### Project 8/9: User's Guide to Income Imputation in the CE





### The content of this training presentation is derived from the "User's Guide to Income Imputation in the CE" (https://www.bls.gov/cex/csxguide.pdf)



# In this project, you will learn:

- How income data are collected in the Consumer Expenditure Surveys (CE)
- Why and how these data are imputed when missing
- How imputation affects "you-sers"



### **Income Collection in the CE:**

#### Interview Survey

- 1<sup>st</sup> and 4<sup>th</sup> interview (2015 onward; 2<sup>nd</sup> and 5<sup>th</sup> previously)
- Diary Survey
  - One time only (1<sup>st</sup> or 2<sup>nd</sup> week, at interviewer's discretion)



# In both surveys, components are:

### Collected for:

- The consumer unit as a whole (e.g., INTRDVX),
- or
- Each member 14 or older (e.g., SEMPFRMX)
- Summed to consumer unit total (FINCBTAX, Interview; FINCBEFX, Diary)
- Subject to nonresponse. This leads to biased statistics (means, standard errors, etc.).



First, respondents are asked for each component: "Did you or any member of your household receive [type of income]?"

- If yes, then asked: "What was the amount?" To which respondent reports:
  - Actual value; If unknown or refused:
    - Bracket value; if unknown or refused:
      - No information ("invalid blank")

If no:

- Next source is collected.
- But if all "no," the respondent is an "All Valid Blank" (AVB) reporter.



# How are missing data handled?

#### Historical Data:

- ▶ 1972-73*,* 1980-2003:
  - "Complete Reporter" definition is in effect:
    - Complicated: "Reference person"-based, but not always;
    - Does not mean "all valid" reporters of income.
- 2001: Brackets introduced to Interview Survey.
- 2004: Brackets introduced to Diary Survey.

#### Current Data:

▶ 2004-present: Missing incomes are imputed.



# **Income Imputation Highlights**

- Enables CE to fill in blanks due to nonresponse;
- Particular methodology is called "multiple imputation," because there is more than one imputed value for each income source not reported.



# Why "multiple" imputation?

- Technical reasons, related to variance.
  - From the User's Guide:
    - Multiple imputation "yields variance estimates that take into account the uncertainty built into the data from the fact that some observations are imputed, rather than reported." (P. 1, section I.A.)
  - In other words: Multiply imputed data are designed to have larger variances than "singly" imputed data because, by definition, imputed data are "best guesses," not actual values.



# How are data multiply imputed?

- If respondent reports actual value:
  - Five "imputations" appear in the dataset, replicating the amount reported.
    - Example: Respondent reports value of INTRDVX to be \$100. INTRDVXm = \$100 (where m is number of imputations, and 1<=m<=5 in CE)</li>



# How are data multiply imputed? (Continued)

- Bracket Reports:
  - Through an algorithm, a random value within the bracket range is drawn, and serves as the first imputation.
  - Process is repeated four times.
  - Example:
    - Respondent reports \$0<INTRDVX<=\$999.</p>
    - Values as small as \$1 and as large as \$999 are plausible (e.g., \$10; \$494; \$384; \$875; and \$132 is a plausible string of imputed values for INTRDVX1-5)

# How are data multiply imputed? (We're nearly done...)

- Regression-based, when respondent reports no information beyond receipt
  - 1. Income reported by similar consumer units is regressed on independent variables.
  - 2. Coefficients are "shocked" (i.e., random noise is added to each).
  - **3.** Predicted values are produced using the "shocked" model coefficients.
  - Predicted values from first "shocked" model are each "shocked"; The resulting values are used to fill in invalid blanks where they occur.
  - 5. This process is repeated four times, starting at step 2.

# How are data multiply imputed? (Exciting Conclusion!)

#### In case of AVB:

- 1. Impute receipt (or lack thereof) for each source of income.
- 2. If receipt is imputed, treat observation as a standard "modelbased" case.



# Some Key Points:

#### Reiteration:

- Each income variable has not one, but five imputed values;
- When reported, each imputed value equals reported value;
- When bracket range is reported, imputed values differ, but all fall within the bracket range.

#### New point:

When model-based imputation is used, values have no preset bound, but are always positive (except for variables like SEMPFRMX, for which losses are possible).

# Some variables include summations of imputed values:

#### FSMPFRX1:

- Equals sum of SMPFRMX1 for each member of the consumer unit (CU); i.e., first "F" of "FSMPFRX1" is for "Family"
- Some SMPFRMX1 within the CU may be valid reports, others imputed (bracket or model-based)

### FINCBTX1:

Sum of all components (including FSMPFRX1), imputed or not



### **NOTE:** This applies to ALL "INCOMEm" variables:

FSMPFRXm, m=imputation number, 1<=m<=5:</p>

- Equals sum of SMPFRMXm for each member;
- Some SMPFRMXm within the consumer unit may be valid reports, others imputed (bracket or model-based)
- FINCBTXm, 1<=m<=5:
  - Sum of all components (including FSMPFRXm), imputed or not



To identify quantity of, and reason for, imputation, "flag variables" are available.

- Naming convention: End in "I". Examples:
  - INTRDVXI
  - ► SEMPFRMI
  - **FSMPFRMI**



### **Possible Values:**

- 100: <u>No imputation</u> on variable or subcomponents (i.e., variable or subcomponents are validly reported)
- 2nn: Only <u>model-based imputation</u> is performed on variable or subcomponents
- 3nn: Only <u>bracket imputation</u> is performed on variable or subcomponents
- 4nn: <u>At least one model-based and at least one</u> <u>bracket imputation</u> are performed (summary variables only)
- 5nn: "<u>AVB</u>" case



# What does "nn" mean?

- Number of subcomponents imputed.
  - Always equal to "01" for non-summary variables (e.g., INTRDVX or SEMPFRMX).
  - Minimum of "01" for summary variables.
    - Example: A consumer unit has three members reporting receipt of SEMPFRMX.
      - One reports the value (SEMPFRMI=100).
      - Another provides no information (SEMPFRMI=201).
      - The third reports a bracket (SEMPFRMI=301).
      - FSMPFRMI is 402.



### Important for CE Microdata Users:

- Once again, each income variable has not one, but five imputed values.
- Microdata users must use all five values to obtain valid results.



### **Computing Means**

#### Unweighted (i.e., Sample) Means

$$\left(\sum_{j=1}^{m}\sum_{i=1}^{n}X_{ij}\right)/(n\times m)$$

- X is the value of income from consumer unit i for imputation j (where 1 <= j <= 5 in CE)</p>
- n is the number of rows (varies by data set)
- m is the number of columns (always 5 in CE)



# **Computing Unweighted Means**

### Applied Example:

| INTRDVX | INTRDVX1 | INTRDVX2 | INTRDVX3 | INTRDVX4 | INTRDVX5 |
|---------|----------|----------|----------|----------|----------|
| 100     | 100      | 100      | 100      | 100      | 100      |
| D       | 50       | 250      | 300      | 20       | 80       |

INTRDVX is the value reported (or not).

INTRDVX1,...,INTRDVX5 are the values imputed.

- Sum all imputed values, i.e., INTRDVX1,...,INTRDVX5 (100 + 100 + ... 100 + 50 + ... + 20 + 80);
- Divide total (1,200) by total number of observations (n\*m=2\*5=10);
- **3**. Mean = 120



# **Computing Unweighted Means**

Alternatively, use INTRDVXM:

| INTRDVX | INTRDVX1 | INTRDVX2 | INTRDVX3 | INTRDVX4 | INTRDVX5 | INTRDVXM |
|---------|----------|----------|----------|----------|----------|----------|
| 100     | 100      | 100      | 100      | 100      | 100      | 100      |
| D       | 50       | 250      | 300      | 20       | 80       | 140      |

- Find the mean of each row (INTRDVXM).
- Add the row means: 100+140=240.
- Dividing this by the number of rows (2).
- Mean=120, the same value obtained by finding the mean of all 10 observations.



### **BONUS:**

- INTRDVXM is already computed for you on the PUMD files!
- This makes it easy to compute either a sample mean (as just demonstrated), or a weighted mean (as you shall soon see...).



# **Computing Weighted Means: Estimating Population Means**

#### Consider the following data:

INTROVX INTROVX1 INTROVX2 INTROVX3 INTROVX4 INTROVX5 INTROVXM FINLWT21

| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 5,000 |
|-----|-----|-----|-----|-----|-----|-----|-------|
| D   | 50  | 250 | 300 | 20  | 80  | 140 | 7,500 |

Based on FINLWT21:

The first CU represents 5,000 units in U.S.;

The second CU represents 7,500.

Using INTRDVXM and FINLWT21, the weighted mean is: [(100\*5,000) + (140\*7,500)]/(5,000 + 7,500) = 124.



# **Computing Variances: Unweighted (Sample) Data**

#### Five steps for computing variances for unweighted means:

| INTRDVX | INTRDVX1 | INTRDVX2 | INTRDVX3 | INTRDVX4 | INTRDVX5 |
|---------|----------|----------|----------|----------|----------|
| 100     | 100      | 100      | 100      | 100      | 100      |
| D       | 50       | 250      | 300      | 20       | 80       |

- Compute the <u>mean of each column</u> of completed data (INTRDVX1 through INTRDVX5)
- 2. Calculate the <u>average of the five means</u>
- 3. Calculate the variance of the MEAN of each column of data
- Calculate the <u>average of these variances (of means)</u>
- 5. Calculate the <u>variance (actual, not variance of mean)</u> *between* (or among) the five complete data mean estimates



# **Computing Variances**

Then, the final step is to insert them into the formula for total variance:

$$T_m = \overline{U}_m + \left(1 + m^{-1}\right)B_m$$

- $T_m$  is <u>total variance</u>; SQRT( $T_m$ ) is the <u>standard error</u>
- $U_m$  is the variance of the MEAN of the m<sup>th</sup> column; and  $\overline{U}_m$  is the average of these variances (of means)
- m is the number of columns (5 columns in this case)
- B<sub>m</sub> measures the <u>variance of the five means</u> (one for each column)



# **Computing Variances**

#### So, in this example:

| INTRDVX | INTRDVX1 | INTRDVX2 | INTRDVX3 | INTRDVX4 | INTRDVX5 |
|---------|----------|----------|----------|----------|----------|
| 100     | 100      | 100      | 100      | 100      | 100      |
| D       | 50       | 250      | 300      | 20       | 80       |
| MEAN    | 75       | 175      | 200      | 60       | 90       |

- 1. Compute the mean of each column of completed data (INTRDVX1 through INTRDVX5): 75; 175; 200; 60; 90
- 2. Calculate the average of the five complete data estimates: (75+175+200+60+90)/5 = 600/5 = 120
- 3. Calculate the variance of each column of data: 1,250; 11,250; 20,000; 3,200; 200; divide each by 2 (because n=2) to get each variance of mean:  $U_1$ =625, ...,  $U_5$ =100
- 4. Calculate the average of these variances of means  $(U_1 + ... + U_5)/5 = 3,590$
- Calculate the variance *between* (or among) the five complete data mean estimates: Var (75,...,90)=[(75-120)<sup>2</sup>+ ... +(90-120)<sup>2</sup>]/m-1, where m=5; Var (75,...,90)=3,987.5



# **Computing Variances**

Then, in the final step is to insert them into the formula for total variance:

$$T_m = \overline{U}_m + \left(1 + m^{-1}\right)B_m$$

- $U_m$  is the variance of the MEAN of the m<sup>th</sup> column; and  $\overline{U}_m$  is the average of these variances: 3,590
- m is the number of columns (5 columns in this case)
- B<sub>m</sub> measures the variance of the means of each of the five columns: 3,987.5
- T is the total variance:
  - 3,590 + (1+0.2)\*3,987.5 = 8,375



# **Computing Variances: IMPORTANT NOTICE**

- Proper computation of variances using multiply imputed data is more complicated than computing means.
  - You MUST use all five columns of imputed data do obtain the correct variance.
  - You MUST NOT compute the variance of any old column (INTRDVX1 only; INTRDVX2 only), or even of the "M" column (i.e., INTRDVXM) and call it a day.
- All right, don't listen to me.
  - But your variances will be biased, possibly quite seriously.
  - And the direction of the bias ("too large" or "too small") is not predictable!



# **Computing Regression Results**

- To compute regression coefficients and standard errors, use repeated-imputation inference (RII).
  - The proper estimation uses all five implicates for income by estimating the regression model once with each implicate.
  - Estimating coefficients with RII is similar to mean estimation.
  - Estimating standard error with RII is similar to variance estimation.
- RII applies to both weighted and unweighted regression analysis. However, for simplicity, only unweighted regressions are described herein.



# Computing Regression Results: Coefficients

- Objective: Compute  $y = \alpha + \beta I + \gamma X + \varepsilon$  using imputed income.
- To obtain estimates of the α, β, and γ, the regression model is estimated five times, once for each implicate:
  - $y = a_1 + b_1(FINCBTX1) + g_1X$ ,
  - $y = a_2 + b_2(FINCBTX2) + g_2X$ ,
  - $y = a_3 + b_3(FINCBTX3) + g_3X$ ,
  - $\blacktriangleright$  y = a<sub>4</sub> + b<sub>4</sub>(FINCBTX4) + g<sub>4</sub>X, and
  - $y = a_5 + b_5$ (FINCBTX5) +  $g_5X$ .

• Average  $a_{1 to 5}$  to get  $\alpha$ ;  $b_{1 to 5}$  to get  $\beta$ ; and  $g_{1 to 5}$  to get  $\gamma$ .



# **Computing Regression Results: Standard Error (SE) of a Coefficient**

- Objective: Compute SEs for  $\alpha$ ,  $\beta$ , and  $\gamma$ .
- Same steps as computing variance of income, except the coefficient is treated as the column mean. For example, to compute SE(α):
  - Compute the VARIANCE of a<sub>1</sub>, then a2, ..., then a<sub>5</sub>. (Your computer software may do this. If not, it should provide the SE of each. Square SE for each coefficient a<sub>1</sub>, ..., a<sub>5</sub> to obtain the variance of a<sub>1</sub>, ..., a<sub>5</sub>.)
  - Compute the **average** of the variances of  $a_1, ..., a_5$ ; call the result  $\overline{U}_{m}$ .
  - Compute the variance of the VARIANCES of  $a_1, ..., a_5$ ; call the result  $B_{m_1}$
  - Compute  $T_m = \overline{U}_m + (1 + m^{-1})B_m$
  - The square root of  $T_m$  is the SE( $\alpha$ ).

BLS

This concludes the "basics" of using imputed CE income data. For more applications, see:

### "User's Guide to Income Imputation in the CE" (https://www.bls.gov/cex/csxguide.pdf)



### **ATTENTION SAS USERS:**

You have a "macro" available to compute the following exercises. Details in "special topics" after feedback session.



# **Project 8**

- Create data set containing data for a collection year from 4 quarterly FMLI files.
- 2. Find the unweighted mean for income using FINCBTXM for all CUs by region of residence:
  - a. Northeast (REGION="1");
  - b. Midwest (REGION="2");
  - c. South (REGION="3);
  - d. West (REGION="4");
  - e. Suppressed (REGION="")—affects selected combinations of PSU and STATE, done to maintain confidentiality
- 3. See next slide to compute standard error

# **Project 8**

- Same steps as computing variance of income, except the coefficient is treated as the column mean. For example, to compute SE(α):
  - Compute the VARIANCE of a<sub>1</sub>, then a2, ..., then a<sub>5</sub>. (Your computer software may do this. If not, it should provide the SE of each. Square SE for each coefficient a<sub>1</sub>, ..., a<sub>5</sub> to obtain the variance of a<sub>1</sub>, ..., a<sub>5</sub>.)
  - Compute the **average** of the variances of  $a_1, ..., a_5$ ; call the result  $\overline{U}_{m}$ .
  - Compute the variance of the VARIANCES of  $a_1, ..., a_5$ ; call the result  $B_{m_1}$
  - The square root of  $T_m$  is the SE( $\alpha$ ).



### **Project 8 Results**

#### Unweighted Mean & Standard Error (FMLI211-FMLI214)

| REGION        | Mean Income Before Tax | Total Standard error of Income |
|---------------|------------------------|--------------------------------|
| Suppressed    | \$66,779.98            | \$2,778.30                     |
| Northeast (1) | \$98,551.01            | \$1,669.53                     |
| Midwest (2)   | \$84,908.21            | \$1,284.43                     |
| South (3)     | \$78,894.41            | \$1,081.29                     |
| West (4)      | \$93,865.96            | \$1,285.97                     |



# Project 9

- 1. Create data set containing data for a collection year from 4 quarterly FMLI files.
- 2. Find the income coefficient (i.e., " $\beta$ ") and its SE for Food at Home:
  - a) Add FDHOMEPQ and FDHOMECQ, and annualize the resulting variable FDHOME: FDHOME=4\*(FDHOMEPQ+FDHOMECQ)
  - b) Regress FDHOME on FINCBTX1, ..., FINCBTX5
  - c) Compute mean and standard error of "β"



### **Project 9 Results**

#### Regressions using unweighted multiply imputed data (FMLI211-FMLI214)

| Туре                | Estimate | Total Variance | Total Standard Error |
|---------------------|----------|----------------|----------------------|
| INTERCEPT           | 4,897.59 | 1923.53100     | 43.85808             |
| Income Coeff. (MPC) | 0.019    | 1.250216E-7    | 0.00035358           |

