS (0, 0.8) 5 162 309 601 641 | 13710
Spline Lambda < 1000 4 150 294 581 629 | 13540
Bayes 6 173 322 594 636 | 13750
2013 Benchmark Year
Min | 1st Quartile | Median | Mean | 3rd Quartile | Max
Robust Estimator 5 200 378 566 666 | 8353
LOESS (0, 0.8) 5 160 300 504 570 | 7507
Spline Lambda < 1000 6 151 282 479 542 7457
Bayes 5 174 315 497 564 | 7945




We will briefly look at some of the extreme cases to see where improvements could be
made. Below is a monthly time series of all our estimates including the QCEW labeled as
ES202 in graph below. We can see that the LOESS, the blue line in Figure 1, model
tended to overestimate over the month change, with one extreme happening in August.

Figure 1: Bad LOESS Estimate
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To understand why this occurred, we plotted the model fit of weight vs residual for each
of our three models below. The black dots are the design weights and the red line is our
model fit. One should note that the LOESS model up-weighted large positive residuals in
this model fit causing over estimation of the ratio. This is a model problem that would
need to be remedied in some manner either through weight trimming or analyst review.



Figure 2: Model Fits for Bad LOESS Model
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The next example is one where the Bayes estimator fails to perform well. We will look at
the change between October to November due to it estimating a gain in employment rather

than a drop. You can see this in the time series below.

Figure 3: Time Series of Estimators, Bad Bayes Estimate
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We can once again look at the graph of the model fit. We can see the one outlier circled
in green that failed to be down weighted by the Bayes model, unlike the other models.
This caused the positive jump in employment rather than decline reported by the other
models.

Figure 4: Model Fits for Bad Bayes Model
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5. Conclusions
We make the following observations and conclusions about our results:

o Fitting a model to our weights generally reduced benchmark revisions, reduced
the variance of revisions across estimation cells, and better estimated over-the-
month change than the robust estimator.

e We consider the LOESS model the best due to it outperforming the robust
estimator in most evaluation statistics.

e Penalized B-Splines and the Bayes Model generally under estimated the true
employment value though still reducing the variance of the revisions across
estimation cells.

e The Bayesian Model mitigated large outliers the best and reduced variance of
estimates the best. However a large consistent negative bias and large
computation time make the model impractical.



¢ Idiosyncrasies of the model fits can cause large outliers and would need to be
mitigated through some process as seen in the time series of estimates.

5. Future Work

Although current results look promising, some work still remains to be done before one
considers using a process such as this in production. This work includes:

e  Current work is being done on calculating the variance of estimates from weight
smoothed weights.

o Is there any benefit to an MSA level “effect”? If an MSA is different than the
others the modeled weights may give poor results for that MSA.

e Can we check to see how well two models agree on their estimates of weights to
detect poor fits? As in the case of the bad LOESS model we presented, perhaps
this problem can be caught by checking against the Spline model in some
fashion.

o Is there any benefit to further trimming weights or removing them from the ratio
either before or after model fitting?
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