Is the ECI sensitive to the method of aggregation? an update

A previous Monthly Labor Review article by the first two authors indicated that the ECI is relatively insensitive to the choice of aggregation formula used in its construction; data from 1995 to 2002 show that this is still the case

Michael K. Lettau, Mark A. Loewenstein, and Steve P. Paben

Michael K. Lettau and Mark A. Loewenstein are senior research economists in the Office of Compensation and Working Conditions, Bureau of Labor Statistics, Washington, DC; Steve Paben is a mathematical statistician in the same office. The Employment Cost Index, or ECI, measures changes in employers' cost of compensating workers, controlling for changes in the industrial-occupational composition of jobs. Employers' labor cost has two components: wages and salaries, and the cost of all nonwage benefits, including employer costs for workers' health insurance, employer contributions to workers' pension plans, and employer Social Security contributions.

The ECI is a quarterly index that is computed from survey information on a sample of establishments and jobs, weighted to represent the universe of establishments and occupations in the economy. In computing the national ECI, the quotes reporting compensation for individual jobs must be aggregated into a single index number. The aggregation process involves two key steps: (1) estimating the mean compensation for each of the various classes of labor defined on the basis of industry and major occupation and (2) weighting the cell means for the different types of labor to obtain a single index number. Using both arithmetic and geometric cell means, Michael K. Lettau, Mark A. Loewenstein, and Aaron Cushner constructed fixed-weight, current-weight, and superlative indexes of the increase in private employers' compensation costs.¹ They found that the estimation of compensation growth is not very sensitive to the choice of index formula employed.

The Consumer Price Index (CPI) faces methodological issues similar to those which confront the ECI—issues discussed at length in the Boskin report.² In August 2002, the Bureau of Labor Statistics began publishing a new index called the Chained Consumer Index for All Urban Consumers (C-CPI-U). This index employs a Törnquist formula and uses expenditure data in adjacent periods to eliminate substitution bias across expenditure categories. An experimental version of the index for the first half of the 1990s suggests that it grew annually by 0.2 percentage point less, on average, than the CPI-U. This difference has increased significantly in the years since then.³

In their analysis of the ECI, Lettau, Loewenstein, and Cushner reported on indexes from September 1981 to December 1994.⁴ There now are 6¹/₂ years of additional data. In light of the continued interest in the CPI methodology, it is useful to update the original study.

Quarterly changes in indexes

The ECI is calculated as the weighted sum of the compensation relatives for the various categories of labor, where the weight for category *i* is simply the *i*th category's share of total labor compensation in the base period. This type of index is known as a *Laspeyres index*. Other weighting

Table 1. Three-month percent change in four unchained total-compensation indexes, March 1995-June 2002								
Year and quarter	Laspeyres index		Paasche index		Fisher index		Törnquist index	
	Percent change	Standard error	Percent change	Standard error	Percent change	Standard error	Percent change	Standard error
1995: March June September December	0.876 .719 .639 .454	0.088 .083 .089 .080	0.876 .714 .644 .442	0.088 .083 .090 .077	0.876 .717 .642 .448	0.088 .083 .090 .078	0.876 .716 .642 .447	0.088 .083 .090 .079
1996: March June September December	985 .819 .699 .617	.120 .094 .075 .074	1.025 .806 .694 .606	.121 .085 .080 .083	1.005 .813 .696 .612	.120 .089 .077 .077	1.005 .812 .697 .612	.120 .088 .076 .077
1997: March June September December	.817 .783 .879 .893	.100 .091 .067 .140	.789 .792 .917 .912	.106 .102 .068 .140	.803 .787 .898 .903	.102 .095 .067 .140	.796 .783 .894 .903	.102 .095 .067 .140
1998: March June September December	.903 .832 1.015 .559	.080 .072 .105 .117	.887 .848 1.076 .599	.086 .085 .100 .130	.895 .840 1.046 .579	.080 .077 .102 .122	.891 .837 1.045 .578	.080 .077 .102 .123
1999: March June September December	.686 1.061 .906 .864	.099 .118 .120 .065	.724 1.048 .912 .835	.102 .133 .129 .068	.705 1.054 .909 .850	.099 .124 .124 .066	.692 1.054 .905 .845	.101 .124 .124 .066
2000: March June September December	1.497 1.121 .990 .689	.105 .075 .113 .075	1.489 1.125 1.026 .694	.117 .076 .119 .086	1.493 1.123 1.008 .691	.110 .074 .115 .080	1.489 1.119 1.002 .687	.109 .074 .114 .080
2001: March June September December	1.378 .936 .990 .810	.109 .084 .084 .082	1.324 .971 1.042 .767	.118 .087 .077 .093	1.351 .954 1.016 .789	.112 .084 .079 .087	1.331 .946 1.009 .788	.113 .084 .080 .087
2002: March June	1.132 1.019	.106 .122	1.092 1.032	.137 .149	1.112 1.025	.121 .135	1.103 1.020	.121 .137

schemes also are possible.⁵ A *Paasche index* uses currentperiod quantities to aggregate across the various price relatives. The *Fisher ideal index* is simply a geometric average of the Laspeyres and Paasche indexes. The *Törnquist index* is a weighted geometric mean of the price relatives, where the weights are the average shares of spending on the various inputs in the 2 years. The latter two indexes, sometimes called *superlative indexes*, allow for the possibility that employers substitute one type of labor input for another in response to a change in relative wages.⁶

Table 1 presents 3-month percent changes in the Laspeyres, Paasche, Fisher ideal, and Törnquist indexes for total compensation from 1995 to 2002. The table also presents estimated standard errors, calculated with the use of balanced repeated replication, for these changes. The annual average percent change in the Laspeyres index is 3.59. The cor-

responding figures for the Paasche, the Fisher ideal, and the Törnquist indexes are 3.61, 3.60, and 3.58, respectively.

As in the earlier study by Lettau and colleagues, differences among the various indexes are very small and are swamped by the standard errors of the estimates themselves.⁷

Chained indexes

Let $L_{\tau-1,\tau}$ (a) be the Laspeyres index in period τ relative to period $\tau-1$ when period *a* is used as the base year. This index is given by

(1)
$$L_{t-1,t}(a) = \frac{\sum_{i}^{L} E_{ia} W_{it}^{u}}{\sum_{i}^{L} E_{ia} W_{it-1}^{u}}$$

where E_{ia} denotes employment in cell *i* during period*a* and W_{it}^{u} represents the updated average compensation in cell *i* during period τ . The chained index in period *t* is then given by

(2)
$$L_t^c = L_{0,1}(0)L_{1,2}(1)\cdots L_{t-1,t}(t-1).$$

That is, the chained Laspeyres index in period *t* is constructed by chaining together the series of one-period Laspeyres indexes, each of which has a different base and thus uses a different weight. The chained Paasche, chained Fisher ideal, and chained Törnquist indexes are defined similarly. Table 2 presents percent changes in the chained indexes from 1995 to 2002. These changes are very close to each other and to those for the unchained indexes.

Chained geometric cell means

The previous section analyzed the sensitivity of the ECI to the method chosen to aggregate over the various industryoccupation cells. The current section focuses on the process by which individual job quotes are aggregated to obtain cell means. In that process, compensation in cell *i* during period τ is estimated by chaining together the proportionate changes in compensation in cell *i* during all previous periods, with the proportionate change in compensation during period τ calculated as the ratio of the mean compensation in period $\tau + 1$ to the mean compensation in period τ . That is, the updated compensation used in equation (1) is given by

Table 2. Three-month percent change in chained total-compensation indexes, March 1995-June 2002								
	Laspeyres index		Paasche index		Fisher index		Törnquist index	
Year and quarter	Percent change	Standard error	Percent change	Standard error	Percent change	Standard error	Percent change	Standard error
1005								
March	0.883	0.088	0.876	0.088	0.879	0.088	0.879	0.088
June	.708	.082	.702	.082	.705	.082	.705	.082
September	.644	.092	.647	.093	.646	.092	.646	.092
December	.440	.081	.428	.078	.434	.079	.433	.079
1996 [.]								
March	1.007	.126	1.036	.124	1.022	.125	1.022	.125
June	.822	.091	.807	.085	.815	.087	.814	.087
September	.672	.076	.672	.082	.672	.078	.673	.078
December	.610	.078	.596	.085	.603	.080	.603	.080
1997.								
March	700	102	772	100	786	104	770	104
lune	772	.102	786	103	770	.104	775	.104
Sentember	.772	.089	910	070	.779	.094	.775	.094
December	.900	.146	.929	.146	.914	.145	.915	.146
1008								
March	000	0.91	000	002	801	094	007	002
	.300	.001	.002	.032	.031	.004	.007	.003
Sontombor	1.036	.077	1 1047	.093	1.070	.003	1.060	.003
December	.566	.143	.614	.158	.590	.148	.590	.149
1000.								
March	619	1.1.1	656	125	627	127	621	146
	1.060	.141	1.030	.135	1.056	.137	1.021	.140
Sontombor	000	122	019	147	012	120	010	.141
December	838	065	.910	069	829	066	825	066
	.000	.000	.020		.020	.000	.020	.000
2000: Marah	4 407	110	1 400	104	1 400	115	4 400	445
	1.407	.110	1.400	.124	1.400	.115	1.403	.115
Soptombor	1.105	.075	1.102	.079	1.104	.075	1.100	.075
September	.999	.110	1.033	.121	1.010	.110	1.011	.117
December	.004	.077	.000	.000	.001	.001	.057	.001
2001:	1 000	100	4 000		1.001		1.011	4.40
March	1.389	.108	1.333	.118	1.361	.111	1.344	.112
June	.950	.081	.980	.089	.965	.084	.958	.084
September	.979	.085	1.036	.078	1.007	.080	.999	.081
December	.794	.090	.733	.102	.763	.095	.763	.096
2002:								
March	1.123	.124	1.082	.159	1.102	.141	1.094	.141
June	1.040	.118	1.041	.148	1.041	.132	1.036	.134

(3)
$$W_{it}^{u} = \sum_{j \in I_{0}^{i}} s_{ij0} W_{ij0} \frac{\sum_{j \in I_{1}^{i}} s_{ij1} W_{ij1}}{\sum_{j \in I_{1}^{i}} s_{ij1} W_{ij0}} \frac{\sum_{j \in I_{2}^{i}} s_{ij2} W_{ij2}}{\sum_{j \in I_{2}^{i}} s_{ij2} W_{i0}} \cdots \frac{\sum_{j \in I_{t}^{i}} s_{ijt} W_{ijt}}{\sum_{j \in I_{t}^{i}} s_{ij1} W_{ij0}},$$

where I_t^i denotes the subsample of jobs during periods $\tau - 1$ and τ belonging to cell *i*, s_{ijt} is the sample weight for the *j*th quote in cell *i* during period $\tau - 1$ and τ , and W_{ijt} is compensation paid for the *j*th job in cell *i*. Instead of using arithmetic means to calculate the proportionate changes in compensation each period, one can use geometric means.

Table 3 presents quarterly changes in the geometric mean indexes.⁸ By construction, a geometric mean index will grow at a slower rate than its counterpart arithmetic mean index in calculating the proportionate change in cell compensation. However, as in Lettau and colleagues' earlier study, the difference of the average annual growth rate for the geometric mean index and that for the arithmetic mean index is very small—0.07 percentage point, to be exact.⁹

The use of geometric means has a more sizable effect on the estimated CPI: "From December 1990 through February 1997, the CPI-U-XG [a Laspeyres index using geometric means] rose 16.2 percent, which is equivalent to an annual growth rate of 2.46 percent. During that same time, the CPI-U-XL [the corresponding index using arithmetic means] rose 18.6 percent, which is equivalent to an annual growth rate of 2.80 percent, for an annualized difference of 0.34 percent."¹⁰

Estimator using actual compensation

The simplest way to estimate the compensation relative for category-*i* labor would be to compare the average com-

niee-montin perce	ent change in total-con	npensation indexes, Ma	ICH 1995-June 2002		
Vear and quarter	Laspey	res index	Paasche index		
	Arithmetic cell means	Geometric cell means	Arithmetic cell means	Geometric cell means	
1995:					
March	0.859	0.850	0.870	0.851	
June	.711	.616	.696	.610	
September	.603	.623	.641	.642	
December	.446	.389	.398	.392	
1996:					
March	.940	.921	1.059	1.007	
June	813	785	779	720	
September	.644	.672	.615	.624	
December	.577	.605	.634	.690	
1997.					
March	859	761	802	667	
lune	804	816	704	744	
Sontombor	.004	.010	.704	./ ++	
December	.916	.842	.987	.902	
1998					
March	804	996	881	989	
lune	845	814	820	785	
Sentember	1 065	013	1 134	962	
December	.600	.586	.710	.730	
1000					
Marah	249	626	590	700	
	.348	.020	.569	.709	
Sentember	1.133	.902	.932	.002	
December	.866	.815	.825	.835	
0000					
2000: Marah	1 500	4 454	1 522	1 1 10	
	1.529	1.451	1.523	1.448	
June	1.149	1.190	1.097	1.140	
September December	1.010 .641	.941 .714	1.082	.901 .703	
2001:	-				
ZUUT.	1 210	1 244	1 217	1 22 4	
	1.310	1.344	054	1.334	
Sontombor	.503	.900	.904	.930	
	.332	.900	1.101	1.077	
	.012	000.	.800	.821	
2002:		a · -			
March	1.068	.946	1.082	.972	
June	1.105	1.030	1.059	.972	

pensation for category-i jobs in the current period with the average compensation for category-*i* jobs in the base period. However, because the ECI sample changes over time, that would involve comparing averages across jobs that might be dissimilar. To avoid this problem, the current estimator obtains the compensation relative by chaining together the previous one-period compensation relatives, where compensation in each period relative to the previous period is estimated only from those jobs which are in the sample in both periods.

The current estimator chains at the cell level. Another way of dealing with the rotating ECI sample is to chain at the aggregate level.¹¹ Specifically, one can calculate the ECI in each period relative to the previous period as the weighted sum of compensation relatives estimated by using jobs that are in the sample in both periods. The ECI in the current period can then be obtained by chaining together the previous one-period ECI relatives. That is, let

(4)
$$W_{it} = \sum_{j} s_{ijt} W_{ijt}$$

denote the average observed compensation in period τ , and let

(5)
$$\widetilde{L}_{t-1,t}(0) = \frac{\sum_{i} E_{i0} W_{it}}{\sum_{i} E_{i0} W_{it-1}}$$

denote the Laspeyres index in period τ relative to period $\tau - 1$, using period 0 as the base year and using each cell's average sample compensation (rather than its updated compensation).¹² Then the alternative Laspeyres index using observed sample wages rather than updated wages is given by

(6)
$$\widetilde{L}_t = \widetilde{L}_{0,1}(0)\widetilde{L}_{1,2}(0)\cdots \widetilde{L}_{t-1,t}(0)$$
.

This index is simpler to construct than one using updated wages, in that it is not necessary to carry over updated compensation from one period to the next.13

Table 4 presents quarterly percent changes in the indexes using actual compensation. These quarterly changes are very close to those produced by indexes using updated compensation.

Notes

¹See Michael K. Lettau, Mark A. Loewenstein, and Aaron Cushner, "Is the ECI sensitive to the method of aggregation?" Monthly Labor Review, June 1997, pp. 3-11.

² Michael J. Boskin, Ellen Dulberger, Robert Gordon, Zvi Griliches, and Dale Jorgenson, Toward a More Accurate Measure of the Cost of Living, Final Report to the U.S. Senate Finance Committee (Washington,

DATA FROM SEPTEMBER 1981 TO DECEMBER 1994 indicate

that the choice of aggregation formula has little effect on the

estimated annual percent change in labor compensation, a

key component of the ECI. Data from 1995 to 2002 show that

this is still the case. The situation is in contrast to that

pertaining to the CPI, for which the choice of aggregation

formula does make some difference.

December	.549
997:	
March	.873
June	.787
September	.779
Docombor	950

Table 4.

1995

1996

March

June 2002

Year and quarter

June

September

December

March

June

September

1997: March June September December	.873 .787 .779 .859	.111 .087 .080 .145
1998: March June September December	.952 .857 1.022 .505	.093 .083 .107 .147
1999: March June September December	.390 1.098 .891 .874	.228 .124 .121 .061
2000: March June September December	1.519 1.157 .986 .644	.120 .071 .128 .084
2001: March June September December	1.322 1.000 .899 .849	.103 .081 .095 .119
2002: March June	1.110 1.064	.133 .138

Percent change

0.848

693

.605

476

.920

.850

655

Standard error

0.086

090

.097

096

.119

.103

.079

.072

Three-month percent change in total-

compensation index, March 1995-

Monthly Labor Review 27 December 2002

DC, December 1996). For a summary of these issues and of the Boskin report itself, see the winter 1998 issue of the *Journal of Economic Perspectives* and Roger J. Gordon, "The Boskin Commission Report and Its Aftermath," National Bureau of Economic Research Working Paper No. 7759, June 2000.

³ See "Note on a New, Supplemental Index on Consumer Price Change," Aug. 16, 2002, available on the Internet at http://www.bls.gov/cpi/superlink.htm.

⁴ Lettau, Loewenstein, and Cushner, "Is the ECI sensitive?"

⁵ Ibid.

⁶ A more detailed discussion of the various indexes, as well as their formulas, can be found in Lettau, Loewenstein, and Cushner, *Ibid*.

⁷ *Ibid.* Table 1 of that study inadvertently omitted the estimates of the four indexes for December 1994. The omitted estimates, which the table reported as index *numbers* rather than percent changes, were 176.5, 179.2, 177.9, and 178.1 for the Laspeyres, Paasche, Fisher, and Törnquist indexes, respectively.

⁸ The geometric mean index set forth for the ECI in this article differs from the one that has been constructed for the CPI. In obtaining the geometric mean of compensation in cell *i* during a given period here, employment shares, and not budget shares, are used as weights. Doing this is possible because the ECI aggregates across labor services that are all measured in the same units—dollars per hour—whereas the CPI aggregates across disparate goods that are measured in different units.

⁹Like table 1, table 4 of that study also inadvertently omitted the estimates for December 1994. They were 139.8, 139.4, 141.0, and 140.8 for the Laspeyres arithmetic, Laspeyres geometric, Paasche arithmetic, and Paasche geometric indexes, respectively. The series with the arithmetic means presented in table 3 of the current article differ slightly from the Laspeyres and Paasche series reported in table 1. Their calculation was modified slightly to make them identical to the geometric mean series other than the means calculation.

¹⁰ See "The Experimental CPI using Geometric Means (CPI-U-XG)," Oct. 16, 2001; on the Internet at **http://www.bls.gov/cpi/cpigmrp.htm**.

¹¹ See Mark A. Loewenstein, "An Alternative Chaining Approach to Handle ECI Sample Changes," mimeo, February 2002.

¹² Note that the updated average wage for cell *i* is identical to the observed average wage for cell *i* in period *t* if the sample has not changed between period 0 and period *t*.

¹³ The ECI was initially modeled on the CPI. The alternative approach using observed rather than updated prices requires that the units in which prices are measured be constant over time. Thus, this approach will not work with the CPI.