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ABSTRACT

This paper discusses the use of some simple diagnostics to guide the formation of nonresponse adjustment cells. Following Little
(1986), we consider construction of adjustment cells by grouping sample units according to their estimated response probabilities or
estimated survey items. Four issues receive principal attention: assessment of the sensitivity of adjusted mean estimates to changes in
k, the number of cells used; identification of specific cells that require additional refinement comparison of adjusted and unadjusted
mean estimates; and comparison of estimation results from estimated-probability and estimated-item based cells. The proposed
methods are motivated and illustrated with an application involving estimation of mean consumer unit income from the U.S.

Consumer Expenditure Survey.
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1. INTRODUCTION

1.1 Problem Statement

Survey analysts often use adjustment cell methods to account
for nonresponse. The. main idea is to define groups, or "cells", of
sample units which are believed to have approximately equal
response probabilities, or approximately equal values of a specific
survey item, e.g., income. Weighting adjustment or simple
hot-deck imputation then is-carried out separately within each
adjustment cell. The resulting adjusted estimator of a population
mean or total will have a nonresponse bias approximately equal to
zero, provided the within-cell covariances between survey items
and response’ probabilities are approximately equal to zero.

Some previous nonresponse-adjustment work  formed
adjustment cells through combinations of simple demographic or
geographical classificatory variables. However, Little (1986) and
others considered formation of cells by direct grouping of sample
units according to their estimated response probabilities or
estimated item values. The present paper discusses some simple
diagnostics that are useful in implementing these cell-formation
ideas. Principal attention is directed to the sensitivity of results to
the number of cells used; identification of specific cells that
require additional refinement; comparison of adjusted and
unadjusted mean estimates; and comparison of estimation results
from estimated-probability and estimated-item based cells. These
diagnostics are illustrated with income data collected in the U.S.
Consumer Expenditure Survey.

1.2 Notation, Nonresponse Bias, and Adjustment Cells

Let U be a fixed population of size N with survey items
Y,ie U; and consider estimation of the population mean
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Y=N'Y, Y. Asamples of size nis selected from U, and
is the probability that unit / is included in the sample.

Nonresponse is assumed to satisfy the following quasi-
randomization model (Oh and Scheuren 1983). Let R, be an
indicator variable equal to 1 if the selected sample unit i is a
respondent and equal to 0 otherwise. Assume that the R, are
mutually independent Bernoulli (n,) random variables, where
the fixed response probabilities 1, are allowed to dlffer across
units. In addition, define the survey weights A, =, ! and the
unadjusted survey-weighted mean response

7, def (Exik,)“zx,k,r,. (1.1)
i€s i€s '

Because of differences among the n,, the unadjusted
estimator Y has a nonresponse bias approximately equal to
Nyt Zleun(}’ ¥), where §=N"'Y,_ n, and expecta-
t10ns are taken over both the original sample design and the
quasi-randomization model. To reduce this bias, one often
partitions the population into k “adjustment cells” U,,
partitions the sample s into corresponding groups s, and then
uses the adjusted estimator

; dsfi 7 (12)
ko Wy Lo

where w, =(},, 1) ZIG, A, and ¥,,=C,. NR)!
Y., MR, Y, Note that if k'= 1, then estimators (1.1) and
a 2) are 1dent1ca1 For some general discussion of adjustment
cell methods see, e.g., Cassel, Sdrndal and Wretman (1983),
Oh and Scheuren (1983), and Kalton and Maligalig (1991).

The adjusted estimator ¥, has remaining nonresponse bias
approximately equal to

'E M Y -7, - F,), (1.3)
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where N, is the number of units in U, and (1, Y W) =
N, X,G u, (n,, ¥)). Consequently, one prefers to construct cells
such that the populatron covariance between n, and Y, is
approximately equal to zero within each cell. In practice, one
attempts to accomplish this by constructing cells that are
approximately homogeneous in the response probabilities 7,
or in the items Y, or both. In some cases, “natural” sets of
cells are defined a priori through combinations of
classificatory variables that are available for both respondents
and nonrespondents. For example, Ezzati and Khare (1992)
used 72 cells defined by age, race, region, urbanization status,
and household size to perform nonresponse adjustments for
part of the National Health and Nutrition Examination
Survey. In many practical cases, however, the list of
reasonable candidate variables for cell formation is fairly
large, and may produce a substantial number of cells that
contain few, if any, respondents. Consequently, several
authors have developed methods to screen out the less
important classificatory variables and to collapse sparse
adjustment cells in a way that preserves a reasonable degree
of homogeneity within each of the remaining cells. See, e.g.,
Tremblay (1986); Lepkowski, Kalton and Kasprzyk (1989);
Kalton and Maligalig (1991); Goskel, Judkins and Mosher
(1991); and the related discussion of pooling of poststrata in
Little (1993). In addition, adjustment cell methods are related
to other methods like regression-based adjustments (e.g., Rao
1996, Section 2.4 and references cited therein) and general-
ized raking (Deville, Sdarndal and Sautory 1993).

1.3 Adjustment Cells Based on Est'imated Response
Propensities or Predicted Items

Adjustment cells are expected to be approximately
homogeneous, so one may argue that such cells implicitly
define a model for either the n, or ¥, values, or both. More
explicit modeling leads to two related cell formation methods.
First, let X, be a vector of auxiliary variables observed for
both responding and nonresponding sample units /, and use
the sample (R,, X)) values to fit a model for n, = n(X)
through linear, logistic, or probit regression. The sample cells
s, are then formed by grouping the sample units according to
their estimated response probabilities f|,. As a second
alternative, consider regression of responses Y, on an
auxiliary vector X, to produce estimated items 14 ; for both
responding and nonresponding sample units. The sample
cells s, are then formed by grouping units according to the
values 1.

These two methods were suggested by Little (1986),
extending the observational-data propensity-score work of
Rosenbaum and Rubin (1983, 1984). See also David, Little,
Samuhel and Triest (1983). These ideas were developed
originally in a model- based context, but extend directly to the
current framework. Little (1986) argued that use of cells
based on either the fj, or Y values could reduce nonresponse
bias, and that the Y based cells could also control variance.
Also, in some cases the fi, and ¥ -based cells can be more
flexible than cells defined a priori. In addition, the

j=1,2, . k-1

7 -based adjustment cells are conceptually related to optimum
stratification ideas (e.g., Cochran 1977, Sections SA.7-5A.8).

Little (1986) did not propose a specific rule to determine
cell divisions. However, in keeping with related observa-
tional-data work by Cochran (1968) and by Rosenbaum and
Rubin (1984), one may consider cell divisions defined by the
estimated &'/ quantiles of the i, or )7, populations,
This equal-quantile method gives some
control over the expected number of respondents in each cell.
In addition, review of the preceding two references suggests
that, for a given set of predictors X, most of the feasible bias
reduction may be achieved with a relatively small number of
cells, say k =5. A case study by Czajka, Hirabayashi, Little
and Rubin (1992) used k =6 fj,-based adjustment cells
within each of several strata, using cell-formation rules that
were somewhat more complex than the equal-quantile rule
considered here. However, the potential adequacy of a small
number of cells should not be over-interpreted. For example,
if an important regressor is omitted, then the resulting
cell-based adjusted estimators may retain a substantial amount
of bias, regardless of the specific number of estimated-
probability or estimated-item based cells used.

Finally, an important alternative to weighting adjustment
is imputation. For example, simple hot-deck imputation
replaces a missing value within a given adjustment cell by
randomly selecting respondent donors from the same cell. In
parallel with (1. 1) and (1 2) the resultmg mean estimator is

Vimp = i) 'Y .\ Y,, where Y,” is either an observed or
imputed value, as appropriate. Practical applications often
use weighting adjustment for unit nonresponse and
imputation for item nonresponse. However, for a given set of
cells, both the weighting adjustment point estimator (1.2) and
the imputation estimator ¥ :mp Dave the same approximate bias
(1.3). For simplicity, the remainder of this paper will focus
on weighting adjustment, but one should bear in mind that for
a given set of cells, the same bias-reduction issues arise
regardless of whether those cells are used for weighting
adjustment or simple hot deck imputation.

1.4 Outline of the Present Paper

This paper discusses some implementation details of the
estimated-probability and estimated-item methods of cell
formation. We devote special attention to diagnostics to
identify problems in a specific set of cells, and motivate and
illustrate these diagnostics with an extended example
involving income nonresponse in the U.S. Consumer
Expenditure Survey. Section 2 gives some general back-
ground on this income nonresponse problem. Section 3
describes and applies several diagnostics, including
comparison of Y , estimates and standard errors for several
values of k (Section 3.1); partial assessment of within-cell
bias (Section 3.2.1); assessment of cell widths relative to the
precision of fj, estimates (Section 3.2.2); and comparison of
the adjusted and unadjusted mean estimates Y, and Y,
(Section 3.3). Section 4 shows that similar diagnostics can be
applied to adjustment cells based on predicted incomes 14 i




and also compares the mean income estimates computed from
estimated-probability and estimated-income based cells. Section 5
summarizes the main ideas used in this paper, and notes some
areas for future research.

2. INCOME NONRESPONSE IN THE
U.S. CONSUMER
EXPENDITURE SURVEY

2.1 The Consumer Expenditure Survey, Weighting
Methods and Variance Estimation

The U.S. Consumer Expenditure Survey (CE) is a stratified
multistage rotation sample survey conducted by the Census
Bureau for the Bureau of Labor Statistics. Sample elements are
"consumer units", roughly equivalent to households. In the
interview component of this survey, each selected sample unit is
asked to participate in five interviews. The current CE weighting
procedure accounts for initial selection probabilities, a
noninterview adjustment, poststratification based on several
demographic variables, and additional refinements; see Zieschang
(1990) and United States Bureau of Labor Statistics (1992}. The
complexity of the CE weighting work has led the BLS to use
variance estimators based on pseudo-replication methods with 44
replicates. This pseudo-replication is approximately equivalent to
standard balanced repeated replication (Wolter 1985, Ch. 3). All
standard errors reported here are based on this pseudoreplication
method, with all additional parameter estimation and weighting
adjustment steps performed separately within each replicate.

2.2 Income Nonresponse

The noninterview adjustment in the current CE weighting
procedure is generally considered to account adequately for unit
nonresponse, e.g., noncontact or refusal to participate in a specific
interview. Thus, unit nonresponse in the CE will not be
considered further here. However, the BLS has had concerns
about possible bias in mean income estimates due to item
nonresponse that occurs with income questions in the CE; some
background is as follows.

Detailed income data are collected in the second and fifth
interviews of the CE, and are used to produce estimates of
mean consumer unit income (U.S. Bureau of Labor Statistics
1991) and other parameters. CE income data are collected
through a complex set of questions, and nonresponse rates for
these questions are relatively high. To provide a summary
indication of response or nonresponse to the full set of
income questions, the BLS classifies each second- or
fifth-interview consumer unit as a complete or incomplete
reporter of income. The formal definition of “complete
income reporter” status is fairly complex; Garner and
Blanciforti (1994) give a detailed discussion. Current BLS
procedure estimates mean income with the unadjusted mean
response Y, defined by (1.1), with the R, equal to indicators

of complete income reporting, Y, equal to income, and
weights A, as described in Section 2.1. The weighted mean ¥
uses both second- and fifth-interview data from a specified
time period, but does not make direct use of the CE panel-data
structure. In parallel with this, the present paper will
distinguish between second- and fifth-interview data only in
the construction of |, and ¥, models.

Here, we used data from the second and fifth interview reports
from all consumer units that had a second interview scheduled
during 1990. The second-interview data involved 5,125
interviewed units and the fifth-interview data involved 5,093
interviewed units. For each interviewed unit (both the complete
and the incomplete income reporters), BLS records provided a
large number of demographic and expenditure variables; these
were used as auxiliary variables in the modeling work described in
Sections and 4 below. For both the second and the fifth interviews,
approximately 14 percent of the interviewed consumer units were
incomplete income reporters.

3. CELLS BASED ON ESTIMATED RESPONSE
PROBABILITIES

We first considered construction of adjustment cells based
on estimated response probabilities. Logistic regression
models for the complete-income-reporter probabilities
n, =n(X,) were fit separately for the second and fifth
interview data described in Section 2. Model fitting details,
including model parameter estimates and standard errors, are
reported in Yansaneh and Eltinge (1993). All variance
estimates were computed by the pseudo-replication method
described in Section 2. The final model fits were used to
estimate complete-reporter probabilities fj, for each second-
and fifth-interview unit. Following the strategy in Section
1.3, units were grouped according to their f}, values into a
total of k cells, with cell boundaries defined by the
equal-quantile method.

3.1 Initial Sensitivity Analysis for the Number of
Cells Used

The first three columns of Table 1 report the adjusted point
estimates Y, of mean income, and associated standard errors,
for several values of k. Comparisons of these point estimates
indicate the extent to which the adjusted estimates are
sensitive to a specific choice of k. For k> 5, the reported
point estimates are relatively stable, varying between $32,630
and $32,664. This is consistent with the suggestion in Section
1.3 that k=S5 cells may provide most of the effective bias
reduction to be obtained from a given cell-formation method;
see Rosenbaum and Rubin (1984, Section 1 and Appendix A)
for some related mathematical background. )

In addition, note that for k > 3, the standard errors of ¥ t
are also relatively stable, ranging from $508 to $530. This is
in partial contrast with the general idea that selection of an




appropriate number of cells hinges on a bias-variance trade-off.
For the present dataset, it appears that the effective bias reduction
occurs fairly quickly (at k = 5, say), while substantial variance
inflation does not occur until some point beyond k = 20. This is not
unreasonable, since even for k = 20, the number of income
responses per cell remained fairly large (ranging from 461 to 569),
and thus avoided the general unstable-estimator problem
associated with increasing numbers of sparse cells. Conversely,
bias-variance tradeoff problems may be more severe for moderate
k in applications involving smaller effective sample sizes, e.g.,
estimation for small subpopulations.

Table 1
Adjusted Estimates of Mean Income with Cell Boundaries
Determined by Estimated Response Probability Quantiles

e, e e,y M
Gn;ojl;st-eud_m T T

k=1) 32,967 569 N/A N/A
k=3cells 32,736 530 112 1.30
k=4 cells 32,779 518 122 1.28
k=5 cells 32,630 523 138 1.53
k=6cells 32,664 515 122 1.51
k=10cells 32,640 514 116 1.58
k=15 cells 32,638 515 118 1.58
k=20cells 32,634 508 118 1.63

3.2 Two Simple Cell Diagnostics

To complement the preceding sensitivity analysis, it is
useful to study some sets of adjustment cells in additional
detail. Let C, = {s|,...,5,} be a given candidate set of adjust-
ment cells, e.g., the k=3 or k =5 equal-quantile- division
cells in Section 3.1. The cells in C; can be refined by using
equal-quantile divisions with a larger value of k; or by directly
splitting one or more of the cells in C, . This refinement may
be worthwhile if there are empirical indications: (1) that the
within-cell mean estimator YhR may be substantially biased,
or (2) that a cell is wide relative to the precision with which
the n, values are estimated. Subsections 3.2.1 and 3.2.2 use
two simple diagnostic methods to address issues (1) and (2),
respectively. In each subsection, the proposed diagnostics
lead to identification of potential “problem cells”, and to
construction of a refined set of adjustment cells, C,, say.
Comparisons of estimates of ¥ based on C ; and C, then
lead to some conclusions regarding the preferred set of
f},-based adjustment cells.

3.2.1 Assessment of Within-Cell Bias

As noted in Section 1.2, a given adjusted estimator 14 i
reduces, but may not gntirely eliminate, nonresponse bias; and
the residual bias of ¥, depends on the biases of the within-

cell mean estirnates th. Consider the alternative within-cell
mean estimator

Yf.q=(Q:ﬁ,-_ll,R,)_l}:ﬁ;'k,RiYi. (3.1)

i€s, i€s,

If the fj, estimates were equal to the true response
probabilities 1n,, then (3.1) would be an approximately
unbiased estimator of the true subpopulation mean Y,. Inthat
case, an estlmator of the within-cell bias E(Y,,R Y,) would
be B Yoo~ 4 e, and the corresponding estimator of the
ovcrall bias E(Y Y) would be B-= (Z,, ,Lmh A) !
Zh I(Z]Gs A )B

Bccause the fi, values are subject to estimation error, the
terms B and B give only a partial indication of potential bias
problcms For example, a large value of B may reflect a
substantial bias in ¥,,, or may reflect biases in the alternative
estimator Y, due to the errors fj, - n,; ¢f. the cautionary
remarks in thtle (1986, p. 146) regarding direct use of the
weights n, in adjusted estimation of ¥. Thus, if one
observes a large value of Bh, it is worthwhile to consider
refinement of cell A; but the final decision of whether to use
the resulting refined set of cells will depend on whether the
refined set produces a substantially different estimate of the
overall mean Y.

Tables 2 and 3 present Bh values and associated standard
errors and f statistics for equal-quantile-division cells with
k= 3 and k =5, respectively. Note that for the case k =3,
the B diagnostics indicate a possible bias contribution from
the lowest cell. This is consistent with the suggestion from
Section 3.1 that k£ =3 cells may not provide a satisfactory
nonresponse adjustment. In addition, the corresponding value
of B was 111, with a standard error of 75; this value of Bi is
very close to the difference Y Y = 106 of the estimates Y
and Y from Table 1.

. Table 2
Within-Cell B, Statistics for Probability-Based Cells, k = 3
h B,, se(B,,) t= Bh/se(B,,)
1 269 136 1.98
2 -19 43 -0.44
3 84 45 1.87
R Table 3 ‘
Within-Cell B ,, Statistics for Probability-Based Cells, k=5
h Bh se(Bh) t= Bh/se(Bh)
1 96 217 0.44
2 -72 116 -0.62
3 -52 56 -0.93
4 -16 27 -0.59
5

98 50 1.96

In light of the preceding results, the low-#j, cell from the
k =3 case was split in half. The upper bounds for the two
new cells (A =1’ and h =1", say) were determined by the




0.167 and 0. 333 estimated quantiles of the fi, population.
The resulting B values and standard errors were 90 and 197
for cell 17, and -42 and 79 for cell 1”. In addition, the
refined set of four cells had B = 30, with a standard error of
75; and the adjusted estimate of ¥ equal to $32,652 and
standard error of $518 were close to those obtained from the
equal-quantile-division method with k = 5.

In contrast with the results for & = 3, the B results for k =5
indicated relatively little basis for concern, w1th the possible
.exception of cell A =5, which had a ¢ statistic of 1.96. For
k=35, the value of B-was 11, with a standard error of 93.
Additional splitting of cell 4 =35 did not lead to notable
changes in either the estimate of ¥ or the associated standard
errors. The B results, for equal-quantile-division cells with
larger values of k showed even fewer indications of within-
cell bias. For example, for k = 6 all six cells had Bh values
with ¢ statistics less than or equal to 1.65; and for k = 10, all
cells had Bh values with ¢ statistics less than or equal to 1.54.

3.2.2 Relation of Cell Widths to Precision of 7y,
Estimates

The relationship between the widths of adjustment cells
and the widths of confidence intervals for the response
probabilities v, leads to another diagnostic for identification
of potential problem cells. First, define a, = (Em AR)!
Z:e.\- A, the nonresponse-adjustment factor used for
respondmg units in cell 4. Second, following standard results
for logistic regression, note that an approximate 95%
confidence interval for v, is

(LB, UB) = ({1 +exp{-X:8 + 1.96D,"}1"!
[1 +exp{-X;6-1.96D, 11",

where © is the vector of loglstlc regression parameter
estimates, D, = X] V X,,and V is the pseudo-replicate-based
estimated covariance matnx for 0. Let d be the A,-weighted
sample mean of the confidence interval w1dths UB LB, for
units i in cell 4, and consider a comparison of d, to the Wld[h
of cell A. If cell A is relatively wide, both on an absolute scale
and relative to (7,,, then division of this cell may produce two
new cells with two substantially different weight factors a,,.
Conversely, if Jh is substantially larger than the width of cell
h, then differences among 1}, in that cell may result more from
estimation error than from differences in the true v,. In that
case, additional division of cell 4 is unlikely to produce much
useful change in weight factors a,; and thus there will be
relatively little change in the resulting nonresponse-adjusted
estimator of Y.

Tables 4 and 5 report cell boundaries, cell widths, ‘7;, ,and a,
values for k=5 and k = 10, respectively. For k=35, the
widths of cells 2 through 5 were not large relative to the a_’h
values. Each of these cells is essentially split in half to
pProduce the & = 10 cell case. The resulting pairs of a, for
k = 10 are relatively close to the corresponding a, values in
cells 2 through 5 with & = 5.

By contrast, with & = 5, cell 1 is over twice as wide as d| .
When £ = 10, this cell is divided into cells with somewhat
different nonresponse adjustment weight factors a,: 1.45 and
1.27, respectively. However, the corresponding cell-mean
estimates are relatively close: }—’,R =$24,045 and }—’ZR =
$24,582 for k=10. Thus, in this example, the non-
response-adjusted estimates ¥, and ¥, are relatively close
because four of the five cell divisions produced relatively
small changes in weights, and because the other cell division
produced two cells with similar cell means.

Table 4
Estimated-Probability Cell Boundaries, Cell Widths, Mean
Confidence Interval Widths and Nonresponse Adjustment
Factors, k=5

h Lower Upper Cell d
Bound bound Width h

0.384 0.810 0.426 0.197 1.35
0.810 0.861 0.051 0.139 1.20

- 0.861 0.894 0.033 0.110 1.13
0.894 0.924 0.030 0.088 1.08
0.924 0.994 0.070 0.067 1.07

a,

N B W -

Finally, the a, factors in Table 5 indicate that mean
response rates in the k£ = 10 cells fall in a moderate range,
from (1.45)! = 0.69 to (1.06)! = 0.94. Some other non-
response datasets involve a wider range, and thus are more
likely to produce .more pronounced cell-splitting results.
Conversely, other nonresponse datasets may display a tighter
distribution of response probabilities, and thus are less likely
to display notable cell-splitting effects.

Table §
Estimated-Probability Cell Boundaries, Cell Widths, Mean
Confidence Interval Widths and Nonresponse Adjustment
Factors, k=10

>

Lower Upper Cell d
h

Bound  Bound  Width ap
1 0.384 0762 0378 0220 145
2 0.762 0810 0048 0174 127
3 0.810 0840 0030 0146 121
4 0.840 0.861 0021 0132 119
5 0.861 0878 0017 0111 114
6 0.878 0894 0016 0108 1.1
7 0.894 0908 0014 0093  1.09
8 0.908 0924 0016 0083  1.08
9 0.924 0944 0020 0072  1.08
10 0944 0994 0050 0062  1.06

3.3 Comparison of Cell-Based Estimates to the
Unadjusted Estimate

To conclude the assessment of f,-based cells, we

compared the adjusted estimates Y, with the unadjusted



estimate ¥,. First, Table 1 indicates that for the reported
values of k2 5, the differences Y, - ¥, are greater than or
equal to $303. Second, for k> 5, the estimated standard
errors of. the differences ¥ - Y, are all less than or equal to
$138, and the corresponding ¢ statistics are all greater than
2.44. Thus, for k =5, say, a formal test of the hypothesis
HyE(Y, - Y,) = 0 would be rejected at standard significance
levels; ie., the adjustment-cell method has produced a
significant change in the mean income estimate.
In addition, a rough comparison of the efficiencies of Y

and Y follows from the estimated mean squared error ratlo

Py

%, = {PF Y IP(F)) + max{0,(F, - ¥ )2 - P(F, -

~<|>

Pl

where I7(Y1), W(Y), and V(Yl— Y)are the pseudo-
replicate-based variance estimates for the indicated means.
Te interpret this ratio, assume for the moment that Y is an
approximately unbiased estimator of ¥. Then ¥, is an
estimator of the mean squared error of the unadjusted
estimator Y, relative to the mean squared error of Y,.
Consequently, ¥, reflects the loss of efficiency incurred by
using the biased, unadjusted estimator Y instead of the
adjusted, unbiased estimator ¥,. However, ths interpretation
should be viewed with some caution, since it depends on the
assumption that Y is approximately unbiased for_Y, Y, and
smce the yk are functlons of the random terms Y Y b
V(Y) V(Y ), and V(Y Yk)

As suggested by a referee one could also consider a mean
squared error ratio

{(AE)Y I )+ max{0,(F,- 7 )2 - I(F,- P )]

where i3 equals expression (1.1) with A, replaced by
(f, ! A,. This would amount to comparmg each cell-based
estrmate Y, t0 Y This is appropriate if Y is approximately
unbiased, but thls unbiasedness may be problematlc in some
cases; cf. Little (1986, p. 146).

The final column of Table 1 reports the estimated ratios ¥,
for specified values of k. For k2 5, each reported ¥ is
greater than 1.5. Finally, note that each adjusted estimate ¥ &
fell below the unadjusted estimate Y ,- This occurred
because, for a given £, cells associated with larger response
probabilities tended to have larger mean estimates Y . For
example, for k =5, the ¥,, values were $24,333, $33 729,
$33,398, $34,620, and $37 057 for h =1 (the low f,cell)
through A =5 (the high fj, cell), respectively.

4. CELLS BASED ON ESTIMATED
INCOME VALUES

The general diagnostic ideas of Section 3 also apply to ¥ ;
based cells. To illustrate this idea, we fit separate weighted
regressions of Y, = reported income for second- and

fifth-interview respondents. Yansaneh and Eltinge (1993)
report details of the work, including parameter estimates and
standard errors. The resulting regression models were used
to compute estimated incomes Y‘, for both complete and
incomplete income reporters. Units were then grouped into
cells according to their Yi values, with cell boundaries
determined by the equal-quantile method.

Table 6 reports the basic sensitivity-analysis and efficiency
results for the Y based cells; the organization of this table is
the same as in Table 1. The sensitivity-analysis results are
qualitatively similar, but not identical, to those reported for
the fj,-based cells. In additional work not detailed here, we
considered splitting individual equal-quantile ¥ ~based cells.
For k>4, the resulting mean estimates and associated
standard errors did not differ notably from those reported in
Table 6.

Table 6
Adjusted Estimates of Mean Income with Cell Boundaries
Determined by Estimated Income Quantiles

Adjustment Peint Standard SE(Y }:, MS}:‘.
Method Estimate Error Ratio
Unadjusted
k=1) 32,967 569 N/A N/A
k=3 cells 32,512 509 106 2.01
k=4 cells 32,468 512 108 2.14
k=5 cells 32,473 511 115 2.12
k=6 cells 32,492 508 117 2.08
k=10cells 32,488 510 119 2.07
k=15cells 32478 504 124 2.16
k=20cells 32,495 513 124 2.02

The final two columns of Table 6 permit comparison of ¥,
to the unadjusted estimate Y,. For k> 4, the differences
Y, - ¥, are greater than or equal to $472, with estimated
standard errors less than or equal to $124. The associated ¢
statistics are all greater than 3.80. In addition, the estimated
mean squared error ratios ¥, are all greater than 2.0.

Also, the i, and Y -based cells produced somewhat
different adjusted estrmates of mean income, but the observed
differences were not statistically significant at customary a
levels. For example, with £ = 5, the difference between the
fi,- and ¥,-based cell estimates is $32,630 - $32,473 = $157,
with a standard error of $122 and a t statistic of 1.29.
Similarly, for k = 10, the difference between the ;- and 14 -
based estimates is $152, with a standard error of $104. Thus,
the data provide relatively little power to distinguish between
results of the two general cell-formation methods.

Finally, note that a given set of Y‘.-based cells are
fundamentally linked with a particular Y variable, e.g.,
consumer unit income. Consequently, that set of cells will
not necessarily work well for estimation of the mean of a
different Y variable.



5. DISCUSSION

5.1 Summary of Methods

This paper has discussed some simple diagnostics for
formation of nonresponse adjustment cells. The methodology
may be summarized as follows.

1. Based on preliminary modeling work and observed
auxiliary variables X, compute an estimated response
probability fj, for each sample unit (respondents and
nonrespondents).

2. Construct k adjustment cells with boundaries determined
by the estimated k!j quantiles of the fj;, population,
j=1,2,...k-1. Compute the resulting adjusted mean

estimate, Y.

3. Repeat (2) for several integers k > 1. As k increases,
identify the point at which the ¥, become approximately
constant. In keeping with Rosenbaum and Rubin (1984)
and the empirical results discussed here, values of k near
5 may be of special interest.

4. Use simple screening diagnostics (e.g., éh and Jh in
Section 3.2) to check for potential problems in the
equal-quantile-division adjustment cells. If the dia-
gnostics identify potential “problem cells,” then try
additional refinements of these cells. Compute estimates
of ¥ based on these refined sets of cells, and compare
these new estimates to the ¥ ; from (3).

5. Assess the overall effect of adjustment by comparing the
differences ¥, - ¥, to the standard errors se(¥, - ¥ );
and by computing the estimated mean squared error ratios
Ty

6. Repeat steps (1) through (5), as appropriate, for }A’i-based
adjustment cells. Compare the final estimates of ¥

obtained from the fj, and )4 ,-based cell methods.

5.2 Areas for Future Research

The results of this work suggest two potentially useful
areas for future research. First, the CE income nonresponse
problem is similar to nonresponse problems in some other
large-scale surveys, but as with any case study one should not
over-generalize the empirical results reported here. It would
be useful to apply these diagnostics to problems involving
different estimands (e.g., cross-class means) or involving
nonresponse datasets with somewhat different characteristics,
e.g., larger or smaller effective sample sizes; or wider or
narrower distributions of f|, estimates. This in turn would
offer additional insight into the operating characteristics of f,
and Y -based adjustment cell methods in practical
applications. Second, extensions to multivariate problems
(e.g., relationships involving second-interview and fifth-
interview CE income data) also would be of interest.
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