Price stickiness along the income distribution and the effects of monetary policy

Javier Cravino, Ting Lan and Andrei Levchenko

University of Michigan

July 2018
Monetary shocks have distributional consequences

- Monetary policy has differential effect across agents:
 - Savers vs. borrowers (Doepke and Schneider 2006)
 - Financially constrained vs. unconstrained (Williamson, 2008)
 - Young vs. old (Wong, 2016)

- Coibion et al. 2017: Monetary shocks increase income inequality
- Mechanism: differential effects on agents income/wealth
- This paper: Alternative mechanism – differential effect on prices
 - Monetary policy differentially affects prices of different goods
 - Households with different income consume different goods
What we do

1) Document two new differences across consumption baskets:
 ○ High income households consume goods whose prices are:

 i) More sticky

 ii) Less volatile

2) Quantify distributional consequences of monetary shock

 ○ Factor-Augmented VAR (FAVAR) model

 ○ Quantitative New-Keynesian DSGE model

 ○ Inequality affects effectiveness of monetary policy – modestly

Main result: Shock that $\uparrow \pi^{agg}$ by 1% $\rightarrow \pi^{mid} - \pi^{top} = 0.2\%$
A simple model to guide the discussion

- Two periods. State is known at $t = 1$. S possible states at $t = 2$

- H types of households, J types of goods or 'sectors'
 - CPI faced by household h: $p^h_t(s) \equiv \sum_j \omega^h_j p_{j,t}(s)$
 - Aggregate CPI: $p_t(s) \equiv \sum_h s^h p^h_t(s) = \sum_j \omega_j p_{j,t}(s)$

- Cont. monopolistically competitive firms in each j, same technology
 - $t = 1$: all firms set same price, p_1
 - $t = 2$: fraction $1 - \theta_j$ set prices before shocks, $p^e_2 = p_1$
 - $t = 2$: fraction θ_j set prices after shocks, $\bar{p}_2(s)$

- Sectoral inflation:
 \[
 \pi_j(s) = \theta_j [\bar{p}_2(s) - p_1]
 \]
Price rigidities and inflation differences

- Difference in inflation across households:

\[
\pi^h(s) - \pi^{h'}(s) = [\bar{p}_2(s) - p_1] \sum_j \left[\omega^h_j - \omega^{h'}_j \right] \theta_j.
\]

\[
\frac{\pi^h(s) - \pi^{h'}(s)}{\pi(s)} = \frac{\bar{\theta}^h - \bar{\theta}^{h'}}{\bar{\theta}}
\]

where \(\bar{\theta}^h \equiv \sum_j \omega^h_j \theta_j \); \(\bar{\theta} \equiv \sum_h s^h \bar{\theta}^h \).

- More flexible sectors are more volatile

\[
\frac{\sigma_{\pi_j}}{\sigma_{\pi}} = \frac{\theta_j}{\bar{\theta}}
\]

- More flexible baskets are more volatile

\[
\frac{\sigma_{\pi^h}}{\sigma_{\pi}} = \frac{\bar{\theta}^h}{\bar{\theta}}
\]
Data

- Household specific inflation:
 \[\pi_t^h = \sum_j \omega_j^h \pi_{j,t} \]

 - \(\omega_j^h \): Consumption expenditures from the US Consumption Expenditure Survey (CES)
 - \(\pi_{j,t} \): Item-level price indices from BLS (178 goods)

- Household specific average frequency of price changes:
 \[\bar{\theta}^h \equiv \sum_j \omega_j^h \theta_j \]

 - \(\theta_j \): ELI-level frequencies from Nakamura and Steinsson 2008 (265 goods)

 - Fraction of prices that change in a month
Consumption Expenditure Survey

- Two modules: the Interview and the Dairy
 - Expenditure files
 - Collect expenditures on about 600 UCC categories
 - 350 UCCs in the Interview
 - 250 UCCs in the Dairy
 - Income files
 - Characteristics files

- Dairy and interview survey different households each year

- Percentile-level household expenditure share ω^h_j
Aggregating HHs into percentiles

- Sort households into percentiles in two steps:
 - Aggregate HHs in the Interview survey into percentiles
 - Use Interview income cutoffs to divide HHs from the Diary into percentiles

- Imputed income before tax
 - CES starts to include imputed income since 2004
 - Fisher, Johnson and Smeeding (2015) imputes income back to 1984
Adjusting the expenditure values

Housing

- Owner's equivalent rent of primary residence

 "If someone were to rent your home today, how much do you think it would rent for monthly, unfurnished and without utilities?"

 - Response saves in the variable $RENTEQVX$ in the characteristics file

 - Construct an artificial UCC code 999999 to store the value

- Separate consumption component from investment component

 - Adjust expenditures on homeowner insurance, maintenance, and major appliances

 - Apply a factor of 0.43
Adjusting the expenditure values

Medical care

- Redistribution factors
 - Redistribute private health insurance and Medicare premiums to medical care services
 - The BLS constructs redistribution factors from the National Health Expenditure (NHE) tables
 - Use NHE table 20 directly

- Allocate reimbursements across all HHs
Concordance

- In-scope expenditures for CPI could be divided into
 - 8 groups
 - 70 expenditure classes
 - 211 item strata (item level)
 - 303 entry level items (ELIs)

- Concordance from UCCs to item strata to ELIs
 - Following BLS document *CPI requirement for CE Appendix B*
Calculating the expenditure shares

- Distinction between the survey period and the expenditure reference period
 - HHs surveyed in Feb. 2017
 - Reports expenditures for Nov. and Dec. 2016 and Jan. 2017

- Calculate the mean value of a calendar year
 - Create \textit{MO_SCOPE}
 - Annualized average expenditure for each UCC category \(k \) at percentile \(h \)

\[
\bar{X}^h_k = \frac{\sum_i \text{FINLWT}^h_i \cdot \sum_t C^h_{i,k,t}}{\sum_i \text{FINLWT}^h_i \cdot \text{MO_SCOPE}^h_i} \times 12
\]

- Expenditure share

\[
\omega_j^h = \frac{-\bar{X}_j^h}{\sum_j \bar{X}_j^h}
\]
Takeaways

1. Households with different incomes consume different goods
2. Heterogeneous effects of monetary policy across goods
 \[\Rightarrow\text{Distributional consequences of monetary policy}\]

- Goods consumed by high-income households are:
 - more sticky
 - less volatile

- FAVAR + DSGE evidence
 - Large effects relative to impact of monetary shocks on prices
 - Inequality affects monetary policy effectiveness - modestly