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t-SNE 1s a dimension reduction algorithm.

Input: high-dimensional data
Output: low-dimensional data that preserves...
- the graph structure?
- local neighborhoods?
- global structure?
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1. Those hyperparameters really matter
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2. Cluster sizes in a t-SNE plot mean nothing
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Original Mammoth
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Task: 3d to 2d.
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Local vs Global

- Local structure: local neighborhood graph, nearest neighbors

- Global structure: relationships between clusters, respect relative
distances between points in high-dimensional space.

(mainly global)

t-SNE

(mainly local)
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(both, actually)



Global Methods
* PCA (Pearson, 1901)
* MDS (Torgerson, 1952)

Local Methods P Preserve distances,
+ LLE (Roweis and Saul, 2000), N 10! neighborhoods
* [somap (Tenenbaum et al., 2000) %

* Hessian Local Linear Embedding (Donoho and Grimes, 2003)
* Laplacian Eigenmaps (Belkin and Niyogi, 2001)
* Stochastic Neighborhood Embedding (SNE) (Hinton and Roweis, 2003)
* t-SNE (van der Maaten and Hinton, 2008)
» LargeVis (Tang et al., 2016) Ve
* UMAP (Mclnnes et al., 2018) e wﬁ% Preserve neighborhoods

Crowding problem
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Algorithm | Graph components and Loss function
Graph components: Edges (,7)
9 —1
t-SNE t- SNE (1+||yi_Yj|| )
A Loss;’ = Pij log , where g;; = > ket (I llyr—yil12)

& Hinton, 2008)

Where pij is a functlon of x;, x; and other x;’s.

UMAP

(Mclnnes et al., 2018)

Graph components: Edges (i, j)

_ b S
UMAP _ w; ; log (1 +a(lyi —y;l3) ) - i, j neighbors
" (1 —w; ;) log (1 - (1 +a (lyi — yj||§)b) ) otherwise,

where w; ; is a function of x;, x; and nearby x,’s.

Loss

TriMAP

(Amid & Warmuth, 2019

Graph components: Triplets (7, j, k) where Distance; ; < Distance; j

(3] _1
Loss; j = wi ks, y53)1+§8@ vy Where s(yi,y;) = (L4 llyi = y517)

and w; ;. is a function of x;, x;, x; and nearby points.

Hard to understand what’s important here...




Start from the obvious:

* Attraction: high-dimensional neighbors should be attracted.
* Repulsion: points far in original space should be far in low-dim space

But that’s not enough...
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Attract neighbors Repulse far points |

Z lattract(,[:,j) 0, Z lrepulse(,t-7 k‘)

(Z ,J) & ﬁleighbors




Start from the obvious:

* Attraction: high-dimensional neighbors should be attracted.
* Repulsion: points far in original space should be far in low-dim space.

After a huge amount of experimentation, we found that:

* Certain specific properties of the loss function are important for
local structure.

* The choice of which graph components to exert forces on i1s -
important for global structure. AN



Z Weight™ (C?) - Loss¥ (CF)

Subset of graph components {i}

After a huge amount of experimentation, we found that:

* Certain specific properties of the loss function are important for
local structure.

* The choice of which graph components to exert forces on 1s M
important for global structure. A N
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The “rainbow” plot A
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Our principles for a good loss function

1. Monotonicity

Very close to left,
2. Except at bottom, gradient should go mainly to the left.

small gradient

(if further point is sufficiently far, should focus on pulling neighbor closer.)
Mainly left, 3. At bottom, gradlént goes up.
small gradient (push further points away really hard)
. 4. At left, gradient has small magnitude.
(don’t crowd, relax when close enough)
Up, large gradient 5. At bottom, gradient has large magnitude.
(push farther point away)

i



t-SNE UMAP PaCMAP

Our principles for a
good loss function

Very close to left,
small gradient

Mainly left,
small gradient

=

dik

Up, large gradient
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supposed to give up on far neighbors...



Our principles for a
good loss function

Very close to left,
small gradient

Mainly left,
small gradient
= L
a

Up, large gradient

d..

)

VS.

Algorithm

Graph components and Loss function

Graph components: Edges (i, j)
(1+lyi-ys1?)~"

_ tSNE _ 10 Pid o
t-SNE Loss;; pij log aij’ where g;; et (LHlyr—yal?) ™!
where p;; is a function of x;, x; and other x,’s.
Graph components: Edges (7, )
_ b ! S
w; j log (1 +a(llyi —y;l3) ) i, j neighbors
UMAP | Loss; M4 = 1
(1 —w;;)log <1 — (1 +a(lyi —y;l3) ) > otherwise,
where @; ; is a function of x;, x; and nearby x;’s.
Graph components: Triplets (4, j, k) where Distance; ; < Distance; ,
- ™ _ i _ 2\ 1
TriMAP LOSSi,j,kﬁ = UJi,ng 8()’1;’5})’4‘?9,5})’@)’1@)’ where S(yl7yj) - (1 + HYZ - YJ” )

and w; j 1, is a function of x;, x;, X3 and nearby points.

PaCMAP’s loss is simpler.




Algorithm | Graph components and Loss function
Graph components: Edges (7, 7)

t-SNE LOSS%?jSNE = pijlog %7 where ¢;; =

(1+lyi—y;l?) "

Zk;&l(1+‘|3’k*)’l‘|2)_1
where p;; is a function of x;, x; and other x;’s.
Graph components: Edges (7, )

Our principles for a

1 nction -1
good loss functio w; j log <1 +a(llyi - yjH%)b) i, j neighbors
Very close to left UMAP LOSSHJMAP - | b\ 1
sm!ll gradient ' (1= i) log <1 a (1 +a (”yl ; y]H%) ) > otherwise,
VS where @; ; is a function of x;, x; and nearby x;’s.
Mainly left * Graph components: Triplets (4, j, k) where Distance; ; < Distance; ,
’ : ” -1
J small gradient TriMAP LOSS}:%« = Wi,j,ks(yi;,?);%a where s(yi,y;) = (1 +[lyi — Yj”g)
..3% « and w; j 1, is a function of x;, x;, X3 and nearby points.
« Up, large gradient N . .
PaCMAP’s loss is simpler.

d distance (i, /) := [ly; — y;ll*+1

]
PaCMAP

Loss = WhpeighborsLLOSSneighbors = 27?2  + wppLosspp

— —

__ distance (i,)) 1

Loss,.. = Lossp =
neighbors distance (i,j)+10 FP (distance (i,D)+1

attractive repulsive



* Certain specific properties of the loss function are important for ™
local structure. ¢ §

* The choice of which graph components to exert forces on 1s -
important for global structure.
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(UMAP)
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PaCMAP’s Loss

PaCMAP

Loss = WheighborslLOSSneighbors + W NLOSSp N + wppLlosspp

distance (i,)) := |ly; — y;lI°>+1 H .)

Loss. . __ distance (i,)) Loss, = distance (i,l) 108 = 1
neighbors  {istance (i,j)+10 MN " distance (i,1)+10000 FP - distance (i,1)+1
Neighbors: Mid-near pairs: Further points:
attractive mild attractive repulsive

Mid near pair for i : sample 6 observations, choose the second closest of the 6,
pair it with i.



Mid-near pairs have an effect!

mid-near pairs mid-near pairs
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* Certain specific properties of the loss function are important for o™
local structure. ¢

e The choice of which graph components to exert forces on is
important for global structure.

How to evaluate DR?



How to Evaluate DR Algorithms?

* Local structure — DR then supervised classification in 2D

* Global structure — triplet loss

* Sensitivity to parameter choices

* Sensitivity to preprocessing choices

* Computational efficiency

communications biology
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PBMC Data, PACMAP projection, Colored 3 Ways
(PBMC is Peripheral Blood Mononuclear Cell)

PaCMAP projection of the PBMC data colored by CellType

PaCMAP projection of the PBMC data colored by Experiment

PaCMAP projection of the PBMC data colored by Method
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Data from Ding J, Adiconis X, Simmons SK, Kowalczyk MS et al. Systematic comparison of single-cell and single-
nucleus RNA-sequencing methods. Nat Biotechnol 2020 Jun;38(6):737-746. PMID: 32341560
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PaCMAP: 23.90 seconds
figure credit: Carla Moelbert




PBMC Data, UMAP projection, Colored 3 Ways

UMAP projection of the PBMC data colored by CellType

UMAP projection of the PBMC data colored by Experiment

UMAP projection of the PBMC data colored by Method
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Colored by Experiment

Data from Ding J, Adiconis X, Simmons SK, Kowalczyk MS et al. Systematic comparison of single-cell and single-
nucleus RNA-sequencing methods. Nat Biotechnol 2020 Jun;38(6):737-746. PMID: 32341560
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How to Evaluate DR Algorithms?

* Local structure — DR then supervised classification in 2D

* Global structure — triplet loss

* Sensitivity to parameter choices

* Sensitivity to preprocessing choices

* Computational efficiency
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Data from: Kazer, S. W. et al. Integrated single-

cell analysis of multicellular immune dynamics
during hyperacute HIV-1 infection. Nat. Med.26,
511-518 (2020).




How to Evaluate DR Algorithms?

* Local structure — DR then supervised classification in 2D

* Global structure — triplet loss
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Run time

DATASET (SIZE) T-SNE  LArRceVis UMAP TrRIMAP PaACMAP
OLIVETTI FACES (0.4K) 00:00:04  00:08:13  00:00:02 00:00:01 00:00:01
COIL-20 (1.4K) 00:00:08  00:10:18  00:00:05 00:00:02  00:00:01
COIL-100 (7.2K) 00:00:49  00:09:53  00:00:10  00:00:06  00:00:03
S-CURVE WITH HoOLE (9.5K) 00:01:17  00:10:09  00:00:15  00:00:08  00:00:05
USPS (9.5K) 00:01:14  00:10:15  00:00:15 00:00:07  00:00:05
MaMMOTH (10K) 00:00:58  00:10:36  00:00:16  00:00:08  00:00:05
20NEWSGROUPS (18K) 00:03:29  00:11:40  00:00:19  00:00:18  00:00:12
MoUseE scRNA-sEqQ (20K) 00:04:43  00:12:52  00:00:24  00:00:20  00:00:13
MNIST (70K) 00:14:02  00:20:19  00:01:09 00:01:14  00:00:52
F-MNIST (70K) 00:12:43  00:17:11  00:00:59  00:01:13  00:00:47
Frow CYTOMETRY (3M) - - - 02:10:27  00:58:28
KDD Cur99 (4M) - - - 03:34:57  02:05:19




Name-Ethnicity Classification

(helpful for assessing fairness)
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EEG Monitoring
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joint work with Alina Barnett, Zhicheng Guo, Jing Jing and Brandon Westover
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Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A
HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of
a home and its purchase price). The customers in this dataset have requested a credit line in the range of $5,000 - $150,000. The
fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC
account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much
credit should be extended.




PaCMAP result on FICO
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* What makes DR algorithms succeed/fail? P2
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* Local structure: A good loss function. TN S
« Should obey 6 principles. 9 il
* Rainbow plot allows to compare across algorithms.

* Global structure:

* We suggest forces on non-neighbors. Mid-near pairs.

« PaCMAP
* A simpler loss function involving 3 terms.
* Preserves local and global structure, fast run time.

PaCMAP (Mammoth)
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Dimension reduction (DR) techniques such as t-SNE, UMAP, and TriMap have demonstrated impressive visualization performance
News on many real-world datasets. One tension that has always faced these methods is the trade-off between preservation of global
structure and preservation of local structure: these methods can either handle one or the other, but not both. In this work, our main

Editorial Board goal is to understand what aspects of DR methods are important for preserving both local and global structure: it is difficult to design
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