An I ntroductory Look at the Chained Consumer Price Index

U.S. Department of Labor • Bureau of Labor Statistics • Washington, DC 20212

ESTIMATION METHODOLGY

1. Price I ndex Formula Notation

Abbreviation of underlying price index formula

Base period of index

2. The Cost-of-Living I ndex Concept

$$
I X_{[0, t]}^{C}=\frac{\min \sum_{i}{ }_{i} P_{t} \times\left.{ }_{i} Q_{t}\right|_{U=U_{0}}}{\sum_{i}{ }_{i} P_{0} \times_{i} Q_{0}}
$$

- The minimum expenditure $\left(\mathrm{P}_{\mathrm{t}} \cdot \mathrm{Q}_{\mathrm{t}}\right)$ required in comparison period (t) to attain the same level of satisfaction or utility $\left(\mathrm{U}_{0}\right)$ achieved in base period (0), divided by the actual expenditure $\left(\mathrm{P}_{0} \cdot \mathrm{Q}_{0}\right)$ in base period (0).

3. Price I ndex Formulas Commonly Used to Approximate a Cost-of-Living I ndex

FIRST ORDER APPROXIMATIONS:

LASPEYRES:	$I X_{[0 ; t]}^{L}=\sum_{i}{ }_{i} s_{0}\left(\frac{{ }_{i} p_{t}}{{ }_{i} p_{0}}\right)$
PAASCHE:	$I X_{[0 ; t]}^{P}=\left[\sum_{i}{ }_{i} s_{t}\left(\frac{{ }_{i} p_{0}}{{ }_{i} p_{t}}\right)\right]^{-1}$
GEOMETRIC MEAN:	$I X_{[0 ; t]}^{G}=\prod_{i}\left(\frac{{ }_{i} p_{t}}{{ }_{i} p_{0}}\right)^{s_{0}}$

SECOND ORDER APPROXIMATIONS:

TORNQVIST:	$I X_{[0 ; 7]}^{T}=\prod_{i}\left(\frac{{ }_{i} p_{t}}{i p_{0,}}\right)^{\left.\frac{i s_{0+}, s_{s}}{2}\right)}$
FISHER IDEAL:	$I X_{[0 ; t]}^{F}=\left(I X_{[0 ; t]}^{L} \times I X_{[0 ; t]}^{P}\right)^{1 / 2}$

KEY:
${ }_{i} p_{t}=$ Price of item (i) in comparison period (t)
${ }_{i} p_{0}=$ Price of item (i) in base period (0)
${ }_{i} s_{t}=$ Expenditure on item (i) in comparison period (t), divided by expenditures on all items in comparison period (t)
${ }_{i} s_{0}=$ Expenditure on item (i) in base period (0), divided by expenditures on all items in base period (0)

4. Estimation of Price Change in the Chained Consumer Price Index (C-CPI-U)

LOWER-LEVEL AGGREGATION:

$$
{ }_{i, a} I X_{[0 ; t]}^{L}=\sum_{k \in i, a} s_{0}\left(\frac{{ }_{k} p_{t}}{{ }_{k} p_{0}}\right) \quad \text { or } \quad I X_{[0 ; t]}^{G}=\prod_{k \in i, a}\left(\frac{{ }_{k} p_{t}}{{ }_{k} p_{0}}\right)^{k} S_{0}
$$

UPPER-LEVEL AGGREGATION:
Long-term Price Change
Month-to-Month Price Change

$\begin{array}{\|c\|} \hline \text { Initial } \\ \text { C-CPH-U } \end{array}$	${ }_{I, A} I X_{[z ; y, t]}^{G_{i}}=_{I, A} I X_{[z ; y-1,12]}^{G_{r}} \times \prod_{n=1}^{t}{ }_{I, A} I X_{[n-1 ; n]}^{G_{i}}$	
Interim C-CPI-U	${ }_{I, A} I X_{[z z ; y, t]}^{G_{r}}={ }_{l, A} I X_{[z ; y-1,12]}^{T} \times \prod_{n=1}^{t}{ }_{l, A} I X_{[n-1 ; n]}^{G_{r}}$	
$\begin{gathered} \text { Final } \\ \text { C-CPI-U } \end{gathered}$	${ }_{1, A} I X_{[z ;, t]}^{T}{ }_{l}{ }_{l, A} I X_{[z ; i t]]}^{T} \times{ }_{l, A} I X_{[t-1 ; i]}^{T}$	

KEY:

```
\(\mathrm{k}=\) unique good or service
A = CPI aggregate area
\(\mathrm{a}=\mathrm{CPI}\) elementary area
I = CPI aggregate item
i = CPI elementary item
0 = elementary index base period
\(\mathrm{t}=\) month
y \(=\) year
\({ }_{k} p_{t}=\) price of good (k) in month ( t )
\({ }_{k} p_{0}=\) price of good (k) in base-period (0)
\({ }_{k} S_{0}=\) expenditure for good (k) in base period ( 0 ), divided by
        expenditure for all (k) goods in elementary item (i), area
        (a) in base period (0)
z = December 1999 index base period
\(\mathrm{b}_{\mathrm{i}}=\) expenditure reference period of CPI-U index of year (y);
        NOTE: \(b_{i}=1999-2000\) for \(y=2002\) and \(y=2003\).
\(b_{r}=\) expenditure reference period of CPI-U index of year
        \((y+1)\). NOTE: \(b_{i}=b_{i}\) for \(y=2002\) and \(b_{i}=2001-2002\) for
        \(\mathrm{y}=2003\).
```

$\mathrm{IX}^{\mathrm{L}}=$ Laspeyres elementary index
$\mathrm{IX}^{\mathrm{G}}=$ Geometric Mean elementary index
$\mathrm{IX}^{\mathrm{Gi}}=$ Initial C-CPI-U index
$\mathrm{IX}^{\mathrm{Gr}}=$ Interim C-CPI-U index
$\mathrm{IX}^{\mathrm{T}}=$ Final C-CPI-U index
${ }_{\mathrm{i}, \mathrm{a}} S_{\mathrm{bi}}=$ expenditure for elementary item (i) in area (a) in expenditure period (b_{i}), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in expenditure period (b_{i})
$\mathrm{i}, \mathrm{a} \mathrm{Sbr}=$ expenditure for elementary item (i) in area (a) in expenditure period (b_{r}), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in expenditure period (b_{r})
${ }_{\mathrm{i}, \mathrm{a}} S_{t}=$ expenditure for elementary item (i) in area (a) in month (t), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in month (t)
${ }_{\mathrm{i}, \mathrm{a}} S_{t l}=$ expenditure for elementary item (i) in area (a) in month (t-1), divided by expenditure for all elementary items in aggregate item (I) in aggregate area (A) in month (t-1)
$\lambda_{y} \quad=$ Adjustment factor used in year (y) to calculate Initial (y) and Interim ($\mathrm{y}-1$) C-CPI-U indexes published in year (y); NOTE: $\lambda_{y}=1$ for C-CPI-U indexes published in 2002.

