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Model-based seasonally adjusted
estimates and sampling error

Estimating certain cps series with a model

that filters out sampling error

may reduce volatility in the time series,
facilitating more meaningful trend analysis

he Current Population Survey (cps) is the
I source of the Nation’s official estimates of
total employment and unemployment. The
cps is a nationally representative, scientifically
selected monthly sample survey of approximately
60,000 households. The survey yields data that
are rich in demographic detail, including such
characteristics as age, sex, race, and Hispanic or
Latino ethnicity. Estimates from the survey are
published monthly in the BLs news release Em-
ployment Situation and in the BLs publication
Employment and Earnings.

In order to make the time-series data collected
from the cps more useful to analysts and policy-
makers, the monthly data from the survey are
adjusted for seasonal fluctuations. As is well
known, the purpose of seasonally adjusting a
series is to remove seasonal fluctuations in the
data so that users can more easily observe funda-
mental changes in the level or trend of the series
that are associated with business cycle contrac-
tions and expansions. Approximately 116 time
series from the cps are directly seasonally ad-
justed, and many more are indirectly seasonally
adjusted, as sums or ratios of the original 116.

There is, however, a source of spurious random
fluctuations in the cps data that arises because
the cps samples only a fraction—1 in 2,200, on
average, of the working-age population each
month: sampling error—the difference between
the survey estimates and the values that would be
produced by a complete census of the population.

Simultaneously removing both seasonality in
the data and noise due to sampling error can prove

quite challenging. The monthly estimates pro-
duced for the national aggregated series, such as
total employment and total unemployment, are
highly reliable relative to smaller, disaggregated
series. Many of the more detailed demographic
series, such as employment and unemployment for
blacks, are based on relatively small sample sizes,
so that survey error dominates movements in the
underlying level of the series. The standard error
for a (not seasonally adjusted) month-to-month
change based on the cps can be quite high for some
of these series. For example, the standard error for
a change in the unemployment rate of adult black
males can be as large as 0.8 to 0.9 percentage point,
compared with 0.2 percentage point for the unem-
ployment rate for all persons aged 16 years and
older. As a result, drawing meaningful conclusions
about trends or month-to-month changes is diffi-
cult, even after the data have been adjusted for
seasonal movements.

As an alternative to conventional seasonal ad-
justment, the study reported in this article applies
an experimental model-based method to selected
cps demographic series. The method is designed
to remove the effects of sampling error, as well as
those of seasonality, from the series, thereby
making it easier to discern underlying trends in the
data.

Approaches to seasonal adjustment

The presence of large survey errors in the detailed
cps series represents a major challenge to conven-
tional methods of seasonal adjustment. Currently,
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the Bureau of Labor Statistics uses a seasonal adjustment
program called x-12-arima to seasonally adjust its cps series.
This program is based on the empirical moving-average
approach to seasonal adjustment.

An alternative that is gaining increasing attention is the
model-based approach to seasonal adjustment. A comparison
of the two approaches suggests that the model-based
approach provides much-needed flexibility in controlling for
the effects of sampling error. Such flexibility is not possible
with the conventional moving-average approach.

Conventional approaches to seasonal adjustment are based
on the classical decomposition of a time series, which assumes
that the series is composed of trend (or trend-cycle), seasonal,
and irregular components, in either an additive or a multiplicative
relationship. The first two components respectively account for
the long- and short-run systematic variation in the series. The
irregular component is a residual, usually assumed to be purely
random variation with a fixed variance.

Because the three components of the classical de-
composition are not directly observable, they must be esti-
mated in order to perform seasonal adjustment. The moving-
average method uses weighted moving averages of the
original data over a period of many years to produce a smooth
trend and a seasonal pattern. The estimated trend and
seasonal components are removed from the series, and the
residual is the irregular component. This approach makes no
attempt to define, in any formal statistical way, what is being
estimated, but rather applies a series of moving averages
directly to a series. While some of the moving averages are
chosen to satisfy a mathematical smoothness criterion, the
method was derived largely from empirical work with a wide
range of series.

By far the most successful application based on the
moving-average approach is the x-11 program,! which has
gone through several major revisions. The latest, enhanced
version is x-12-ArRIMA.2 The original x-11 program, however,
remains at the core of x-12.

As an alternative to the moving-average approach, model-
based seasonal adjustment has been gaining increased
attention. The model-based approach specifies explicit
statistical models of the trend, seasonal, and irregular
components of the classical decomposition.® To seasonally
adjust the data, weighted moving averages of the observed
data actually are used in the model-based approach, but with
the important difference that they are derived directly from
the model. An essential characteristic of the approach is its
use of standard statistical procedures to estimate the un-
observed components of the time series and to provide
associated statistical measures such as confidence intervals
and significance tests.

There is a large body of literature on the comparative
properties of the two approaches.* Each has its supporters
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and critics. The major concerns with the model-based
approach are that it may be difficult to develop good models
for some series and that the model may fail occasionally when
new data become available. These concerns raise issues
about the robustness of the adjustment and the associated
statistical measures.

One major criticism of the moving-average approach is
that it lacks standard statistical measures. The absence of
standard errors for published seasonally adjusted data tends
to promote the mistaken impression that the final seasonally
adjusted values are exact rather than estimates. Moreover,
the lack of confidence intervals makes analysis of change in
the estimates and the location of turning points more difficult.
Still, supporters of the method argue that it is robust and
nonparametric; thus, its lack of an explicit statistical model is
viewed as an advantage. Even so, the absence of statistical
measures of reliability remains a major shortcoming.®

The model-based approach makes (testable) assumptions
about the underlying probability distribution generating the
data. Along with estimates of the model parameters, these
assumptions provide the means for constructing confidence
intervals and other statistical measures to quantify the
uncertainty in the estimates. Non-model-based estimates do
not, in general, afford a basis for producing measures of
uncertainty in the estimates.

Another criticism of the moving-average approach is that
it is not tailored to the specific properties of the series being
adjusted.® In contrast, the model-based approach develops a
model on the basis of goodness-of-fit diagnostics. The result-
ing seasonal adjustment is based on the properties of the
series as represented by the model. In theory, under the
assumptions of the model, the seasonal adjustment is
“optimal” for the specific series. While the moving-average
method can make no such theoretical claim, its moving
averages were originally selected because they work well for
a very large number of series. This more generic approach
continues to work well in practice and may have an advantage
over the model-based approach when good models for sea-
sonal adjustment cannot be developed.

Clearly, both approaches to seasonal adjustment have
their merits and limitations. Indeed, there have been a number
of studies of the relative performance of the two approaches,
but no general agreement as to how to interpret the results.
Perhaps a more balanced approach is to treat them as comple-
mentary tools for performing seasonal adjustment.”

Dealing with “noisy” CPS data series

The types of data series that are the focus of the study
discussed in this article—survey series with large sampling
errors—represent a class of series that presents special
problems for the moving-average approach to seasonal



adjustment. For these series, that approach (specifically, the
x-12 program) performs poorly, not because it has trouble
removing seasonality from the series, but because it cannot
adequately remove the effects of sampling error. The result is
a seasonally adjusted series that often is dominated by
sampling error, masking the underlying trend in the series.
This occurs because the moving averages are not tailored to
the specific properties of survey series with sampling errors.
What is implicitly assumed in applying these moving aver-
ages to survey data is that sampling error can be adequately
treated as part of the conventional irregular component,
which, conceptually, is a purely random series with a fixed
variance. The design of the survey, however, determines the
properties of the sampling errors, which may deviate in
important ways from typical irregular behavior. Moreover, for
well-designed probability samples, the characteristics of the
sampling errors are known, or at least, good estimates of
them can be obtained.

For the cps, the standard errors provided along with the
point estimates from the survey routinely yield information
on the magnitude of the sampling errors. These standard
errors, however, are not constant and vary substantially over
time for some series, due to fluctuations in labor force levels,
redesigns of the survey, and changes in the sample size.
Another important characteristic of the cps that is relevant to
seasonal adjustment is its panel structure, which generates
strong correlations of the sampling errors with their past
values. The cps has a rotating panel whereby three-fourths
of the households are carried over from the previous sample
each month and one-half are carried over from the previous
year.®

These characteristics represent a serious challenge to
conventional approaches to seasonal adjustment. First, the
relatively large and changing magnitude of the survey error
will directly distort estimates of the trend and seasonal
components. In addition, because the survey error is corre-
lated, the moving-average approach treats the induced corre-
lations as if they were related to the trend. Consequently, too
much of the sampling error is absorbed into the estimated
trend and, to some extent, into the estimated seasonal
component, and not enough goes to the irregular component.

The standard model-based approach will do no better than
the moving-average approach, because it also is based on
the classical time-series decomposition, which ignores sur-
vey error as an important source of variation. The model-
based approach, however, has flexibility, which is not avail-
able with the moving-average approach. As mentioned earlier,
the latter, by virtue of its nonparametric structure, is a more
generic approach to seasonal adjustment, whereas the model-
based approach can be tailored to the idiosyncratic properties
of a particular series. From the model-based perspective,
survey error is just another unobserved component of the

time series for which a separate model can be specified, as is
done with the trend, seasonal, and irregular components of
the series. Then there is the further advantage, in modeling
survey error, of having external information from the survey
on the standard errors and correlations. This information can
be directly used to specify the parameters of the model. Of
course, measures of the survey error characteristics, such as
standard errors and autocorrelations, are estimates which are
themselves subject to errors that can adversely affect the
decomposition. For example, overestimates of the variances
could lead to “oversmoothing” the series. Still, given good
estimates of the survey error properties, a rather precise and
objective identification of the effects of survey error is
possible, resulting in a much cleaner separation of the
estimated trend and seasonal components from the
survey series than can be achieved by the moving-average
approach.

As described in the appendix to this article, research has
been conducted that uses a time-series model to seasonally
adjust some of the more volatile cps series. For example, model
estimates have been produced for blacks 16 years and older,
for adult black men and women, and for black male and
female teens. The model producing these estimates has two
submodels as components: a “signal” model, which models
the true value of the specific demographic group; and a
“noise” model, which models the survey error associated
with that series. This model-based approach filters out the
survey error and the seasonal component of the series,
allowing the trend to be more cleanly separated from the error.
Using estimates from the model instead of from x-12 results in
smaller standard errors of the estimates and smoother
seasonally adjusted series. This type of model estimation
has been widely investigated in the context of “small-area”
estimation and has been used in the BLs Local Area
Unemployment Statistics program for more than 15 years to
estimate employment and unemployment for States and
selected metropolitan areas.®

Historical model-based estimates

There are two ways of processing time-series data to produce
model-based estimates. One, called the “forward filter,”
processes each observation as it first becomes available in
real time. Filtering is similar to the “concurrent” seasonal
adjustment method used to seasonally adjust new cps data
series as they become available each month.® The most
recent value of the time series is “filtered” by using all the
available data up to and including the latest month. Prior
months’ estimates are not revised as new data become
available.

The second approach to processing the data, called
“smoothing,” incorporates data before and after a particular
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observation. All the data are processed in batch mode, rather
than one observation at a time. During the smoothing proc-
ess, estimates derived from filtering at each point in time are
revised to reflect information in all of the data. This approach
creates a much smoother seasonally adjusted series than
does filtering, although it does require revision of the entire
time series. (See the appendix for further discussion of
smoothing and filtering.)

Counterparts of smoothing and filtering also exist within
the conventional moving-average approach. For x-12, the
smoothest estimates are produced by symmetric moving
averages, which use an equal number of observations before
and after the time point being adjusted. Toward the end of
the series, where there are fewer observations after that point,
less desirable asymmetric moving averages must be used.
When the x-12 program is executed to seasonally adjust the
most recent observation, the result is referred to as the
concurrent estimate, which is the counterpart of the model’s
filtered estimate.

Charts 1 and 2 compare smoothed model-based and x-12
seasonally adjusted unemployment rates and employment levels
from January 1999 through December 2003 for blacks aged 16
and older.** Chart 2 also includes the x-12 trend series, discussed
later. The x-12 seasonally adjusted series are published each

month in the BLs Employment Situation news release. The
graphs show that the model estimates create smoother sea-
sonally adjusted lines or trend lines for both series than do the
corresponding x-12 seasonally adjusted series.

The conventional time-series decomposition represents the
observed series as being composed of trend, seasonal, and
irregular components. The seasonally adjusted series consists
of the trend and irregular components and thus is generally less
smooth than the trend. For the series modeled, the distinction
between the seasonally adjusted series and the trend series is
not important: once the estimated survey error is removed from
the series, very little residual irregular component is left. The
model-based seasonally adjusted series, therefore, is virtually
identical to the trend component. For x-12, the irregular
component s relatively large; thus, its seasonally adjusted series
is noticeably less smooth than its trend.

One advantage of the modeled estimates is evident from
the graphs: peaks and troughs in these series are more easily
identifiable, which is not the case with the x-12 seasonally
adjusted series. This makes identifying labor market turning
points for specific demographic groups easier. For instance,
in the black employment- and unemployment-rate series in
charts 1 and 2, the turning point clearly occurred in mid-2000.

x-12’s trend estimates, shown in chart 2, clearly involve
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further smoothing of the seasonally adjusted series, but this
does not help identify real turning points. Due to the effects
of the survey, the x-12 trend series displays spurious oscilla-
tions around the model-based trend series. These oscillations
could be misinterpreted as real turning points.

Real-time current-year estimates

Because the smoothed estimates use data from the entire
sample (January 1976-December 2004), they do not corre-
spond to the estimates that would have been available in
2004 to data users in real time. As mentioned in the previous
section, the latest monthly estimate in a modeled series is a
filtered estimate that incorporates prior months’ data, as well
as data for the current month. Filtered estimates are not as
smooth as the “smoothed” series, because filtering cannot
incorporate data from the future, nor does it incorporate the
latest information into past months’ estimates. As a result,
the month-to-month changes in the filtered estimates are
much more volatile than the smoothed estimates, but still are
smoother than the x-12 estimates.

Charts 3 through 5 show forward-filter estimates of the
black unemployment rate and employment level, and of the

unemployment level for adult black women, for January 2003
through December 2004. In chart 3, it is clear why the modeled
data may be preferable to the x-12 estimates. The x-12 series
shows two rather large spikes in black unemployment in June
and October 2003. The June spike appears to be the larger of
the two. In contrast, the model series shows, not the June
spike, but rather a small, statistically insignificant rise,
followed by a flattening out of the rate and a slower decline
from October 2003. The model suggests that the rate peaked
ataround 11.0 percentage points during the summer and early
fall of 2003, whereas x-12 gives a more confusing picture. The
employment level for blacks is shown in chart 4. The modeled
data indicate that the employment level bottomed out around
August 2003, whereas the x-12 series depicts the lowest level
of employment for this group during the first quarter of the
year. In chart 5, the unemployment level of adult black women
is shown. Although in both the modeled series and the x-12
series, the unemployment levels wind up being roughly the
same at the beginning and end of the period shown, the
modeled series is clearly less volatile over the year.

An important feature of the model-based approach, as
emphasized in the previous section, is that it provides
estimates of the standard errors for the point estimates,
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(&, To 1 M Unemployment levels, adult black women, concurrent, seasonally adjusted, 2003-04
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whereas x-12 does not. It is common practice for analysts to
use the standard errors for the not-seasonally-adjusted cps
estimates as a proxy measure of error for the x-12 estimates.
While this practice is not strictly correct, recent research
suggests that these standard errors may be a reasonable
approximation (an overestimate of around 10 percent to 15
percent, sometimes less) for detailed series in which sampling
error is an important source of variation.*? The following
tabulation compares the model-based standard errors of
monthly change from the forward filter with the cps proxy
measures and computes the minimum magnitude of monthly
change in the respective estimates required to achieve sig-
nificance at the 90-percent level for the period from January
2000 to July 2004 (the figures shown are all mean values):

Unemployment Employment Unemployment,

Source and rate, level, black adult
measure blacks blacks women

Standard error:

CPS werrreeeerereneereenens 0.51 101,271 49,261

Model .................. 21 41,580 14,047
Minimum change

required for

significance:

[ S +.84 +166,591 +81,034

Model ..........c...... +.35 +68,399 +23,107

For the total black employment level, the minimum
magnitude of monthly change required for significance has
to be at least 167,000 with the cps proxy measure—almost
two-and-a-half times the magnitude required for the model
estimates. For unemployed black adult women, the cps proxy
measure requires a change of at least 81,000 in the x-12
seasonally adjusted estimates, or 3.5 times the change re-
quired in the model estimates. For the total black unem-
ployment rate, the cps proxy requires a change of more than
0.8 percentage point, compared with less than 0.4 percentage
point for the model. Thus, even though the cps proxy may
overestimate the required monthly change in x-12 by up to 15
percent in relative terms, that still leaves major gains from using
the model estimates.

Research to this point suggests that the model-based ap-
proach to seasonal adjustment is a useful tool for helping to
discern trends in data series with large variances due to relatively
small sample sizes. The approach, however, is not necessarily
superior to the moving-average approach currently used by the
Bureau of Labor Statistics for adjusting aggregate series such
as total employment and unemployment when sampling error is
amuch less important source of variation than it is for the detailed
demographic series. Research into the merits and limitations of
the model-based approach to smoothing time series and creating
estimates of variance is ongoing in order to evaluate possible
extensions of the method to other series. [
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movements than to one with purely random irregular variation.
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Survey,” Journal of Official Statistics, June 1992, pp. 149-66.

1 For more on the switch to concurrent seasonal adjustment in the
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Adjusted Labor Force Series in 2004,” Employment and Earnings,
January 2004, pp. 3-9; on the Internet at http://www.bls.gov/cps/
cpsrs2004.pdf.
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population controls from Census 2000 in January of that year.

2 Stuart Scott, Michail Sverchkov, and Danny Pfeffermann,
“Variance Measures for Seasonally Adjusted Employment and
Employment Change,” asa Proceedings of the Joint Statistical
Meetings (Alexandria, va, American Statistical Association, 2004),
pp. 1328-35.

To account for the special properties of the cps series, a signal-plus-
noise model is developed that combines a time-series model of the
“true” values and its unobserved components (trend, seasonal, and
irregular) with a model of the sampling errors. The latter is treated
as an additional unobserved component of the time series, with the
special advantage that its variance-covariance structure is objec-
tively identified by design information.

This appendix discusses, in general terms, how the components
of the cps are modeled, briefly considers the series that is directly
modeled in the text of this article, and examines the use of the
Kalman filter and smoother algorithms in the text to produce
seasonally adjusted estimates in both real and historical time.*

Component models of the CPS

For labor force series, seasonality is an important source of
variation. The nonseasonal, or trend, part of the series cannot be
observed directly; instead, trend values must be inferred solely
from observations of the aggregate series. Seasonal adjustment is a
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special case of the more general “signal-plus-noise” formulation of
an observed series as being composed of a number of unobserved
components, where the components of interest are referred to as
the signal and all other components are considered to be noise.

The goal is to “filter out” the signal from the noise when all that
can directly be observed is the data corrupted by noise. The
solution to this problem requires a model that specifies, either
implicitly or explicitly, the properties of each of the underlying
components. In the conventional seasonal adjustment problem, the
observed series, Y, is assumed to be measured without error and to
be composed of trend, T, seasonal, S, and irregular, I, components
in additive form:

Y, =T, +S, +1,.

Multiplicative seasonality is handled by taking logarithms of the
data, fitting the model to the data, and then taking the antilogarithm
of the component estimates back to the original scale.

The signal is the nonseasonal component (trend plus irregular



component), and the noise includes the seasonal component (when
irregular fluctuations are relatively large, it may be more appropriate
to define the signal as just the trend and treat the irregular component
as part of the noise):

Signal: Sig, =T, +1,;

Noise: N, =S§,.

Following Andrew C. Harvey, the trend, seasonal, and irregular
components are specified as structural time-series models.? Each
component has an associated variance that determines its prop-
erties. The trend takes a local linear form, with its level and slope
varying randomly. A wide variety of patterns is a possibility,
depending on the relative magnitudes of the variances of the level
and slope. When the two variances are both zero, we have the
smoothest possible trend, which assumes a fixed linear form over
the entire observation period. A rapidly fluctuating trend results
when the variance of the level shift is much larger than the variance
of the slope.

The seasonal component also evolves over time according to its
variance. A seasonal pattern that is fixed from year to year implies
a zero variance, while patterns that change gradually imply a small
positive variance. Finally, the magnitude of the irregular component
depends directly on the size of its variance. A zero variance implies
the absence of irregular variation in the series. The four variances of
the structural model presented in the text of this article are unknown
parameters that will be estimated from the data once a complete
model is set up as described herein.

In the case of cps data, there is a fourth component: the sampling
error e,, which arises because only a fraction of the total population
is sampled each month. This means that the true values Y are no
longer directly observed, but instead, the survey estimates,

Yo=Y, e,

are what is observed. The definition of the signal is unchanged, but
now the noise includes survey error as well as seasonality; that is,

N, =S, +e,.

Since the presence of sampling error in the data can radically
alter the results of seasonal adjustment, a model is required that
takes the sampling error into account when it is an important source
of variation in the data. Unlike the situation with the other compo-
nents, the properties of this component do not have to be estimated
from just the time series itself. Rather, direct information from the
survey microdata may be used to estimate the sampling error model
independently of the structural time-series model.

The Census Bureau routinely produces data to assess the reli-
ability of national cps statistics on an ongoing basis. The process
involves drawing a set of random subsamples, or replicates, from
the full sample surveyed each month, using the same principles of
selection as are used for the full sample, and applying the regular
cps estimation procedures to the replicates that are drawn. Each
month, 160 replicates are produced for a large number of charac-
teristics. The variability in the replicates provides the basis for
computing empirical variances and autocorrelations for the sampling
error. Variances are computed by fitting generalized variance
functions to the monthly replicate variances to smooth out vola-

tility in the latter. Lag covariances are computed by averaging each
replicate lag covariance over time and normalizing for changes in
variance.

The empirical sampling-error variances and autocorrelation
estimates are then used to directly derive the parameters of the
survey error model, which is specified as an autoregression that
relates the current value of the survey error to its past values. Note
that the coefficients are determined from the sampling-error
autocorrelations, and the variances are adjusted to conform to the
survey variances. In this way, both the effect of the rotating panel
design and the magnitude of the sampling error are taken into
account.

The sampling-error model is combined with the time-series
model of the trend, seasonal, and irregular components, with the
latter variances estimated directly from the historical cps series.
Thus, the basic properties of the overall model are tailored to the
empirical behavior of the cps series.

Model fitting to CPs series

Black employment- and unemployment-level series for the
following four age-gender groups are directly seasonally adjusted,
and variance estimates are produced, with the models presented in
the text of the article:

® black male youths aged 16-19 years

® black female youths aged 16-19 years

® black men aged 20 years and older

® black women aged 20 years and older.

Seasonally adjusted total black employment and unemployment
levels are obtained indirectly by summing the appropriate model
estimates, and the unemployment rate is derived from the estimates
of these levels. Although seasonal adjustment of the totals is done
indirectly, the variances are produced by directly fitting the models
to the aggregate data.

The observation period of the study begins in January 1976 and
ends in December 2004. For each series directly modeled, a
preliminary model consists of the trend level, together with the
slope, seasonal, irregular, and survey error components. The model
is fine-tuned through diagnostic testing. Evaluating the test results
leads to decisions regarding (1) the need for a logarithmic trans-
formation, (2) the presence of a trend slope, an irregular component,
and outliers of various forms, and (3) the composition of the
seasonal component. If necessary, impulse or step dummies can be
incorporated into the model to allow for exceptional temporary
shocks or even more permanent shifts in the series.

For all models, the estimated variance of the irregular component
was very close to zero. Therefore, the seasonally adjusted series
(trend plus irregular component) is virtually identical to the trend.
Thus, although there may be irregular variation in the true series,
it is empirically difficult to detect in the presence of the large
sampling-error variation.®

Real-time and historical estimates

Given estimates of the unknown parameters of the model presented
in this article, seasonal adjustment of the data may commence.
Because cps data are generated each month, there are two ways to
approach estimation. One way is to make an estimate each time
new cps data become available; the other way is to wait until data
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accumulate and then produce all the estimates at once. The first
approach occurs in real time when seasonal adjustment is performed
immediately after the latest data are available. (This approach is
sometimes referred to as concurrent seasonal adjustment.) The
second approach corresponds to the usual practice of revising the
entire series of seasonally adjusted estimates at the end of the year
once the latest data for the entire year become available. In the
time-series literature, the first approach is called filtering, the
second smoothing.

To produce seasonally adjusted estimates, the model is first
cast into the so-called state-space form, which allows the use of the
Kalman filter, a powerful algorithm for computing the estimates in
real time.

A state vector includes the values of all the components of the
model at a specific point in time. Two equations define the state-
space form. First, there is the transition equation that specifies
how the state vector, Z, behaves over time. This equation takes a
simple form, with the current value of the state vector depending
only on its value in the previous period, plus V,, a vector containing
the random disturbances representing uncertainties in the dynamics
of the system. (The vector V, is assumed to be normal and inde-
pendently distributed.) Mathematically,

Z,=RZ_ +V,,

where F_is a known transition matrix. This simple autoregressive
structure may appear to be very limiting, but in fact it encompasses
a wide variety of models by introducing artificial state variables.

The state variables, which are the signal and noise components,
are not directly observable. Instead, the information on the state of
the system is conveyed by the sample data y,, which is related to
the state vector via the observation equation

y, =H,Z, =Sig, + N,.

This is the second of the two equations. Here, H,, which has known
values, is called the observation matrix and sums up the components
of the state vector such that the observed datum is equal to the sum
of the signal (trend plus irregular component) and the noise (seasonal
plus sampling error components).

The task is to find the expected values of the state vector and its
variance, given the observed sample values. These are the “best”
estimates of the state vector, in the sense of minimizing the mean
square error (or, more precisely, the best linear unbiased predictors
of the state variables). The expected value is

E(Zt |ytv---ly1):2t\tl
and the variance is
Var(Zt |Y1l-~-ry1): lsqt’

where ZAth is the expected value of the state vector at time t, based
on all of the observed data up to time t.

The solution to finding a “best” estimate from noisy data as
they come in each period is given by the celebrated Kalman filter,*
which needs only the previous period’s estimates Z, ,,, and

P._y1 (which are based on all of the data up to time t— 1) and the
current observation y, to compute the “best” current-period
estimates 7z, and B, .This is done in two steps: a prediction step
followed by an update step. First, the state vector is predicted for
time t by projecting forward its previous period’s estimate by means
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of the aforementioned transition equation, where the disturbance terms,
'V, are set to their expected values of zero.

In fact, however, the disturbances are never exactly zero, and
the previous period’s estimates contain errors. Accordingly, in
the update step, the predictions are improved with the use of
information from the current sample values. The observation
equation provides the means for getting feedback from the sample
by forming a prediction of the new data value as the sum of the
signal and noise predictions, 91“,1, and comparing it with the actual
value vy, :

91\171 = thtn—l = Sigmfl + Nl\t—l'

In this equation, the subscript t|t — 1 indicates that the prediction is
for time t, using data up to time t — 1 only.
Next, an overall prediction error

Yo — 9x|171 = (Sig‘ _éignm) +(Nx - Nt\t—l)

is computed. The error in predicting the latest y, value using data
only up to the previous period is the sum of the unobserved
prediction errors for the signal and noise. In the update step, the
signal and noise estimates are corrected in proportion to their
expected contribution to the total prediction error:

éigt\t = éigt\tfl +9, |:yt - 9t|t—1];
NAt‘t = NAt‘pl + (1_ gt )[yt - 9t\tfl:|'

The subscript t|t indicates that information from time t has been
added to the estimate.

The weight g;, which varies between zero and unity, determines
how much of the prediction error is allocated to the signal and how
much to the noise. It is a function of the ratio of the variance in the
signal to the variance in the noise. As the noise variance gets larger,
gt gets smaller, and more weight is given to the previous period’s
prediction of the signal, because now the observed data at time t are
less reliable and therefore the sampling error for this observation is
more likely to account for the largest share of the overall prediction
error. The signal and noise weights on the prediction error add to
unity, ensuring that the updated estimated signal and noise add to
the observed sample value.

Each period, the Kalman filter makes a prediction ymfl of the
next observed value y,, using only the most recent estimates of the
signal and noise. The filter calculates corrected estimates of these
components from the prediction error, which incorporates
information from the latest available data at time t. Because the
predicted values are based on all the data available up to time t—1,
the corrected estimates for time t reflect all the available information
from both the historical and current values of the series. After each
prediction and update step, the prediction correction process is
repeated. This recursive nature is one of the appealing features of
the Kalman filter. A simple illustration follows.

Filtering is tailored to real-time processing of one observation at
atime as it first becomes available. Conceptually, this is analogous
to updating a running average X, of numbers x;,X,,...,%_ by the
recursive formula



which requires only the previous period’s estimate plus the current
observation, rather than by starting over each time with the formula

-1
X =t (uttx),

which requires all of the data. The significant point is that the
Kalman filter does no more work to process the last observation
than it does the first. The net result is an algorithm tailored to real-
time applications, whereby data keep coming in and information
about the current value of the signal is needed immediately.

The Kalman filter, however, is not well suited to producing
historical estimates for a fixed set of data observations, because it is
designed to produce an estimate for the current period only and not
to revise any earlier estimates. Nonetheless, it is standard practice
to revise a seasonally adjusted estimate made at time t by using
information that had arisen subsequently, for the succeeding
observations Y, Y,.,--+ Y, Up to the last observation at t = n are
bound to convey information about the trend and other components
that can supplement the informationy,,..., y, that was available at
time t. Clearly, the Kalman filter estimates for the observations at
the beginning of the time series will be extremely weak.

The retrospective improvement of the estimates by using ex
post information is achieved by a process conveniently described
as “smoothing.” This is a matter of revising each of the filter
estimates for a period running from t = 1 to t = n once the full set of
observations y,..., Y, has become available. These “retrospective”
estimates are obtained from the “Kalman smoother,” which runs
the Kalman filter recursion backwards from t = n to t = 1 through the
earlier data, revising the estimates produced by filtering at each
time point. Smoothing is batch processing in the sense that it

operates on all of the data at once, in contrast to the Kalman filter
real-time processing of one observation at a time.

Not surprisingly, the estimates from the smoother typically
look “smoother” than those from the filter. For historical analysis,
the smoothed estimates are superior (they have a smaller error
variance) to the filtered estimates. But it is important to note that,
because these smoothed estimates use data from the entire sample,
they do not correspond to estimates that would have been available
to data users in real time. In reality, smoothing would be done once
a year, in accordance with the BLs policy of revising official
seasonally adjusted estimates. Smoothing could be performed each
month, but there is an obvious disadvantage to publishing the
results, because all of the previous month’s estimates would be
revised each month, a practice that could be confusing to data users.

Notes to the appendix

t A more technical discussion is given in R. Tiller, “Seasonal
Adjustment of ces Time Series with Large Survey Errors,” paper
presented at the Federal Economic Statistics Advisory Committee
Meeting, Washington, oc, December 13-14, 2001.

2 Andrew C. Harvey, Forecasting, Structural Time Series, Models
and the Kalman Filter (Cambridge, U.K., Cambridge University Press,
1990).

3 Tiller, “Seasonal Adjustment.”

4 Harvey, Forecasting.
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