Table 1. Number, incidence rate 1, median days away from work 2 and relative standard errors 3 of occupational injuries and illnesses involving days away from work 4 by selected natures with musculoskeletal disorders 5 in private industry for Georgia, 2003

<table>
<thead>
<tr>
<th>Nature of the Injury or Illness</th>
<th>Total Cases</th>
<th>Incidence Rate</th>
<th>Median Days</th>
<th>Relative Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Natures</td>
<td>8,740</td>
<td>31.1</td>
<td>7</td>
<td>4.7</td>
</tr>
<tr>
<td>021 Sprains- strains- tears</td>
<td>6,460</td>
<td>23.0</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>0972 Back pain- hurt back</td>
<td>510</td>
<td>1.8</td>
<td>5</td>
<td>12.1</td>
</tr>
<tr>
<td>0973 Soreness- pain- hurt- except the back</td>
<td>610</td>
<td>2.2</td>
<td>5</td>
<td>11.2</td>
</tr>
<tr>
<td>1241 Carpal tunnel syndrome</td>
<td>520</td>
<td>1.9</td>
<td>33</td>
<td>12.1</td>
</tr>
<tr>
<td>153 Hernia</td>
<td>350</td>
<td>1.2</td>
<td>32</td>
<td>14.5</td>
</tr>
<tr>
<td>1530 Hernia- unspecified</td>
<td>70</td>
<td>0.2</td>
<td>19</td>
<td>32.3</td>
</tr>
<tr>
<td>1531 Inguinal hernia</td>
<td>230</td>
<td>0.8</td>
<td>35</td>
<td>17.5</td>
</tr>
<tr>
<td>1539 Hernia- n.e.c.</td>
<td>20</td>
<td>0.1</td>
<td>83</td>
<td>59.0</td>
</tr>
<tr>
<td>17 Musculoskeletal system and connective tissue diseases</td>
<td>300</td>
<td>1.1</td>
<td>17</td>
<td>15.6</td>
</tr>
<tr>
<td>173 Rheumatism- except the back</td>
<td>240</td>
<td>0.9</td>
<td>17</td>
<td>17.1</td>
</tr>
<tr>
<td>1730 Rheumatism- except the back- unspecified</td>
<td>50</td>
<td>0.2</td>
<td>35</td>
<td>38.2</td>
</tr>
<tr>
<td>1733 Tendonitis</td>
<td>110</td>
<td>0.4</td>
<td>31</td>
<td>25.0</td>
</tr>
<tr>
<td>1739 Rheumatism- except the back- n.e.c.</td>
<td>50</td>
<td>0.2</td>
<td>4</td>
<td>38.5</td>
</tr>
</tbody>
</table>

1 Incidence rates represent the number of injuries and illnesses per 10,000 full-time workers and were calculated as:

\[
\frac{N}{EH} \times 20,000,000
\]

N = number of injuries and illnesses,

EH = total hours worked by all employees during the calendar year,

20,000,000 = base for 10,000 full-time equivalent workers (working 40 hours per week, 50 weeks per year).

2 Median days away from work is the measure used to summarize the varying lengths of absences from work among the cases with days away from work. Half the cases involved more days and half involved less days than a specified median. Median days away from work are represented in actual values.

3 Relative standard errors are a measure of the sampling error of an estimate. Sampling errors occur because observations are made on a sample, not on the entire population. Estimates based on the different possible samples of the same size and sample design could differ. Relative standard errors less than 0.05 are not shown.

4 Days-away-from-work cases include those that result in days away from work with or without job transfer or restriction.

5 Includes cases where the nature of injury is: sprains, strains, tears; back pain, hurt back; soreness, pain, hurt, except back; carpal tunnel syndrome; hernia; or musculoskeletal system and connective tissue diseases and disorders and when the event or exposure leading to the injury or illness is: bodily reaction/bending, climbing, crawling, reaching, twisting; overexertion; or repetition. Cases of Raynaud’s phenomenon, tarsal tunnel syndrome, and herniated spinal discs are not included. Although these cases may be considered MSD’s, the survey classifies these cases in categories that also include non-MSD cases.

NOTE: Dashes indicate data that do not meet publication guidelines or data for incidence rates less than .05 per 10,000
full-time workers. The scientifically selected probability sample used was one of many possible samples, each of which could have produced different estimates. A measure of sampling variability for each estimate is available upon request.