Balancing Respondent Confidentiality and Data User Needs

Aaron E. Cobet
Consumer Expenditure Surveys Microdata Users Workshop
July 20, 2017
What is the Issue?

- Conflicting goals
 - Maximize data access
 - Protect respondents identity
Why is Confidentiality Important?

- Ensure trust of respondents for their future cooperation
- Ethical responsibility to protect respondent confidentiality
- It’s the law
What is Title 13?

- U.S. Code: Title 13 allows the government to take a census and provides directives for its administration and enforcement.
- People who took the oath of office who wrongfully disclose information protected under Title 13 are subject to a fine of up to $250,000 or up to 5 years in prison.
- Census and CE staff need Title 13 clearance.
Title 13 Training

- CE staff gain access to internal data after completing 2 steps:
 1. Pass a background check by Census
 2. Take the Title 13 training

- CE staff are required to annually retake Title 13 training and pass a knowledge check to maintain Special Sworn Status
Who Determines Disclosure Threats?

- Disclosure Review Board (DRB) by the Census Bureau
How Could Microdata Reveal Respondents’ Identity?

- Small PSUs
- High income
- Extreme expenditures
How to Protect Respondents’ Confidentiality?

- BLS and Census Bureau conceal information that could reveal respondents identity.

- BLS and Census Bureau conceal information that could reveal respondents identity.
How to Protect Respondents’ Confidentiality?

Two stages:

- Census removes *direct* identifiers, i.e. addresses
- BLS suppresses *indirect* identifiers, i.e. high expenses
How to Conceal Indirect Identifiers?

- **Topcoding**: Provide average numerical value that are above a threshold
- **Recoding**: Change metadata but provide numerical value
- **Suppression**: Delete numerical value only or entire record
How do we Topcode?

- Determine critical value
- Find values exceeding critical value
- Average values exceeding critical value
- Replace values with top-coded values
Topcoding Example

![Graph showing critical value](image-url)
Topcoding Example

Extreme values
Topcoding Example

Topcoded values
How to Determine Critical Values?

■ **Percentiles**: If sample matches population
 ▶ Expenditures: 99.5 %
 ▶ Income: 97.0 %

■ **Outside sources**: If sample differs from population
How to Conceal Indirect Identifiers?

- **Top-coding**: Provide average of expenditures above a threshold

- **Re-coding**: Change metadata but provide numerical data

- **Suppression**: Delete numerical data or entire record
How do we Recode?

- Find metadata that meet criteria
- Determine method:
 - Generalize
 - Change
- Replace original metadata with recoded metadata
Re-coding: Generalize Information

- Broaden production year of cars
 - From Toyota Corolla 1999
 - To Toyota Corolla 1990s
Re-coding: Change information

- Change states to comparable states
 - Change Delaware to New Jersey
How to Conceal Indirect Identifiers?

- **Top-coding**: Provide average of expenditures above a threshold.
- **Re-coding**: Change metadata but provide numerical data.
- **Suppression**: Delete numerical data or entire record.
Suppression

- Erase numerical data and leave metadata
 - Blank out numerical values of infrequent purchases
 - Example: Boat purchase
Suppression

- Complete eradication of numerical and metadata
 - Erase entire record
 - Example: Airplane purchase
Reverse Engineering

5 = 3 + X

What’s X?
How to Prevent Reverse Engineering?

Prevent users to deduce protected information from available data

1. Find protected values
2. Protect them in all locations
3. Protect related values
Reverse Engineering

- Scenarios
 - Within file
 - Across files
Reverse Engineering: Within File

- Income = Wages + taxes

- 1000 = 800 + 200
- 1000 = 750 + 200
- 950 = 750 + 200

- Critical value: 700
- Topcode value: 750

Wages exceeds the critical value
Reverse Engineering: Within File

- Income = Wages + taxes
- 1000 = 800 + 200
- 1000 = 750 + 200
- 950 = 750 + 200

- Critical value: 700
- Topcode value: 750

Wages match the critical value
Reverse Engineering: Within File

- Income = Wages + taxes
- 1000 = 800 + 200
- 1000 = 750 + 200
- 950 = 750 + 200

- Critical value: 700
- Topcode value: 750

Wages and taxes match the income
Reverse Engineering: Across Files

- **Income:** Topcoded income in FMLI
 => Topcode associated UCCs in ITBI

- **Expenditure:** Topcoded expenditures in EXPN and FMLI
 => Topcode associated UCCs in MTBI
How Do We Document?

- Flag values
 - T: Topcoded value
 - D: Valid value
Impact of topcoding

- CE topcodes few observations
- Most affected data slices:
 - Geographic data non-self representing cities
 - Income for high earners.
Impact of Suppression of Geographic variables, Percent

- Almost 60% of PSUs suppressed
- Below 15% of states, divisions, and regions suppressed

Source: FMLI and FMLD files for 2015.
Additional Information

- Protection of respondent confidentiality provides additional information on protecting the confidentiality of respondents.
Thank You!

Aaron Cobet
Senior Economist
Consumer Expenditure Surveys
(202)-691-5018
Cobet.Aaron@bls.gov