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Seasonal adjustment is a statistical technique that attempts to measure and remove the influences of predictable seasonal patterns to reveal how 

weekly UI initial and continuing claims change from week to week. 

Over the course of a year, the amount of UI claims undergoes fluctuations due to seasonal events including changes in weather, holidays, and 

school schedules. Because these seasonal events follow a more or less regular pattern each year, their influence on statistical trends can be 

eliminated by seasonally adjusting the data from week to week. These seasonal adjustments make it easier to observe the cyclical, underlying 

trend, and other nonseasonal movements in the series. 

The Bureau of Labor Statistics (BLS) seasonally adjusts two weekly unemployment insurance (UI) claims series for the Employment Training 

Administration (ETA) at the Department of Labor (DOL). These series are for initial and continued claims. Seasonal factors for these series can 

be found on the BLS website at Seasonal Adjustment for Weekly Unemployment Insurance Claims : U.S. Bureau of Labor Statistics (bls.gov) 

and on the DOL website at Unemployment Insurance Weekly Claims Data, Employment & Training Administration (ETA) - U.S. Department of 

Labor (doleta.gov). 

Seasonally adjusted data for the current year are produced with a technique known as projected seasonal adjustment. Under this practice, 

seasonal factors are forecasted out from the end of the series and applied to the series as new observations become available. Beginning 

with 2002, we use claims data through the month of January in the current year to make the forecasts. By using data beginning and ending at 

the end of January, we avoid having holiday effects directly at the end or beginning of our series. Before 2002, BLS incorporated data only 

through December of the prior year in the development of new seasonal factors. 

Utilizing data through the end of January each year, BLS reestimates the seasonal factors for both time series by including another full year 

of data in the adjustment process. Based on this annual reestimation, BLS revises historical seasonally adjusted data for the previous 5 years. 

As a result, each year's data are generally subject to five revisions before the values are considered final. The fifth and final revisions to data 

for the earliest of the 5 years are usually quite small, while the first-time revisions to data for the most recent years are generally much 

larger. For the major aggregate labor force series, however, the first-time revisions rarely alter the essential trends observed in the initial 

estimates. 

Adjustment Methods and Procedures 

Prior to 2002, the method of seasonal adjustment for weekly data was developed by staff of the Federal Reserve Board (FRB)1. This method only 

allowed for fixed seasonal factors, but when seasonality is changing over time this method failed to remove all of the seasonality in the series, 

which users found confusing. BLS evaluated an alternate method2 developed by the FRB and found it to improve the weekly seasonal adjustment 

over such periods. BLS and ETA introduced this alternate method to develop seasonal factors on April 11, 2002, effective with the release of 

claims data for the week ending April 6, 2002. 

The first FRB method of seasonal adjustment assumed that the claims series had fixed seasonality, suggesting the claims data reflected a holiday 

or regular seasonal event the same way each year and the seasonal factors change only from the effects of the calendar. The second method 

assumes that the claims series exhibit variation in response to a seasonal event (moving seasonality). The second method allows the coefficients 

that determine the factors to change over time, in addition to reflecting the change based on calendar effects. (As part of testing the second 

method, it was confirmed that the two claims series do in fact exhibit moving seasonality.) 

Starting with the release of new projected factors in 2024, BLS moved to a structural time series (STS) model. The model is set up in 

state-space form using the Kalman filter/smoother for estimation. There are many advantages to the new model. We use the Proc SSM3 

package in SAS/ETS® software to simplify the programming. SSM is capable of modeling monthly, quarterly, and high-frequency data 

(weekly, daily, hourly, et al.), and automatically outliers as described in De Jong and Penzer.4 Similar models have been used by BLS 

in the Local Area Unemployment Statistics program since 1988, as they are also capable of accounting for sampling error in the Current 

Population Survey employment and unemployment series for states.5 Structural time series models can also easily handle calendar 

effects as well as various types of outliers. 

https://www.bls.gov/lau/seasonal-adjustment-for-weekly-unemployment-insurance-claims.htm
https://oui.doleta.gov/unemploy/claims.asp


An obvious question might be as to why we are not using the standard X-13ARIMA-SEATS program for weekly seasonal adjustment. 

X-13 expects the data to have constant periodicity, but weekly series will have 52 or 53 weeks in a year. Also, the position of the dates 

of the series changes from year to year and the seasonal patterns rarely recur due to leap years. For more detailed information about 

STS models and weekly data, see Harvey, et al.6 

For the two national UI series that are seasonally adjusted by BLS, the main steps of the seasonal adjustment process proceed in the 

following order: 

1. Time series modeling 

2. Model decomposition 

3. Evaluation 

4. Variances 

 

1. Time series modeling 

Time series models play an important role in seasonal adjustment. They are used to identify and adjust the series for atypical 

observations and other external effects. 

Structural time series models 

A classical additive decomposition model for an STS model in our case is: 
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where 𝑌௧ is the observed series (at time t), T is a trend component, S is a seasonal component, I is an irregular component, O is an outlier 

component, and H is a holiday component. The time series components are assumed to be stochastic, and the trend, seasonal, and irregular 

components each have disturbance terms which are uncorrelated from each other. Variances for the disturbance terms are also known as 

hyperparameters. A positive variance for a component means that it is stochastic, while a zero variance shows deterministic behavior. 

Trend-Cycle 

The trend-cycle component consists of a local linear trend with a level and slope to form an integrated random walk. Trends represent the 

long-term evolution of a series and are modeled here as: 
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where 
tT and 

t
  are disturbance terms. 

This simple trend-cycle model can accommodate patterns ranging from an irregular cyclical series to a linear trend with a fixed rate of growth. 

Shifts up or down in the level give the trend-cycle a jagged appearance while changes in slope are inherently more gradual, causing acceleration, 

deceleration or change in direction. Overall smoothness, therefore, depends on the magnitude of the level variance relative to the slope variance. 

A small level variance relative to the slope variance implies a smooth trend (i.e. few turning points). In contrast, if the slope variance is small 

relative to the level variance, the trend will frequently change direction. In general, the trend-cycle is a combination of a long-run trend and more 

variable cyclical fluctuations. 

 

 

 

 



Seasonal 

The stochastic seasonal component is specified in terms of s seasons in a year: 
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where 2 /j j s  is the frequency in radians, and ,k t , *
,k t  are disturbance terms that allow the seasonal effects to evolve stochastically 

over time. If seasonality is stochastic, only the expected value of the sum of the effects will equal zero over a year. Also, *
,j tS  will be 

redundant j=s/2. More details can be found in Harvey7. All the possible sine and cosine pairs are not required to reasonably model the 

seasonal component for weekly data, so we use a combination of statistical tests and graphs to help determine the optimal number. 

The below plots show the average multiplicative seasonal factor by week for Initial Claims (IC) and Continued Claims (CC). 

 

 

 

 

 



Irregular 

The irregular component is assumed to be white noise and includes erratic fluctuations not captured by the other components. It consists of a 

single white noise disturbance: 
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where t  is a disturbance term that has a zero mean and constant variance. 

Holiday 

The holiday component is made up of effects caused by special events across the year. Holidays usually fall yearly and are defined as 

follows for each year unless a special weighting is required. The holiday component is a linear combination of all the holiday effects in 

the model: 
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A specific holiday can be: 

 

where t=1,2,…,T, k represents a week with a holiday from a list determined by BLS, and ,H k  is a coefficient for the change in level of 

the series at time k. Note that k can vary for a specific holiday from year to year. For most holidays, the variable will be all zeroes during 

a year except for one week with a 1. There are sometimes special holidays or events that do not occur yearly. In these cases, the formula 

is the same as above but only occurs in certain years. These special holidays tend to be either 5, 6, or 11 years apart. 

These effects are temporary breaks in a series that result from events such as moving holidays or the differing composition of weekdays in a 

month between years. These effects have different influences on the same week across years, thereby distorting the normal seasonal 

patterns for the given week. 

Some special holidays can be required at different times across the UI series. Examples can be a late Thanskgiving, Christmas on 

Monday in week 51 or 52, July 4th on Wednesday, or Christmas on Friday. Note that most holidays in monthly or quarterly data do not 

move from a certain month or quarter, but holidays vary in the week where they fall. For example, Labor Day falls in either week 36 or 

37 and Easter moves between weeks 12 and 18. Note that BLS now removes these moving holiday effects along with the seasonal 

effects for the final seasonally adjusted series. See Cleveland, et al.8 for more information on holiday modeling with UI series. 

Outlier 

A common form of outlier that presents a special problem for seasonal adjustment is an abrupt shift in the level of the data that may 

be either transitory or permanent. Three types of outliers are usually distinguished: 

 An additive change that affects only a single observation (AO) 

 A temporary change (TC) that has an effect that diminishes to zero over many weeks depending on the decay factor 

 A level shift (LS), or a break in the trend of the data, which represents a permanent increase or decrease in the underlying level 
of the series 

 



 

 

These three main types of outliers, as well as other types of external effects, may be handled by the time series modeling component of the 

SSM program. This is done by adding to the STS model appropriately defined regression variables based on intervention analysis originally 

proposed by George E.P. Box and George C. Tiao.9 Outliers are detected through knowledge of the series, examination of plots, 

automatic outlier detection in SSM, or by checking the standardized prediction errors. 

The outlier component is a linear combination of all the outlier effects in the model as below: 
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where ,k t  is an indicator variable identifying when the outlier effect first occurred and its duration, and k  is a coefficient for the change 

in the level of the series at time k. 

The outlier types are modeled as follows: 
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where k is the time point where the outlier effect first occurred, and is the rate of decay back to the previous level (0 < 𝛼 < 1). 

While STS models can represent a wide class of evolving time series patterns, they do not account for the presence of occasional outliers 

and other special external effects. An outlier represents a sudden break in the normal evolutionary behavior of a time series. Ignoring the 

existence of outliers may lead to serious distortions in the seasonally adjusted series. 

Outliers can occur in UI series for various reasons. Before UI claims could be filed on the internet, a government holiday could affect 

the claims series as it represents the loss of a day for filing claims. While claimants can now file through the internet for all states, fewer 

claims might still be filed in a particular holiday week as family events and vacations may delay filings. Significant weather events such 

as hurricanes and winter events may lead to an unusual increase in claims. The effects of the 9/11 attacks also affected the series for 

several weeks in 2001. Strong effects from the pandemic over 2020-2021 seriously impacted the UI series. For example, initial claims 

rose quickly from a typical level of 200,000-300,000 to over 6 million in April 2020. 

Model adequacy and length of series 

The preference is to use relatively long series in fitting time series models, but with some qualifications. Sometimes, the relevance of data 

in the distant past to seasonal adjustment is questionable, and a shorter series might be preferred. 
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Even though the filters have limited memory, there are reasons for using longer series. First, for homogenous time series, the more data 

used to identify and estimate a model, the more likely it is that the model will represent the structure of the data well and the more accurate 

the parameter estimates will be. The exact amount of data needed for time series modeling depends on the properties of the series 

involved. Arbitrarily truncating the series, however, may lead to more frequent changes in model identification and to large changes in 

estimated parameters, which in turn may lead to larger-than-necessary revisions in forecasts. 

Second, although level shifts and other types of outliers tend to occur more often in longer series, SSM has the capability of automatically 

controlling these effects. Finally, attempting to fit longer series often provides useful insights into the properties of the series, including 

their overall quality and the effects of major changes in survey design. 

Intervention analysis is used extensively to estimate the magnitude of known breaks in UI series and of automatic outlier detection to 

identify and correct for the presence of additional atypical observations. Once a model is estimated, it is evaluated in terms of its adequacy 

for seasonal adjustment purposes. The criteria essentially require a model to fit the series well (there should be no systematic patterns in the 

prediction errors). When there is a tradeoff between the length of the series and the adequacy of the model, a shorter series is selected. In 

this case, the identification of the model is not changed with the addition of new data unless the model fails diagnostic testing. 

Kalman filtering/smoothing 

SSM makes a forward and backward pass through the data. The forward pass uses a recursive algorithm and is known as the Kalman filter 

(KF). This updates our knowledge of the system every time a new observation is added. 

The actual model error is the difference between the true values of the signal (the true population values) and the model’s estimate of that value. 

Since the predicted values reflect all the available information up to time t-1, the corrected estimates for time t reflect all the available 

information from both the historical and current values of the series. As we don’t know the true values, we cannot compute the actual model 

error. The one-step-ahead prediction errors are the difference between the UI observed values and their predictions at each step from the model. 

Because the prediction errors represent movements not explained by the model, they should not contain any systematic information about the 

behavior of the signal or the noise component of the UI data. The prediction errors, when standardized, should approximate a randomly 

distributed normal variate with zero mean and constant variance. The model diagnostics test the standardized prediction errors for departure 

from these properties. 

While the KF is a natural way to forecast the seasonal component to get projected factors or to make concurrent seasonally adjusted estimates, it 

is not well suited for producing historical estimates for a fixed set of data observations since it is designed to produce a current period estimate 

only and not to revise any earlier estimates. To achieve this, a method known as “smoothing” is used. This process revises each of the KF 

estimates for a period running from t=1 to the last available observation at t=N. These “retrospective” estimates are obtained for the “Kalman 

smoother,” which makes a backward pass through the data from t=N to t=1. Smoothing is batch processing in the sense that it operates on all 

the data at once in contrast to the KF, which processes one observation at a time. SSM produces useful diagnostic measures in the smoothing 

phase for identifying outliers and structural breaks such as AO effects in the measurement equation and in the structural disturbances based on 

cross-validation errors. 

Not surprisingly, the estimates from the smoother typically look “smoother” than those from the filter. This is because the variances of the 

smoothed estimates are never larger than the variances for the filtered estimates and are usually much smaller toward the center of the series. 

But it is important to note that since these smoothed estimates use data from the entire series, they do not correspond to estimates that are 

available to data users in real time. Note that smoothing is only performed once a year during the annual review. See Harvey10 for more details 

about Kalman filtering/smoothing. 

2. Model decomposition 

The STS method of seasonal adjustment assumes that the original series is composed of three main components: trend-cycle, seasonal, and 

irregular. Depending on the relationship between the original series and each of the components, the mode of seasonal adjustment may be 

additive or multiplicative. Formal tests are conducted to determine the appropriate mode of adjustment. 

The multiplicative mode assumes that the absolute magnitudes of the components of the series are dependent on each other, which 

implies that the size of the seasonal component increases and decreases with the level of the series. With this mode, the monthly seasonal 

factors are ratios, with all positive values centered around unity (1.0). The seasonally adjusted series values are computed by dividing 

each month's original value by the corresponding seasonal factor. 

In contrast, the additive mode assumes that the absolute magnitudes of the components of the series are independent of each other, which 

implies that the size of the seasonal component is independent of the level of the series. In this case, the seasonal factors represent positive 



or negative deviations from the original series and are centered around zero. The seasonally adjusted series values are computed by 

subtracting the corresponding seasonal factor from each month's original value. 

A multiplicative seasonal effect is assumed to be proportional to the level of the series. A sudden, large change in the level of the series 

will be accompanied by a proportionally large seasonal effect. In contrast, an additive seasonal effect is assumed to be unaffected by the 

level of the series. In times of relative economic stability, the multiplicative option is generally preferred over the additive option. 

However, in the presence of a large level shift in a time series, multiplicative seasonal adjustment factors can result in systematic over- or 

under-adjustment of the series; in such cases, additive seasonal adjustment factors are preferred since they tend to track seasonal 

fluctuations in the series more accurately and have smaller revisions. 

Prior to 2020, the UI series were modeled multiplicatively, and diagnostic tests verified this choice. However, beginning in March 2020, 

it was clear that the multiplicative factors could cause distortion to the size of the seasonal components. Unfortunately, due to the 

practice of using projected seasonal factors, changes could not be made immediately. However, in the summer of 2020, BLS made 

changes to create additive projected factors for official release. Later, we switched to a hybrid adjustment in which additive factors were 

only used during the worst part of the pandemic period. Starting in 2023, BLS switched back to multiplicative projected factors except 

for the period from March 2020 through July 2021. No revisions will be made to those seasonal factors even when we revise factors 

back 5 years in our annual review. In accordance with our usual practice, seasonal adjustment models and factors are always reviewed at 

the beginning of the calendar year, and necessary changes are made to the seasonal adjustment settings as required. Although there are 

possibly very large level shift effects early in the pandemic, they are not permanent shifts and had to be replaced by a combination of 

AOs and TCs. Otherwise, pandemic LSs can cause distortions in the seasonally adjusted data in future years. 

3. Evaluation 

A series should be seasonally adjusted if three conditions are satisfied: the series is seasonal, the seasonal effects can be estimated 

reliably, and no residual seasonality is left in the adjusted series. A variety of diagnostic tools is available in SSM, and others were added 

to our program to test for these conditions, including frequency-spectrum estimates, heteroscedasticity tests, goodness-of-fit tests, numerous 

diagnostic plots, etc. If diagnostic testing shows that any of the three conditions listed fails to hold for a given series, a series is deemed 

not suitable for seasonal adjustment. The possibility of changing outliers or holidays in the model is also tested as needed. 

4. Variances 

Week-to-week changes for UI seasonally adjusted series can be both relatively large and variable, so the changes can be difficult to 

interpret. Using a parametric bootstrap to estimate variances for initial and continued claims week-to-week changes, Evans and 

Sverchkov11 showed that most changes are not statistically significant. Recently, Evans, et al.,12 used a different method to estimate 

variances that utilizes linear filter weights based on the seasonally adjustment model for CPS labor force series. This method can be 

applied to the STS models introduced for UI weekly series and is a current research project at BLS. 
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