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Disclosure Limitation

An essential mission of BLS:
Disseminating public data on labor
market activity, working conditions, and
price changes.

Balance: confidentiality vs. satisfactory
data utility.
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Consumer Expenditure 
Survey

 Consumer Expenditure (CE) Survey 
Collects information on the buying 
habits of U.S. consumers.

 Two components: Quarterly Interview 
Survey (focus of this study) and the 
Diary Survey

 Provides data on expenditures, income, 
and consumer unit (families and single 
consumers) characteristics.
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Importance of CE

 The only Federal survey to provide information on the 
complete range of consumers' expenditures, incomes, 
and characteristics.

 Economic policymakers: examining the impact of 
policy changes on economic groups,

 Businesses and academic researchers: studying 
consumers' spending habits and trends,

 Bureau of Economic Analysis uses CE data to analyze 
rental equivalence, maintenance and repairs, and 
travel

 For Consumer Price Index: market basket of goods 
and services and their relative importance.
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CE SDL Process

 Consumer Expenditure Survey microdata
release requires statistical disclosure 
limitation (SDL).

 Objective: Conceal personally identifiable 
information (PII) to preserve the 
confidentiality and anonymity of survey 
participants.

 Production Process: “top-coding” and 
numerical impact.
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Top-coding

Let yα be the α percentile value for variable y.
Then variable y is top-coded by replacing all values yi in 
the set A = {yi | yi > yα }, by 

This transformation preserves the mean of variable y.

e.g. the reported annual income of a high income 
household might be replaced by the average of the 
annual income for all high-income household’s in the 
region. 6
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Olivia is an Outlier
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Olivia Rivers (F),  
Income: $542,508

Silver Spring, Montgomery 
County, MD (pop 71,452) Note:  This example is 

completely fabricated. 
For  illustration purposes 

only.



Top-Coding Example
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Olivia Rivers (F),  
Income: $246,921

Silver Spring, Montgomery 
County, MD (pop 71,452)

Replace Olivia’s income with
average of top 3% incomes for

female earners in her age group
in Silver Spring.
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Example: Overlap of 
Household Income
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Data Utility Measures

 Analysis-specific:
Compare regression coefficients from 

confidential data vs. top-coded data for the 
same analysis.  

Confidence Interval Overlap (IO) or 
Ellipsoid Overlap (EO)

 Global:
Compare propensity scores percentiles

Compare clusters in cluster analysis

Compare Empirical CDFs
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Linear Models

 Topcoded: 𝒚𝑡 = 𝑿𝜷𝑡, Confidential: 𝒚𝑐 = 𝑿𝜷𝑐

 CE Data: 2008, 2009, 2010 and 2011 public 
released micro data and confidential data.

 Notation:

𝒚𝑡 − top-coded expenditure (property taxes, 
utilities, health care and domestic services)

𝒚𝑐 − confidential expenditure

𝜷𝑡, 𝜷𝑐 − corresponding coefficients

𝑿 − covariates matrix (household income and 

other demographic variables for MLR) or 
household income for SLR
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Demographic Variables

 Housing tenure (owner or not)

 Geographical region (Northeast, Midwest, South, 
West)

 Number of members in the household, number of 
persons over 64 in the household

 Number of members under age 2 in the household

 Reference person’s:

 Age

 Ethnicity

 Education attainment

 Gender
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A Statistical Distance 
Measure

 Our contribution: a statistical distance
based measure of bootstrap empirical
distribution.

 Our goal:
To develop statistical distance measures

that can be applied to expenditures model,
e.g. multiple linear regression (MLR) or
simple linear regression (SLR).

For program office to gauge how much
changes had been made by top-coding.
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Sufficient Statistics
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 MLR: 𝒚𝑛×1~𝑁(𝑿𝜷, 𝜎2𝑰), 𝑇 𝑦 = (𝒚𝑇𝒚, 𝑿𝑇𝒚) is
the complete sufficient statistics.

 For SLR:  𝑇 𝑦 =  𝑖=1
𝑛 𝑋1𝑖𝑦𝑖 ,  𝑖=1

𝑛 𝑦𝑖
2

 If assume 𝑋1~𝑁(𝜇1, 𝜎1
2), then in its complete

sufficient statistics,  𝑖=1
𝑛 𝑋1𝑖

2 seems to be a

“spread-like” component.

 Consider a combined form of sufficient
statistics:

  𝑇 𝑋, 𝑦 =  𝑖=1
𝑛 𝑋1𝑖𝑦𝑖 ,  𝑖=1

𝑛 𝑋1𝑖
2 ,  𝑖=1

𝑛 𝑦𝑖
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Bootstrap

 Sample is obtained from an unknown
population and the sampling distribution of
the statistics of interest is unknown.

 Use resampling of data to approximate the
sampling distribution.

 Take 𝑚 simple random samples of size 𝑛 from
𝑥1, 𝑥2 , … , 𝑥𝑛 with replacement (SRSWR), 

for each resample, calculate  𝜃∗ = 𝑇  𝑥𝑅 . The

histogram of  𝜃∗ values approximates the 

sampling distribution of  𝜃.
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Bootstrap of Sufficient 
Statistics
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 For each data set from 2008 to 2011, we
resampled 1,000 times of simple random
sampling with replacement (SRSWR).

 At each SRSWR resample, a pair of

confidential  𝑇 𝑋, 𝑦 and top-coded  𝑇  𝑋,  𝑦

were computed.

 Bootstrap empirical distributions of
confidential and top-coded sufficient
statistics.



Modified Kullback–Leibler
divergence
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 Motivation: likelihood ratio between empirical
distributions. Denote density functions:

 𝑃 𝑖 =  Φ  𝑇 𝑋, 𝑦 , Q 𝑖 =   Φ  𝑇  𝑋,  𝑦

 𝑖 − the 𝑖𝑡ℎ resample/replicate

 𝐷𝐾𝐿2 𝑃||𝑄 =  𝑖=1
𝑛 ln

𝑃 𝑖

Q 𝑖

2

𝑃(𝑖)

 Estimate  Φ and   Φ by Kernel-Smoothing (KS)

numerical integration (base is equally divided).



SLR: Property Tax vs. Household Income
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SLR: Utilities vs. Household Income
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SLR: Health Care vs. Household Income
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SLR: Domestic Services vs. Household 
Income
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Limitations of Bootstrap 
Sufficient Statistics K-L D2
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None of them seem works
perfectly.

Sufficient statistics are under SLR
model and unconditional.

What about under a MLR model?
Especially when one component
must be conditioning on others?



Comparing Empirical Distribution of 
Bootstrap MLR βHH Income
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 MLR model: 𝑦𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑝𝑋𝑝𝑖

 𝛽1: Household (HH) income

 𝛽2, ⋯ , 𝛽𝑝: owing or not, region, household

size, … , reference person’s age, education, …

 For each data set from 2008 to 2011, we
resampled 1,000 times of SRSWR

 At each SRSWR resample, a pair of
confidential  𝛽1|𝛽2,⋯,𝛽𝑝

and top-coded   𝛽1|𝛽2,⋯,𝛽𝑝

were computed.



Bootstrap of MLR βHH Income
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 Compare bootstrap empirical distributions
between confidential (𝑐) and top-coded (𝑡 −
𝑐) coefficients of HH income:

Plot 𝛽𝑡−𝑐 𝑣𝑠. 𝛽𝑐

Estimate K-L D2

 Consider: 𝛽𝑡−𝑐 = 𝑏0 + 𝑏1𝛽𝑐 + 𝜀

 In a perfect world: 𝑏0 = 0, 𝑏1 = 1 and 𝜀 = 0

 But in reality: 𝑏0 ≠ 0, 𝑏1 ≠ 1 and 𝜀 ≠ 0



Bootstrap MLR βHH Income: Property Tax

25



Bootstrap βHH Income: Utilities
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Bootstrap βHH Income: Health Care
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Bootstrap βHH Income: Domestic Services
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MLR: Property Tax vs. Household Income

29



MLR: Utility vs. Household Income
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MLR: Health Care vs. Household Income
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MLR: Domestic Services vs. Household 
Income
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Summary

 Sufficient statistics based distributional distance does
not seem to work perfectly.

 Bootstrap empirical distribution of coefficients
approach seems promising to reflect the numerical
impact of top-coding when compared to original data
(statistics distance vs. deviation of parameter of
interest).

 Future works:

 Could the modified K-L D2 be scaled into a sort of
standardized indicator?

 Bootstrap Procedure implementation for program office?

 How does the modified K-L D2 affect the shape of 𝛽𝑡−𝑐 𝑣𝑠. 𝛽𝑐?
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