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Seasonal Adjustment

A state space model-based
method of seasonal adjustment

The Bureau of Labor Statistics pub-
lishes a very large number of economic
time series such as the Consumer Price

Index, the Producer Price Index, employment and
unemployment statistics and many more. Most
of these series are published as seasonally un-
adjusted series as well as seasonally adjusted
series.  More often, however, it is the seasonally
adjusted data series that the business community
and government agencies use in evaluating the
economic situation. There are several reasons
given for the use of seasonally adjusted series. It
is suggested that the presence of seasonality1 in
time series obscures the stage of the business
cycle that the economy is in.  In addition, it ob-
scures the effects of interventions,2  such as a
rapid cut in oil production, on a series. At the
present time, BLS uses the Census X-11/X-12
ARIMA methods to seasonally adjust BLS indexes
and series that have seasonality.3   In the last 20
years or so, several ARIMA model-based methods
have been proposed for seasonal adjustment.4

This article presents a structural model based
method of seasonal adjustment called the state
space model-based method.5  This articles pre-
sents research conducted on this method and
illustrates the advantages of the method. The
research is part of the Bureau's ongoing efforts
to explore relevent measurement issues of inter-
est to the wider statistical community.

A structural model

A time series is assumed to be the sum of four
components. The first component is the time-
trend, which reflects a long-term movement of a

time series; the second component is the sea-
sonal, which reflects a periodic movement in a
series that repeats itself every year;  the third
component is the cyclical component, which
tracks the course of the business cycle; and fi-
nally, the error component, which is the sum total
of the effects of all those factors which are indi-
vidually insignificant and are not included in the
trend, the cyclical, or the seasonal components.
If the time series is affected by interventions,
which are the results of exogenous shocks to the
series, then intervention components are in-
cluded as separate components. This informa-
tion is incorporated into an equation called the
decomposition equation (illustrated as equation
1).  To decompose the time series, each compo-
nent of the time series is assumed to follow a model.
The decomposition equation and the component
models, together with the statistical properties as-
sumed for the error terms is what constitutes a struc-
tural model of a time series. The following is an ex-
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mutually uncorrelated, each having zero mean and constant

(3) respectively are mutually, but not serially uncorrelated. Each
of these errors is assumed to follow a moving average pro-
cess of order two, written as MA (2) process, and each has zero
mean and constant variance. The 2121 ,,, ϕϕθθ are  parameters
of the MA (2) processes in these two equations to be esti-
mated. Equation (1) is the decomposition equation, equation
(2) is the component model for the trend, (3) and (4) are the
equations representing the seasonal component model, and
(5) represents the cyclical component model. The trend com-
ponent model in (2) is a local polynomial of order two. The
seasonal component model in (3) and (4) assumes that the
seasonal component is not constant, but moving in the sense
that the seasonal amplitude is not constant over the years.
This adds greater flexibility to the estimation of seasonal
component. In the structural model previously presented, the
important parameters of interest to be estimated are the
trend tµ , the seasonal tγ , and the cycle tψ . However, these
are not constant parameters in the model above; these are
assumed to be random parameters changing over time in the
manner of their component models. This feature adds greater
flexibility and realism to this kind of model for seasonal adjust-
ment. The seasonally adjusted series is obtained by subtract-
ing the seasonal component from the observed series.

Estimation of the model

Once we specify the structural model, the next step is to esti-
mate the model. This is done by an iterative technique. To
implement this technique, first, the model is put in the “state
space” form.9  In this form, the structural model resembles, but
is not identical to, a linear model whose parameter vector is
constrained by an auto-regressive process of order one writ-
ten in short as AR (1) process. There are two parts to the esti-
mation of the structural model in the state space form: (1) Esti-
mation of the parameter vector called the “state vector” and its
covariance matrix, given the initial values of the state vector,
its covariance matrix, and the initial value of the matrix of error-
variance parameters, called hyper-parameters. The estimation
is done by the iterative technique called “Kalman Filtering and
Smoothing”10 and (2) Estimation of the matrix of hyper-param-
eters11 is done by the Expectation Maximization12 algorithm13

and by a quasi-Newton14 numerical optimization technique.
The Kalman filter is initialized with a zero state vector and a

diagonal covariance matrix of the state vector, with the diago-
nal elements being very large. The very large initial variances
of the elements of the state vector, indicates that the analyst

has very little faith in the accuracy of these values. Also, the
initial matrix of hyper-parameters is generally assumed to be
diagonal, with very small but positive values. With initial val-
ues for the filter set, the Kalman filtering starts with the first
observation and ends with the last observation of the sample.
From the last observation, smoothing begins and goes back-
wards to the beginning of the sample period and one step
more beyond that. These smoothed values of the state vector
and its covariance matrix, one period before the sample period,
are used as the new initial vales for starting the filter for the
second iteration. The smoothed residuals and the filtered re-
siduals are used to obtain the new estimate of the matrix of
hyper-parameters for the next iteration. The filtered residuals
of the model are also used to estimate the log-likelihood func-
tion of the model via the Prediction Error Decomposition.15

This iterative process is continued until the decrease in the
log-likelihood function is insignificant. At that point, the esti-
mation of the hyper-parameters and the log-likelihood is
switched to a quasi-Newton numerical optimization procedure.

Evaluation of the model

The next step in implementing the state space model-based
method of seasonal adjustment is to evaluate the structural
model and its components or their derivatives, especially the
trend and the seasonally adjusted series. The structural model
(described earlier) is evaluated for (1) its adequacy to explain
the observed series; (2) its goodness of fit to the data series;
and (3) the forecasting performance of the model with respect
to the given series. The quality of seasonal adjustment is evalu-
ated with respect to the smoothness of the trend and the pres-
ence of, and the identifiability of the stable and the moving
seasonality in the observed series.

The adequacy of a structural model is tested, by using
Ljung-Box statistics,16 BDS statistics as developed by W.
A. Brock, W. D. Dechert, and J. S. Scheinkman,17 and MBDS

statistics, a modification of BDS statistics by B. Mizrack.18

The goodness of fit of a structural model is judged by the
Akaike Information Criterion, (AIC)19 and Adjusted Coeffi-
cients of Correlation (RBAR-SQUARE),20 using regular sum
of squares of residuals around their mean, differenced sum
of squares around the mean of the differenced residuals,
and the differenced sum of squares around the seasonal
mean of the differenced residual series. For forecasting
performance of the structural model, Root Mean Prediction
Error Sum of Squares (RMPESS) is used. To evaluate the qual-
ity of seasonal adjustment, a test is conducted for the pres-
ence of stable or moving seasonality (or both), using F-tests
constructed from the 2-way ANOVA on the trend-adjusted
series. Another statistic developed by E. B. Dagum, called
m7, which is a function of two F statistics constructed from 2-
way ANOVA on the trend adjusted series, is used to test for

In this model 8, ty  is the observed series, tµ  is the trend, tγ
is the seasonal, 

 tψ  is the cycle, and tβ  is the slope of the
seasonal, all at time t. The random errors, tε and tς in
equations (1) and (4) and errors in (5), are assumed to be

variance. The random errors ,tη and tω in equations (2) and
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identifiability of seasonality.21 If the m7 value lies between zero
and one, then the seasonality is identifiable; otherwise, it is not.
The relative variance of the trend component is used to judge
the smoothness of the trend. If the relative variance is zero or
close to it, then the trend is judged as smooth.

The structural model presented earlier as an example is one
of several models that can be used, depending on the choice
of trend component model, choice of seasonal component
model, assumptions on the error terms, presence or absence
of interventions, and so forth. To determine which model best
fits a time-series, Akaike Information Criterion estimated from
each model are compared. The model with the minimum value
of Akaike Information Criterion, assuming that other statistics
are the same for all estimated models, is chosen as the best
model for that series. In practice however, this assumption is
not always satisfied. In that situation, one or two models which
are acceptable, are further refined and estimated, and the choice
for the best model, with the minimum criterion, is made from
those models. These structural models have been estimated
using 8 years of monthly, quarterly, and bimonthly BLS time
series. A smaller sample size does not necessarily and signifi-
cantly affect the quality of the estimated components. More-
over, these models are found to be robust with respect to new
data for about 3 years; after that, it is safer to once again
search for the best model. Of course, if a time series is subject
to external shocks, the choice of model analysis for that series
has to be done more frequently.

Advantages of structural model

This structural model-based approach to seasonal adjustment
has several advantages. First, the structural model-based ap-
proach allows an analyst to use the existing statistical theory
to test if a structural model represents the data generation
process of a given time-series. Nonmodel-based methods lack
formal statistical tests to evaluate the results of seasonal ad-
justment. Second, the structural model-based method estimates
the variance of the seasonally adjusted series at the same time
it estimates the seasonally adjusted series. This means that
the estimation of the variance is also model based, and hence,
subject to statistical scrutiny. In other methods, such as ARIMA

model-based methods as well as nonmodel-based methods
like X-11 and X-12 ARIMA methods, variance estimation is
done separately from the seasonal adjustment and hence may
be less reliable as a measure of the accuracy of the seasonally
adjusted series. Third, many economic time-series such as the
Consumer Price Indexes for gasoline, published by the Bureau
of Labor Statistics, are affected by external interventions such
as the limits placed on the production of crude oil by OPEC

and hence, artificial upward increase in the prices of gasoline.
In the structural model, a separate observable component is
introduced to take account of the effect of an intervention. In

other seasonal adjustment methods, the time-series is first
subjected to a priori adjustment for those effects and then
the intervention-adjusted series is seasonally adjusted. In the
structural model-based method, all components are estimated
simultaneously. A similar advantage lies with the method when
a time series, such as retail sales published by the Census
Bureau, is affected by the number of trading days22  in a month
or on the day the Easter23  falls which varies from year to year.
Fourth, many time-series are contaminated by sampling errors
arising from the peculiarity of the sampling design in the col-
lection of the sample data.24  This problem is handled in the
structural model-based method by introducing an unobserved
component in the model.25 That component is assumed to fol-
low a moving average process of small order say two or three.
There are no provisions to take care of this situation in other
methods of seasonal adjustment. Fifth, trend and cycles can
be decomposed in the structural model based method by in-
troducing a separate component in the structural model for
representing the effects of business cycles. This kind of flex-
ibility, which is liked by many researchers, is not available in
methods like X-11/X-12 ARIMA. Finally, the structural model-
based method is a simple, versatile, and very elegant proce-
dure. All the equations of a structural model are easy to under-
stand. Economic time-series, which are affected by many dif-
ferent kinds of influences such as interventions, measurement
error, or number of trading days, can be easily seasonally ad-
justed in one step. The estimation and evaluation designs of
the state space model-based method also make it a very neat
and elegant procedure.

Applications

In several studies, the author has applied the structural state
space model-based method to several BLS series. This method
was applied to the CPI for new cars, CPI for girls’ apparel, CPI

for gasoline, number of male agricultural workers 20 years and
older, unemployment levels of civilians between 16 and 19,
and the employment level in retail trade.26  The state space
model-based method with intervention analysis was applied
to the CPI for gasoline, the CPI for women's dresses, CPI for
women's suites, PPI for gasoline, and PPI for crude petroleum.27

The state space model-based method with trading day and
Easter adjustment was applied to two census series, the retail
sales of men’s and boys’ clothing and wholesale sales of hard-
ware, plumbing and heating equipment.28  The state space
model-based method with measurement errors was applied to
the civilian unemployment rate and teenage unemployment
rate in a previous study.29  In this article, the model-based
method is applied to the CPI of apples.30  The CPI for apples is
a monthly time-series, which is quite seasonal. The sample
period chosen for application spans 8 years from January 1991
to December 1998. Several structural models were estimated
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using the apple data. The model presented earlier in equations
(1) through (5) as an example of a structural model was found
to be the best31  amongst those models tested. This model was
found to be adequate, had a good fit to the data, and had a
good forecasting performance. It may be pointed out that the
forecasting performance of a model is not critical for evalua-
tion of that model for purposes of seasonal adjustment. As
pointed out earlier, the adequacy of the model was checked by
the Ljung-Box statistics Q*, BDS, and the MBDS tests. The Q*
statistic, which is computed using 36 standardized residuals,
has a Chi-Square distribution with 32 degrees of freedom. This
statistic was found to be Q*(32)=34.43 and the corresponding
p-value=0.35; hence it accepts the null hypothesis of
uncorrelatedness of residuals. This implies that there is no
systematic pattern left in the residuals because the model has
captured all the systematic components in the series; hence
the model is adequate. The BDS statistics were computed using
all 96 smoothed residuals; the test value was BDS=1.39. This test
also accepted the null hypothesis of independence and hence,
uncorrelatedness of residuals. MBDS statistic, which is a modifi-
cation of BDS statistic, also accepted the null hypothesis. The
three adjusted coefficients of correlation32  were found to be:
RBARSQ=0.98, RBARSQ(DIFF)=0.89, and RBARSQ(SEAS)=0.56.
These values indicate that the fit of the model is quite good;
the closer these values are to one, the better the fit of the
model. For this model, AIC=282.81. There is, however, no bench-
mark to compare this value with, except that this was one of
the smallest values and hence, this model was judged to be a
better model than other models under consideration.

Next, the estimated components of the structural model is
analyzed, starting with the trend component for the structural
model based method as presented in chart 1. The relative vari-
ance of the errors of the trend component model is estimated
to be 0.43, which indicates that the trend ought to be very
smooth. Chart 1 indicates that the trend is fairly smooth; it is
smoother than the trend component obtained for the X-12
ARIMA method depicted in chart 2. In the structural model for
the state space model-based method, the trend and cycle are
estimated separately, whereas in the X-12 ARIMA method, the
trend and cycle are estimated as one component because the
latter method has no facility to estimate the two separately.
However, even the combined trend plus cycle component of
the structural model-based method was found to be smoother
than the trend-cycle component of the X-12 ARIMA method.
Empirically, the smoothness of trend has been found to be a
good indicator of a good model.

Seasonal component is another important component of a
seasonal time-series. The empirical results for the structural
model-based method indicate that, based on F-tests from two-
way ANOVA, the stable seasonality is significant at both the 5
percent and 1 percent level, but the moving seasonality is not
significant at either the 5 percent or 1 percent level of signifi-

cance. The amplitude of the structural model-based seasonal
component in chart 3 varies from –17 to +19 at the beginning
of the sample period; but then it keeps on diminishing through-
out the sample period, and at the end, it varies from –8 to +8.

 The seasonal component estimated by X-12 ARIMA method
as shown in chart 4 gives somewhat similar results. As in the
case of structural model base method, significant stable sea-
sonality is present, but moving seasonality is not,  in the case
of X-12 ARIMA method. The amplitude of the seasonal compo-
nent for the X-12 ARIMA method varies from –15 to +17 at the
beginning of the sample period, but declines to the range be-
tween  –8 and +9.

The statistic, m7,33  which is found to be equal to 0.28 for the
state space model-based method indicates that the seasonal-
ity is identifiable. The same is true for X-12 ARIMA method.

Finally, a comparison of the seasonally adjusted series
obtained by the two methods is presented. The seasonally
adjusted series for the state space model-based method is
obtained by subtracting the seasonal component from the
unadjusted series. Chart 5 displays the unadjusted sample
series and the seasonally adjusted series obtained from ap-
plying the structural model-based method.  The seasonally
adjusted series has a pattern that is very similar to the trend,
except that it has more kinks; but this is to be expected be-
cause, in addition to trend, it contains cyclical component
and residual errors. The seasonally adjusted series for X-12
ARIMA depicted in chart 6 is also very similar to its trend, but
with kinks. In comparison, the two seasonally adjusted series
look very similar and more information is required to assess
the superiority of one over the other. In applications to other
BLS series, the author has shown significant differences in the
seasonally adjusted series produced by the two methods.34

THIS STUDY PRESENTED a relatively new method of seasonal
adjustment that incorporated  several innovations. For ex-
ample, in the specification of the structural models, the pa-
rameters of explanatory variables such as intervention vari-
ables or other exogenous or lag-dependent variables were
not assumed to be constant as usual, but assumed to follow
a random walk process. This added greater flexibility to the
estimation of the effects of such variables. In the estimation
of the structural models, the hyperparameters of the models
were estimated by two methods: the Expectation Maximiza-
tion (EM) algorithm and the quasi-Newton numerical optimi-
zation method. The Expectation Maximization algorithm takes
the estimation towards optimization in a few iterations, but
after that, its approach to optimization slows down to a snail's
pace. At that point, a switch to a quasi-Newton method quickly
leads to optimality. In the evaluation of the estimated struc-
tural model, two new test statistics, BDS and MBDS, were used.
These tests are found to be very effective in testing the ad-
equacy of the structural models. In several conference pa-
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Chart 2.      Original sample series and the final trend component obtained by using X-12 ARIMA method,
                   January 1991 through December 1998
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Chart 1.      Original sample series and the smooth trend component obtained by using state space 
                    model-based method, January 1991 through December 1998
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Chart 4.     Final seasonal component obtained by using X-12 ARIMA method, January 1991 through
                   December 1998
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Chart 3.     Smooth seasonal component and its standard error obtained by using the state space 
                   model-based method, January 1991 through December 1998
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Chart 5.    Unadjusted sample series and the smooth seasonally adjusted series obtained by using
                  the state space model-based method, January 1991 through December 1998
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Chart 6.     Unadjusted sample series and the seasonally adjusted series obtained by using X-12 ARIMA 
                   method, January 1991 through December 1998
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pers mentioned earlier, the author has presented the empirical
results of the application of this method with all the innova-
tions mentioned, to various BLS and Census Bureau series.
The author has written a complete computer program (in GAUSS)
incorporating various aspects of seasonal adjustment such as
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“intervention and outlier analysis,” “trading day and Easter
adjustment,” “survey sampling error adjustment,” and all other
innovations mentioned above. This study has presented a brief
outline of this method of seasonal adjustment and its applica-
tion to the CPI for apples.

Notes
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