
DISTRIBUTIONS AND TRANSFORMATIONS FOR FAMILY EXPENDITURES

Stuart Scott and Daniel J. Rope, Bureau of Labor Statistics
2 Massachusetts Avenue, NE, Rm 4915, Washington, D.C. 20212

1.  Introduction
The aims of this paper are to study family

expenditure distributions to determine
(1)  whether transformations can improve the

normal approximation for inference purposes,
(2)  whether selected probability models provide

adequate fits to the data.
The data are from the U. S. Consumer Expenditure
Quarterly Interview Survey for 1984 and 1985.  The
survey, conducted on a continuing basis since 1980,
samples 5000 consumer units each quarter, as
described in BLS's Handbook of Methods (1992).  The
data are collected for consumer units, defined in the
handbook, but in this paper we will more informally
speak of families or households.  Usually, the concepts
coincide.

This survey is the source of base period
expenditures for the U.S. Consumer Price Index.
Additional analytic uses include spending
comparisons, either across time or demographic groups
(e.g. Jacobs, Shipp, and Brown, 1989, and Wagner and
Soberon-Ferrer, 1990).  Regression models have been
used to estimate income elasticity of expenditures for
certain categories (Gieseman and Moulton, 1987).  The
family budget program, described in Watts (1980), but
discontinued in 1981, estimated typical expenditures
for two family types, (1) a husband, wife, and two
children and (2) a retired couple.  Researchers
frequently use transformations in carrying out analyses
of expenditure data.  Wagner and Soberon-Ferrer take
log's of expenditures, and Gieseman and Moulton use
square roots of food expenditures and family income.

Expenditure distributions are usually skewed right.
For instance, within Women's Apparel, there are
frequent purchases of smaller items, such as hosiery or
shirts, and scattered purchases of more costly items,
such as suits or overcoats.  "Lifetime" or "failure time"
distributions share this feature of positive skewness,
and have received detailed attention from statisticians.
Lawless (1982) in his text Statistical Models and
Methods for Lifetime Data, gives a unified treatment of
common probability models for lifetimes.

We will select Box-Cox transformations for our
data using both the classic maximum likelihood
method and alternative approaches suggested by
Hernandez and Johnson (1980), and Lin and Vonesh
(1989).

2.  Expenditure Distributions
Following Lawless, we use the generalized gamma

distribution as a unified means of carrying out
probability modeling of expenditure distributions.  The
generalized gamma density is defined as
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a  is a simple scale parameter, and b  and k  are
shape parameters.  Special cases are

Weibull: k =1
gamma: b =1

exponential: k = b =1.
The lognormal distribution is a limiting case of the
gamma.

Figure 1 shows possible shapes of these
distributions.  The lognormal rises quickly to a peak,
drops quickly, and then declines fairly slowly, and it
has the thickest tail among these distributions.  The
shape of the generalized gamma depends on the
product b k .
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Examples in the figure are the Weibull with b =.5, the

exponential, and the gamma with k =2, respectively.
Empirical distributions have been examined for two

years, four expenditure categories (cf. Table 1), and
five income classes.  In thousands of dollars, the
income classes are [0,10), [10,20), [20,30), and
[30,•), plus a class of incomplete income reporters.
Each observation represents total household spending
in the category for a month.  All these results are for
the positive part of the distribution.  The full
distribution consists of a spike at zero for families
making no purchases in the category, plus the spending
distribution.  Table 1 shows the overall reporting rates
for positive spending for the four categories.  Even for
the broad categories Home Furnishings & Equipment
and Women's Apparel, just over one-third of the
families report expenditures.  The forty spending
distributions are each fitted by maximum likelihood to
the four basic distributions described above via an
adapted program by Jacqueline Kent (cf. Quesenberry
and Kent, 1982).  Lawless (1982, Chapter 5) refers to



Table 1.  Percent Households
                    Reporting Expenditures

Category Percent
Home Furnishings& Equipment 38
Home Appliances 3
Women's Apparel 36
New Cars & Trucks 1

computing difficulties in earlier years in finding
maximum liklihood solutions of the generalized
gamma and, based on a reparameterization, shows how
the maximum may be found from solving a single
interative equation.  Empirical and fitted distributions
are graphed, and chi-square goodness-of-fit testing
carried out.  (Relative survey weights are incorporated
into the empirical distributions.  Since we will not be

interpreting p-values too strictly, we have not made
adjustments for the complex survey design).

Let us consider in detail Women's Apparel, Income
class 1, which has 4396 observations for 1984.  The
right skew is evident in the histogram in Figure 2.
Even though over 80% of the distribution lies below
$100, values range to $3451.  The mean, $63, is more
than double the median of $30 and Fisher's skewness
coefficient is +11.  The histogram shows considerable
roughness in the data.  Especially noteworthy are large
spikes, occurring at $10 intervals.  For instance, 67
reported expenditures are $50, but only 17 reported
expenditures are $49 and 18 are $51.  Respondents
tend to round off.  Also, in part, this reflects pricing
strategies.  Retailers are more likely to price an item at
$19.99 than $19.00.

Among the four basic models, the largest p-value
(.02) comes from the chi-square test for the lognormal
distribution.  This rather poor fit is the second best for
the lognormal out of the ten income class-year
combinations.  The curvature of the lognormal fits
these data better than the other basic distributions (cf.
Figure 3).  Still, it tends to be too high between 5 and
25, and too thick in the tail.  A distinct improvement in
fit is achieved with the generalized gamma distribution
withb =.25 and k =9.5.  The p-value is .38,
suggesting a comfortable acceptance of the model.  The
generalized gamma achieves better p-values than the
lognormal for all ten income-year combinations, and in
six cases gives acceptable p-values (cf. Table 2).

Table 2 shows which income ·  year classes have
adequate (denoted '+') and inadequate (denoted '0') fits.
The roughness of the data makes model-fitting
difficult.  We did not try to account for the spikes, but
did try to minimize their effects by a careful choice of
cells.  A considerable part of the difficulty is the
inherent diversity in these distributions.  The CE
Survey encompasses all types of households from all



Table 2.  Best-Fitting Distributions (1984/1985)

Income
Class

Home
Furnishings

Home
 Appliances

Women's
Apparel

New Cars and
Trucks

<$10,000 LN/LN
(0/0)

EE/EE
(+/+)

GG/GG
(+/+)

WB/WB
(+/+)

$10K-20K LN/LN
(0/0)

EE/EE
(.02/+)

GG/GG
(+/0)

GM/GM
(+/+)

$20K-30K LN/LN
(0/0)

EE/EE
(0/0)

GG/GG
(.06/+)

WB/WB
(+/0)

$30K and + LN/LN
(0/0)

WB/WB
(0/.02)

GG/GG
(0/0)

GM/WB
(0/.07)

Incomplete
Reporter

LN/LN
(0/0)

EE/EE
(+/+)

GG/GG
(+/0)

WB/GM
(0/.08)

EE = Exponential WB = Weibull GM = Gamma GG = Generalized Gamma LN = Lognormal
('+' denotes p-value > .10, '0' denotes p-value < .01, Other entries are best p-values obtained.)

parts of the country.  Moreover, even within a family,
across months, spending shifts in terms of categories
and amounts.  Households with the largest incomes
($30,000 or more), form the largest class in the
population and also the hardest class to fit.  Women's
Apparel purchases range from pairs of socks to fur
coats.  Home Furnishings and Equipment has no
acceptable fits, while the more homogeneous
subcategory Home Appliances has several.  While less
diverse, perhaps, than the other categories, New Cars
and Trucks has comparatively small sample sizes.  The
success in fitting most classes is due in part to the
small number of cells used in the chi-square testing.

Results for the best-fitting distribution (shown in
Table 2) are fairly consistent across income class.
Parameter values do not differ greatly with income.
Spending levels do not increase with income as much
as expected.  As just discussed, the generalized gamma
is chosen for Women's Apparel.  Surprisingly, the
exponential gives an acceptable fit for Major
Appliances.  Either the Weibull (with beta's around 2)

or the gamma (with k's in the 2.5-5 range) is selected
for New Cars and Trucks.  For Homefurnishings and
Equipment, the lognormal outperforms all the other
distributions, including the generalized gamma.

3.  Transformations
The probability models in the previous section may

be used for description, but usually for inference it is
desirable to have approximate normality.  The classic
paper by Box and Cox (1964) gives a method for
selecting a transformation to improve the normal
approximation, both for the basic distribution and for
the mean derived from it.  The Box-Cox family of
transformations is
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(The particular form of the power transformation is
chosen for continuity at l=0.  That is,



X X( ) log .λ λ→ →  as 0 )  The basic approach is to
compute the likelihood function under a normal model
for a range of l , and pick out the l  with the largest
likelihood.  Because the likelihood function is flat
around the maximum, there is no need to use an exact
value.  It seems preferable to restrict the transformation
to relatively simple values, such as 0, 1/2, 1/4, etc.

 For Homefurnishings and Women's Apparel, the
optimal values range between -.075 and .05 for all
income classes, so the log transformation is
appropriate.  Table 3 contains the optimal l  for Home
Appliances.  With values ranging from 0.02 to .25, and
some variation across year, one compromise solution is
to select a sixth root for all size classes.  (The average
optimal l  is 0.16).  For New Cars and Trucks, Table 3
shows a much greater range of values, from 0.3 to 1.0.
There is no monotonic trend with income, however,
and there seems to be about as much variation within
income class as across.  If one wishes to use a single l
for this category, a rough compromise would be
l =3/4.

Table 3.  Optimal l  from MLE (1984/1985)

Income Class
Home

Appliances
New Cars and

Trucks
 < $10K .015 / .175 1.020 / .475

$10K-$20K .125 / .175   .850 / .615
$20K-$30K .200 / .175 1.015 / .980

$30K and over .250 / .150   .300 / .750
Incomplete

Reporter
.130 / .150   .700 / .415

Can model selection contribute to transformation
selection?  Hernandez and Johnson (1980) utilize a
distance measure to find the optimal l  for
transforming a known distribution to achieve
approximate normality.  Their results for the gamma
family extend to the generalized gamma family.

Given two probability densities g and h, the
Kullback-Leibler information number is defined as
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It serves as a distance measure between g and h.  In
particular, if g=h, then I is 0.  If
X g E X Var X~ , ( ), ( ),            µ σ= =2  then I g( , )
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measures the closeness of g to the normal distribution
with the same mean and variance.  A general formula
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For the generalized gamma function, this reduces
to
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From the function G(l ), one can determine the
best value l * .

EXAMPLE.  Gamma distribution with k=2.
The optimal l  is .30, with G(.30)=.0005.  This

compares with
G(1)  = .188
G(.5) = .018
G(0)  = .060.

The Kullback-Leibler information number is a
distance function, but not one that we are accustomed
to.  In relative terms at least, the closeness to normality
is greatly improved by the optimal transformation and
also by the cube root, G(1/3) = .001.

For the entire gamma family, Figure 4 indicates
how much transformations matter by plotting
G(l )=G(l ,k) as a function of the shape parameter k
for several fixed values of l .  Here is the graph with
l =1, .5, .33, .25, and 0.  Asymptotically,l *=1/3, as
shown by Hernandez and Johnson.  Visually, at least, it
appears that most of the gain comes for values k<1,
although large percentage gains are achieved for larger
k.

Looking at Figure 4 in terms of l , l =1 has the
largest values for all k.  The log transformation
outperforms some of the root transformations near 0,
but beyond k=.6 all three root transformations are
superior.



Table 4.  Optimal l  from MLE vs. Models, 1985 data

Box-Cox
MLE

Generalized Gamma
Model

Best Other
Model

Income Class 1 (0-$10K)
Home Furnishings -.075 .075  0
Home Appliances  .175 .200  .275
Women's Apparel  .050 .075  0
New Cars & Trucks  .475 .525  .800

Income Class 4 ($30 and over)
Home Furnishings -.050 .075  0
Home Appliances  .150 .150  .275
Women's Apparel  .050 .075  0
New Cars & Trucks  .750 .700  .800

We now apply these results to picking
transformations for expenditure distributions.  Taking
the best-fitting model for each family, we can compute
G(l ) as a function of l , and pick an optimal value.
Table 4 shows l *  from direct maximum likelihood,
the best-fitting basic distribution, and the generalized
gamma for 1985 data.  Recall that Income class 1 had
adequate fits for all categories except
Homefurnishings.  Income class 4 was the hardest fit,
with adequate fit only for New Cars & Trucks.

For Women's Apparel, the optimal l  is .075,
based on the generalized gamma, the only model
giving an adequate fit.  Maximum likelihood gives
virtually the same result, l =.05.  Either value
suggests that the log transformation is a near-optimal
choice.  The values from the exponential, gamma, and

Weibull are .275, .250, and .225, and in all cases the
distance from normality is much greater than for the
lognormal.  The generalized gamma results are very
close to direct MLE in all cases.  The largest difference
is .05, and in one of these cases, New Cars & Trucks,
Income class 1, both suggest a square root
transformation.

Using the best-fitting basic distribution is not as
effective.  For Homefurnishings and Women's Apparel,
where the lognormal fits best, there is agreement with
MLE.  For Home Appliances, the exponential and
Weibull models are used, and give too high a value of
l , but using the value implied by these models,
l =1/4, probably works fairly well.  For New Cars &
Trucks, the value is quite a bit off for Income class 1,
but close for Income class 4.



Lin and Vonesh (1989) propose setting up a
nonlinear regression in l  to select the transformation.
A prime reason offered for the method is convenience,
in the sense that many users may have access to
nonlinear regression software, but not an existing MLE
program.  We did not find this method convenient, due
to some problems with convergence.  There seem to be
very high correlations among the estimated
parameters, raising concerns about stability in
estimation.

4.  Summary
With respect to transformation selection, a log

transformation is appropriate for Homefurnishings and
Women's Apparel.  A compromise choice for Home
Appliances is a one-sixth root.  For New Cars &
Trucks, the choice might range from a square root to
no transformation, depending on the income class.

Fitting distributions is difficult for these data.
There is roughness in the data in the form of spikes at
even values.  Except perhaps for New Cars & Trucks,
items in the expenditure categories are quite diverse.
Also, the reporting households are diverse; the income
breakdown does not really seem to help that much.
Even so, adequate fits are obtained in about half the
cases.  There was not much difference in the choice of
model by income class.  Here are the distributions
selected:

Homefurnishings lognormal
Home Appliances exponential
Women's Apparel generalized gamma
New Cars & Trucks Weibull or gamma

Is modeling the distributions useful?  If one is
simply seeking a transformation to improve normality
for an expenditure distribution, basic MLE is simple
and works well.  Modeling, however, in our opinion,
may be helpful in identifying patterns in expenditure
distributions.  Rather than repeatedly computing
MLE's, one may find similar behavior for certain
expenditures, even across demographic groups.  The
Hernandez-Johnson statistics assess distance from
normality.

The generalized gamma has been useful in several
ways:  it provides a unified framework for studying all
the probability models in this paper.  It is useful in its
own right.  Its flexibility gives a good fit to Women's
Apparel, where the other distributions fail.  Finally, for
transformation selection with the Hernandez-Johnson
formulas, it performs better than the simple
distributions, and agrees quite well with the MLE
approach.
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