

National Longitudinal Surveys

Discussion Paper

The Evolving Structure of Female Work Activities: Evidence from the National Longitudinal Survey of Mature Women, 1967-1989

Donald O. Parsons
The Ohio State University

December 1994

Report: NLS 95-24

The National Longitudinal Surveys (NLS) program supports many studies designed to increase understanding of the labor market and methods of data collection. The Discussion Papers series incorporates some of the research coming out of the program. Many of the papers in this series have been delivered as final reports commissioned as part of an extramural grant program, under which grants are awarded through a competitive process. The series is intended to circulate the findings to interested readers within and outside the Bureau of Labor Statistics.

Persons interested in obtaining a copy of any Discussion Paper, other NLS reports, or general information about the NLS program and surveys should contact the Bureau of Labor Statistics, Office of Economic Research, Washington, DC 20212-0001, or call (202) 606-7405.

Material in this publication is in the public domain and, with appropriate credit, may be reproduced without pennission.

Opinions and conclusions expressed in this document are those of the author(s) and do not necessarily represent an official position of the Bureau of Labor Statistics or the U.S. Department of Labor.

The Evolving Structure of Female Work Activities:
 Evidence from the National Longitudinal Survey of Mature Women, 1967-1989

Donald O. Parsons
The Ohio State University parsons.1@osu.edu

December 1994

This paper was funded by the U.S. Department of Labor, Bureau of Labor Statistics under small purchase order. The views expressed here are those of the authors and do not necessarily reflect the views of the U.S. Department of Labor.

The market work behavior of adult women in the United states has changed radically in the last several decades as a greater and greater share spend substantial time in the labor market. Despite this large time reallocation, comparatively little study has been devoted to the structure of the resulting work activities or to changes in that structure.... In this study, data from the Mature Women's Cohort of the National Longitudinal Survey is used to characterize the life cycle evolution of work structure from an annual perspective. Work is partitioned into four categories based on two work dichotomies: full- or part-time weeks and full- or part-time hours per week. Three "part-time" work possibilities exist in this framework: i) part-time weeks and full-time hours per week, ii) full-time weeks and part-time hours per week, and iii) part-time weeks and hours per week.

The analysis adopts a supply and demand framework. Employers have preferences for an employee's weeks per year and hours per week. Employer demands for weeks per year are likely to be influenced by seasonal and cyciical factors, while hours per week are likely to be affected by production and customer technologies. High training costs are likely to induce both greater weeks and greater hours per week. similarly the worker is likely to have preferences over the total time she supplies to the firm and how these are divided into weeks and hours per week. For women with small children, the structure of the school year and of the school day are both likely to be important.

The National Longitudinal Survey of Mature women provides a vaiuable data set for the investigation of recent trends in the structure of female work activity, including the growth of part-time work. It offers a quarter
of a century of detailed information on approximately 5000 female respondents 30 to 44 years of age in the first year (1967), and provides an important opportunity to explore the dynamics of work choices from midife to the eve of retirement for the entire sample and into the retirement period for a substantial subset of the sample during the time of this great transition. The study focuses on the 1967-1989 period at the end of which time the respondents were 52 to 66 years of age.

Major findings of the analysis include:

1) The most obvious trend in work-time structure over the 1967-1989 pexiod for the Mature Women's cohort is the life cycle shift from no work to full-time (full-time weeks and full-time hours per week) and then back again. The percent of all respondents who work full-weeks and hours rises from 27 percent in 1967 to 40 percent in 1977 before falling to 28 percent in 1989. Conversely the percent not working at all falls from 48 percent in 1967 to 39 percent in 1982 before rising again to 49 percent in 1989. There is also a major shift out of part-year/fullweek work and into full-year/part-week work between 1967 and 1972 that persists persists throughout the sample period.
2) Among employed women, the most obvious phenomena in this data are i) the life cycle sensitivity of part-year work (the midlife shift from part-year to full-year work and return) ; and ii) the secular increase in full-year/part-week status, which doubles between 1967 and 1977 (to 19 percent of all employed respondents).
3) Large and sustained differences in work-time structure exist across industries-istrong evidence that the employer's preferences are important. Manufacturing, for example, offers few part-time hours jobs. Ninety-three percent of all employees in that sector work full-time hours, though a significant share, 28 percent work less than forty weeks a year. This pattern is consistent with a great deal of specialized training and a relatively institutional work structure that admits iittle diversity. Conversely in the wholesale añd retail sector, 35 percent of all employees work less than 35 hours a week; in the professional sector 26 percent; and in personal services 47 percent.
4) Part-year work appears to be driven by seasonal and cyclical factors. Industries such as agriculture and manufacturing have large numbers of employed female workers who usually worked fuil hours but for less than forty weeks in the year. Agriculture, wholesale and retail, personal services, and the entertainment industries have the greatest number of "casual" jobs, those with part-year and part-week employment. This no doubt reflects strong seasonal factors. Among the larger employment
sectors, personal services and to a lesser extent wholesale and retail stand out as especially likely to offer part-time hours but full weeks.
5) At the individual level, the polar states-no work and full-time work-are quite stable over five year periods. Eighty percent of the nonworkers and two-thirds of the full-time workers were in the same state five years later. Among the various combinations of part-time states, part-year or part-week, only the full-year/part-week state was stable, with 40 percent of these found in the same state five years later. The other categories, especially casual work (part-year AND part-week), are transitory states, at least from a five year perspective. Only ten percent of the casual workers in the first period were casual workers five years later.
6) Casual work (part-time weeks and hours) would appear to be a stepping stone to more stable work commitments. Among casual workers in 1967, fifty percent were split more or less equally between full-year/partweek work and full-Year/full-week work in 1972. About one-third were not working. Conversely two-thirds of the respondents who were in casual jobs in 1972 were out of the labor force five years earlier. Few full-year workers return to casual, part-year and part-week, work.
7) Marital disruption increases labor market activity. It is natural to imagine that the withdrawal of the husband from the labor force would have the same labor market effect on the spouse as a marital disruption since the family income effect is the same in both cases-loss of husband's earnings. Such is not the case. Not only is the rate of entry into full-time work not increased with the departure of the husband from the work force, it shrinks. The likelihood that a respondent who is married with spouse present will be working full-time in 1989 is cut in half if the husband is not in the labor force. The_evidence is consistent with the hypothesis that this is due to greater home nursing demands on the woman.
8) Less work intensity in the pre-retirement years increases the early retirement rate. The average work withdrawal rate of the various parttime categories is twice that of full-time workers in the eariy retirement period. This is despite the limited pension coverage among part-time workers. Although there are significant year-to-year fluctuations in pension coverage, especially in the smaller work status categories, the general pattern is one in which the most casual employees (PYR/PWK) have only one fourth the coverage of the full-time workers (FYR/FWK). More interesting, perhaps, the FYR/FWK workers have coverage only modestly higher than the PYR/PWK workers, 28 percent versus 22 percent. In contrast, the PYR/FWK workers have coverage rates that, while less than full-time workers, are double those of the other PYR categories. Apparently a full work week is the crucial pension eligibility factor.
I. Introduction

The market work behavior of adult women in the united states has changed radically in the last several decades as a greater and greater share spend some time in the labor market. Despite this large time reallocation, comparatively little study has been devoted to the structure of the resuiting work activities or in changes in that structure. Important exceptions include the work of Hanoch (1980a, 1980b) and Blank (1988, 1989, 1990) on part-time work. In most studies part-time work is defined as a work week that is less than 35 hours. ${ }^{1}$ The rationale for characterizing the work environment with this measure is rarely specified. Certainly ie does not correspond to. the typical respondent's planning horizon. Viewed from a jonger time perspective, perhaps a year, "part-time work" could just as easily involve full time hours for a. Iimited number of weeks, Mellor and Parks (1988). In this paper I use both the hours and weeks dimensions of labor force activity to characterize the work activity of mature women, focusing on the long term dynamics of these activities. ${ }^{2}$

The National Longǐtudinal Survey of Mature Women provides a rich data set for the investigation of recent trends in the structure of female work activity, including the growth of part-time work. It offers a quarter of a century of detailed information on approximately 5000 female respondents 30 to. 44 years of age in the first year (1967), and provides an important opportunity to explore the dynamics of work choices from midifife to the eve of retirement for the entire sample and into the retirement period for a substantial subset of the sample during the time of this great transition. The
study focuses on the 1967-1989 period at the end of which time the respondents were 52 to 66 years of age.

The analysis first describes the hours/weeks experiences of the NLS Mature Women's Cohort from a demand and supply perspective. The panel aspect of the data is then exploited to describe the dynamics of the hours/weeks work structure. How stable is the hours/weeks work structure over long intervals of time? ${ }^{3}$ How does the composition of work activities change with changes in family circumstances, e.g. the maturing of her family, marital disruption, or the change in the labor foree status of her husband? What insights into the crucial market reentry process can be found in the patterns of job transitions? ${ }^{4}$

The paper proceeds in the following way. In section I' \mathbf{I} present a brief outline of the economic forces that mold the hours/weeks work decision. I also provide descriptive statistics on observed work hours and weeks worked per year among the NLS respondents. These data provide the framework for the consideration of the structural (joint hours/weeks) analysis that begins in section III. After characterizing various static aspects of the evolution of work structure, I turn in Section IV to consideration of demand aspects of this structure, including industrial differences in work status. In section V I develop the dynamics of hours/weeks work activity, including an assessment of major family changes on transition probabilities, concluding in section VI with some observations on the change in work dynamics during the early retirement period and the implications of earlier work structure decisions on the availability of retirement income.
II. Work Hours, Work Weeks, and The Labor Market

A. A. Brief Theoretical Overview

Demand and supply forces tend to be channeled through the labor market in a very special way. Jobs with specific attributes are set by the firm and workers choose the job with the attributes that they most value among the jobs available to them. The job attributes offered by the firm may be more or less rigidly set, depending on the advantages the firm can extract from the attribute. If the technology is flexible along dimensions important to the worker, the firm will tend to adjust its job demands in ways the worker finds attractive. If the technology is not flexible, it will be forced to pay higher wages to compensate the worker for unattractive job characteristics, Altonji and Paxson (1989).

The firm's demand for job characteristics such as part-time/full-time, defined either in hours per week or weeks per year, are set by the firm and its technological and product market circumstances. The need for specialized training will be a factor in both the hours and weeks decision, with the firm trying to limit hiring and training costs by having the worker put in more time with the firm. Hours per week will be affected by the nature of daily production in a goods producing firm and by access to customers in service producing firms. ${ }^{5}$ part-time hours may even be valued by the firm in the second case despite the additional fixed costs of training, payroll book-keeping, etc. The firm's demand for weeks per year may be determined by some of the same forces-ceteris paribus, high training jobs will tend to be full-year jobs-but is also likely to be strongiy affected by seasonal and cyclical variations in product demand and in cooperating factors.

The worker is likely to have preferences over the hours per week and the.weeks per year that characterize a "job". Ceteris paribus, she will accept a lower-wage for jobs that mesh well with child care demands in the household. In a daily framework that means she will prefer jobs that offer hours during the school day. In a weekly frame, she will prefer jobs that demand her time only during the school year. Child care demands introduce an important life cycle aspect into the woman's hours and weeks choices. As the woman ages, child care demands fall, which should induce not only more work but a greater demand for full-time jobs. Negative economic events in the household, most prominently marital disruption and husband's disability also may alter the type of job the respondents demand.
B. Work Hours per Week and Work Weeks Per Vear: Recent Trends

The calendar year is a natural planning horizon, even in the inaustrial world, and it is natural to imagine that the househoid might determine annual hours, not simply weeks per year or hours per week. ${ }^{6}$ Indeed hours and weeks become two parts of a planning vector in the annual framework adopted here. Nonetheless it will be useful to look at important aspects of these two dimensions of work activity separately. Before doing so however, a description of the data, the NLS Mature Women's Cohort is in order. The Data. As noted above, the NLS Mature Women's cohort is a panel survey that began with approximately 5,000 women between the ages of 30 and 44 at the time of the first interview in 1967 . These women have been reinterviewed every year or two through 1992, although data was available only through the 1989 survey at the time the bulk of the empirical work was undertaken for this study. In order to highlight long term processes, the analysis focuses on five year transitions over the twenty-two year period

1967-1989, neglecting shorter term fluctuations in employment status. In particular the study estimates work status transitions over the years 1967-1972-1977-1982-1987-1989. Extended face-to-face inteviews were conducted with respondents in each of these years.

Ali statistics in this paper are weighted by NLS population weights to correct for the initial sampling design, including an oversampling of blacks, and for differential attrition (comparable unweighted statistics can be found in the relevant statistical summaries that accompany this report). The frequencies reported in the various tables are normalized to the original population frequencies to give some idea of the number of observations underpinning the table data. Because of rounding error in the computations, the frequencies within a table will not necessarily sum to the total, although they should be close. The addition of entries across tables will not sum to the total and need not even be close. For example in the weighted transition matrices, the sum of the reported number of blacks and whites who exit a work state is not the total number exiting that state, even after adjusting for the small number of other races in the survey, because the weighted frequencies in the black and white tables are normalized by the raw numbers of blacks and whites in the survey, not the weighted numbers. The statistics by race add to the total. frequencies after the raw numbers of blacks and whites are appropriately weighted.

Work Hours per Week. In Table I I report the distribution of work hours per week for respondents at five year invervals for 1967 to 1987 arid in 1989. The hours pattern in 1967 is similar to those in later years. In 1967 relatively few respondents work less than a twenty hour week--10 percent in 1967--perhaps because of the fixed costs of work activities. Somewhat more, 15 percent, worked $\overline{2} \overline{0}$ to $\overline{3} 4$ hours, with three quarters working $\overline{3} \overline{5}$ hours or
more. The work hours distribution changed little over the 22 years of the sample. Between 1972 and 1987 , the fraction working full-time varied between 72 to 73 percent. Only in 1989 , as the oldest respondents reached traditional retirement ages, does the fraction working full-time fall to 68 percent.

The distribution of hours for employed respondents were remarkably similar for whites and blacks. In 1967 75 percent of employed white respondents worked 35 or more hours per week, 15 percent worked 20 to 34 hours per week, and 10 percent worked less than 20 hours. For black women the percentages are 72 percent, 16 percent, and 12 percent.-. By the end of the period (1989) the corresponding statistics for whites were 73 percent, I9 percent, and 8 percent; for blacks 74 percent, 17 percent, and 10 percent. In many ways the most remarkable feature of these statistics is the similarity in work hours, given the large differences in family structure and total family income between the two groups.

Blank has reported that work hours activities are quite stable over short periods, Blank (1989). The NLS data indicates that is the case over long periods as well. In Table 2, I report the work hours transition matrices for the five year interval 1967-1972 in total and by age groupings and race. Matrices for other periods are similar. Important definitions include:

Age $=1$		Cohort members who were $30-34$ in 1967
Age $=2$		Cohort members who were $35-39$ in 1967
Age $=3$		
Race $=1$		
Race $=2$		Race white
Race $=3$		Race black
Other races		

The transition matrix for the full sample reveals that 88 percent of fulltime employed workers (working 35 or more hours a week) in 1967 who were employed in 1972 were working full-time then as well. Among those working 20 to 34 hours per week in the first year; almost 60 percent were working full-time five years later, but 32 percent continued to work 20-34 hours per week. Among those on especially short hours (1-19), 33 percent continued to work 1-19 hours, 25 percent were working $20-34$ hours, and 42 percent were working full-time. Clearly there is a great deal of hours persistence even over a period as long as five years.

Weeks Worked. The second dimension of work activity examined here is the number of weeks worked in a year or more generally the percent of weeks worked in the interview frame. The first NLS survey collected weeks worked in the year prior to the interview and so has a standard 52 week framework for each individual. Subsequent surveys collected data on the weeks worked since the last survey and weeks since the last survey, which varies across the surveys on average, because some surveys were one year apart, others Ionger, and by individual, depending on when they were interviewed in each round. To provide a standard format For each year, the percent of weeks worked was computed as the number of weeks worked divided by the number of weeks in the survey time frame.

The distribution of weeks worked for the survey years 1967, 1972, 1977, 1982, 1987, and 1989 are reported in Table 3. The well-known bi-polarity of weeks worked is evident in all years-more than 80 percent of all respondents either did not work at all or worked more than three quarter of all weeks. The remaining 15 to 20 percent of the sample is almost uniformiy spread over the three intermediate categories-1-1-25\%, 26-50\%, and 51-75\%. There is also the expected life cycle pattern of increasing full-time work
and decreasing part-time work in the earlier years (through 1982) as the women return to the labor force as their children matire and require less child care and then withdraw again as they pproach or reach traditional retirement ages. Working some but less than 76 percent of all weeks appears to shrink over most of the sample period, although more strongly in the first time intervals. This observation is consistent with the argument that part-time weeks are a response to child rearing responsibilities.

There is a remarkable convergence of weeks worked between white and black females in the sample, Table 4 . In 1967 black women were working substantially more than their white counterparts. Forty-nine percent of black women, but only 35 percent of white women worked more than three-quarters of the weeks available. By 1989, the percentages were 40 percent and 41 percent for blacks and white respectively. In 196746 percent of whites but oniy 27 percent of blacks did not work at all. By 1989 the percentages were 44 percent for white and 47 percent for blacks. This convergence of work activity has occurred despite the persistence of large differences in education levels and average family income of the two groups.

There appears to be a great deal of change in work week intensity over long periods of time. The distribution of cumulative weeks worked over the period 1967-1989 is much less bipolar than are the individual year distributions, Table 5. The cumulative weeks worked measure is derived from the total weeks worked and the total weeks in the sample frame for the six surveys 1967, 1972, 1977, 1982, 1987, and 1989. Only 14 percent of the sample reported no weeks worked over this period; only 27 percent worked more than eighty percent of available weeks. The remaining sample members are more or less equally distributed over the intervening categories.

Work week mobility can be measured more directly using five-vear transition matrices. Focusing again on the 1967-1972 transitions, the fraction of weeks worked in 1972 is strongly, but imperfectly correlated with 1967 work rates, Table 6. The percentage not working in 1972 fell from 63.3 percent of those not working in 1967 to 29.9 percent among those who worked less than 25 percent of all weeks, and to 27.7 percent, 19.6 percent, and 10.9 percent as the 1967 work week commitment increases. Conversely. the percent working full-time in 1972 rises from 22 percent to 77 percent over the same range of 1967 categories. The transition matrices for blacks and whites are also quite similar. Again see Table 6.
III. The Evolving Structure of Female Work Time

Annual hours have both a week and an hours per week component and the brief analyses of the preceding section make it clear that the two need not proceed in lock step. ${ }^{7}$ Much useful structural information would be lost if we simply adopted an annual hours measure of work activity. We consider instead a four-way classification of jobs:

> PYR/PWK $=$ part-year and part-week work;
> PYR/FWK $=$ part-year and full-week;
> FYR/PWK $=$ full-year and part-week; and
> FYR/FWK $=$ full-year and full-week;
where:

$$
\begin{aligned}
\text { part-week }= & \text { work week of less than } 35 \text { hours; and } \\
\text { part-year }= & \text { weeks worked since last survey that is less than } \\
& 76.9 \text { percent }(40 / 52) \text { of all weeks available. }
\end{aligned}
$$

The decision to treat full year work as forty or more weeks per year is somewhat arbitrary but is designed..to include as full-time workers those who may have unpaid summer vacations, e.g. teachers.

Before turning to the analysis of the NLS Mature Women Panel, it will be useful to review population trends in work structure in this period. Mellor and Park (1988) compile such information over the 1966-1986 period using March CPS annual work experience data. They use as their definition of "part-year" work a work week of less than 50 weeks, so the magnitudes of the work structure measures are not strictly comparable to those reported here for the NLS panel, but the trends should be comparable.

WORK STATUS OF EMPLOYED WORKERS, WOMEN
PYR/PWK PYR/FWK FYR/PWK FYR/FWK

1967	19.5%	28.4%	9.9%	42.1%	100.0%	
1972	20.5	26.6	10.3	42.5	100.0%	
1977	-	21.8	25.0	11.1	$42.1 \ldots$	100.0%
1982	20.3	20.8	12.9	45.9%	100.0%	
1986	19.0	18.8	12.7	49.5	100.1	

Source: Mellor and Parks (1988, Table 1)
Summarizing these results, there has been a trend toward full-year, fullweek jobs, especially since 1982; there has been a large decline in partYear, full-week jobs; there has been a modest upward drift in full-year, part-week jobs; and no trend of note in the prevalence of part-year, partweek jobs. To the extent the NLS panel trends differ from these in a substantial way, the disparity is most probably due to iffe cycle effects.

The structure of female work-time, including nonworkers, is reported at each of the five year interval survey dates in Table $\overline{7}$. The most obvious trend in work-time structure over the 1967-1989 period for the Mature Women's cohort is the shift from no work to full-time work and then back again. The percent of all respondents who work full-time rises from 27 percent in 1967 to 40 percent in 1977 before falling to 28 percent in 2989. Conversely the percent not working at all falls from 48 percent in 1967 to 39 percent in 1982 before rising again to 49 percent in 1989. Clearly there are strong iffe cycie effects here. There is also a major shift out of part-year/full-week work and into full-year/part-week work between 1967 and 1972. This shift toward full-year/part-week work persists throughout the sampie period.

Table 7 reveals the high correlation of part-year and part-week work. Of those who work part-year in 1967, 36 percent (6.9\%/19.2\%) also work part-week. Of respondents who worked fuli-year in 1967, only 17 percent worked part-week. In 1972 the likelihood of part-week work was inigher for both year categories, but was again approximately twice as great for the part-year workers--46 percent versus 24 percent.

The data from Table 7 can be recomputed to provide estimates of the structure of work activity for working respondents, permitting a comparison with Melior and Parks' population figures:

All statistics are weighted.
Source: Table 7

Among the most obvious phenomena in this data are i) the life cycle sensitivity of part-year work (the midlife shift from part-year to full-year work and return) ; and ii) the increase in full-year/part-week status, which doubles between 1967 and 1977. (to 19 percent of all employed respondents). This cohort of employed female respondents were much more likely to hold jobs that offer regular employment at part-time hours in the later years of the survey.
IV. The Industrial Determinants of the Time Structure of Jobs

In this section I examine the demand side of the market, looking at the industrial correlates of the work-time structure of jobs. As discussed in Section II, employers are not necessarily indifferent to the work time of their workers. Both the weeks worked in the year and the hours worked in the week are jointly determined by the employer's and worker's preferences. To the extent the employer has rigid work time requirements that deviate
from the workēr's preferences, perhaps because of large hiring and training costs or of special attributes of the production process or customer base, she presumably compensates the worker. The work time structure will refiect the employer's preferences in this case. In situations in which the employer can cheapiy accommodate the worker's preferences, work time will instead reflect those preferences.

Large differences in work-time structure across industries is strong evidence that the employer's preferences are important, aithough industrial patterns couid emerge as the aggregation of different skill land labor supply) mixes. In Tables 8 through 10, I report the structure of work across one-digit industries for 1967, 1977, and 1989. Clearly there are major differences in work-time structure across industries. Manufacturing, for exampie, offers few part-week jobs. Ninety-three percent of all employees in that sector work full-time hours, though a significant share, 28 percent work less than forty weeks a year. Still sixty-six percent work full-hours and full weeks. This pattern is consistent with a great deal of speciaiized training and a relatively institutional work structure that admits littile diversity. Conversely in the wholesale and retail sector, 35 percent of all employees work less than 35 hours a week; in the professional sector 26 percent; and in personal services 47 percent.

Part-year work appears to be driven by seasonal and cyclical factors. Industries such as agriculture and manufacturing have large numbers of employed female workers who usually worked full hours but for less than forty weeks in the year. Agriculture, wholesale and retail, personal services, and the entertainment industries have the greatest number of "casual" jobs, those with part-year and part-week employment. This no doubt reflects strong seasonal factors. Among the larger employment sectors, personal
services and to a lesser extent wholesale and retail stand out as especially likely to offer part-time hours but full weeks.

Below I sumamize some key statistics in three industries that employ large numbers of mature women, namely manufacturing, wholesale and retail, and professional services.

WORK STATUS

$$
\text { PYR/PWK } \quad \mathrm{PYR} / F W K \quad F Y R / P W K \quad F Y R / F W K
$$

MANUFACTURING:

1967	3.1%	27.5%	3.7%	65.7%	100.0%
1977	2.5%	9.1%	3.9%	84.5%	100.0%
1989	4.9	25.1	5.5%	64.4%	99.9

WHOLESALE AND RETAIL:

1967	19.1%	22.0%	26.0%	42.8%	99.9%	
1977		11.1%	5.6%	29.5%	53.7%	99.9%
1989	17.9	9.3	29.7	43.2	100.1	

PROFESSIONAL:

1967	16.3%	24.8%	9.7%	49.2%	100.0%
1977	7.8%	5.4%	21.5%	65.3%	100.0%
1989	10.4	\ldots	15.9	19.8	55.9

All statistics are weighted.
Over the 1967-1989 period the relative employment share of manufacturing has fallen, while those of wholesale and retail and professional services, especially professional services, have increased sharply. Reviewing these statistics, one is struck by the life cycle volatility of part-year work: the shift out of part-time work in midiffe is quite large. The aggregate shift into full-year/part-week work (FYR/PWK) noted earlier is not evident
in all industries. Indeed in manufacturing, the work-time distribution changed very little between 1967 and 1989. In both the wholesale anc retail sector and the professional sector, however, there were large shifts from PYR/FWK to FYR/PWK. Indeed much of the overall shift toward full-year/partweek work status comes from these two sectors.
V. Individual Dynamics

The fact that there are pronounced differences in industrial work hours does not mean that the NLS respondents could not change their work commitments, but rather that they probably had to change jobs, if not empioyers, to do so. How stable are the work-time choices of these mature women? Perhaps even more important from a policy perspective is the behavior of new entrants to the job market. Must new entrants enter the market through part-time work, gradually working their way into full-time positions, or do they move directly into full-years and weeks jobs? Of special interest here is the importance of the hours/weeks distinction in job evolution. Seniority ruies almost insure that new entrants will work less weeks in a Year; even if they wanted to work full-time, they often can not. Hours are a quite different matter. Blank (1989) presents evidence that suggests workers do not use part-week work as a stepping stone to full time hours. We will take up the two issues in turn.

Five year work status transition matrices are reported in Tables II-I4 for 1967-1972, 1972-1977, 1977-1982, and 1982-1989 respectively. The work status transition tables are reported in total, by age and race. Recall again that i) Age=1,2,3 denotes women 30-34, 35-39, and 40-44 in 1967
respectively and ii) Race=1 denotes whites, Race $=2$ blacks. The Iarge number of parameters in these tables appears somewhat daunting at first, so it might be useful to focus on some key ones. For example the retention rates within each job status category, essentially the diagonal of the transition matrix, provide a measure of the stability of each work status category. These are:

Five Year Work Status Retention Rates 1967-72. 1972-77 1977-82 1982-87 AVE

Work Status:

NONE TO NONE	68.8%	77.2%	80.5%	89.6%	79.0%
PYR/PWK TO PYR/PWK	4.7	17.5	15.0	10.4	11.9
PYR/FWK TO PYR/FWK	12.2	6.2	12.8	15.9 .7	11.7
FYR/PWK TO FYR/PWK	32.5	38.7	41.9	\ldots	$43.4 \ldots$
FYR/FWK TO FYR/FWK	75.9	77.2.	77.3	66.1	39.1
All statistics are weighted.				74.1	

Work Status stability. Clearly the polar states, no work and full-time work, are quite stable over five year periods. Eighty percent of the nonworkers and two-thirds of the full-time workers were in the same state five years later. Among the various combinations of part-time states, part-year or part-week, only the full-year/part-week state was stable, with 40 percent of these to be found in the same state five years later. The other categories, especially casual work (part-year AND part-week), are transitory states, at least from a five year perspective. Only ten percent of the casual workers in the first period were casual workers five years later.

Where did the part-time workers go? The transition parameters are relatively stable across years and it may be safe to focus on one of them,
say 1967-1972, Table 11. Among casual workers in 1967, about one-third were out of the labor force. Another fifty percent were split more or less equally between full-year/part-week work and full-year/full-week work. In that sense casual work would appear to be a stepping stone to more stable work commitments. Certannly few of the full-year workers "return" to casual labor, defined as part-year and part-week work. Two-thirds of the respondents who were in casual jobs in 1972 were out of the labor force five years earlier (101/I68).

Job Entry. Given the importance of the entry process, it will be useful to consider the mechanism more carefully. How do those out of the market return? Is it directly into full-time employment or are they likely to secure part-year or part-weeks work first? One way to isolate the entry efEect is to compare the work-time structure of new entrants with the worktime structure of all employed workers. The work-time distribution for all employed respondents can be calculated by dropping the no work category in Table 7 and renorming the remaining entries. These are reported above but reported for convenience of comparison in Table 15, Panel A. Similar work status breakdowns for new entrants, those who were not employed five years before, can be constructed from the appropriate entries in Table 11-14. These are reported in Table 15 , Panel B. The distributions are quite different. Of those with a job in 1967 , almost two-thirds were employed in full-time (weeks and hours) work, while only 40 percent of new entrants were in such jobs. About one-third of all new entrants end up in full-year/partweek jobs, with the remainder to be found primarily in casual jobs. clearly entrants do not take a random draw of jobs, but enter disproportionately through part-time work, especially full year/part week jobs.

What can be presumed to be aging effects are also evident in the new entrant table. New entrants have a declining likelihood of full-time work as they age, with the percent entering full-time work steadily declining from 40 percent to 30 percent. This could be because the respondents want less intense work as they age or because they have trouble securing intense ones.

Although I have to this point stressed the stability of work-time status--for full-time work and no work and to a lesser extent full-year/part-week work--that should not disguise the substantial turnover that does occur between work-time categories. Between 1967 and 1972 , for example, more than 30 percent of the respondents who were out of the labor force in 1967 were working in some type of job in 1972 , about 12 percent in fuli-time jobs, Table ll. Of those in full-time work in 1967, almost one quarter were either in jobs limited in weeks or hours or not employed at all in 1972.

In the remainder of this section, I will consider several factors that may induce change in work status. Plausible hypotheses are easy to enumerate. Some are related to predictable Iife cycle phenomenon, e.g. the maturation of the children, freeing family time that would otherwise be absorbed in child care, and the withdrawal from the labor force at traditional retirement ages. Others-most obviousiy marital disruption or the onset of a disability that limits the husband's work opportunities-are random events, against which the respondent is often underinsured. All may alter the respondents' work-time patterns. I consider three of these in this section and the fourth, the retirement process, in the next.

Maturing Children. For most of the respondents, who were age 30 to 44 in 1967, child care responsibilities decline consistentiy and predictably
throughout the iife of the panel and it is reasonabie to conjecture that these women on average return to the labor force as the demands on their time at home shrink. The data on work-time structure by age of youngest child in 1967, Table 16, strongly confirms this conjecture. For respondents with children under two years of age, 72 percent were out of che labor force. Of the remainder, seventy percent were involved in part-time work of some type, with PYR/FWK the most popular option. Only 9 percent were in full-time (weeks and hours) work. By way of contrast, only 27 percent of respondents with no children were out of the labor force and more than half were working full-time. Full-time work systematically increases as age of youngest child increases. Almost 30 percent of the respondents with children 6 to 18 years of age were working full-time, a three-fold increase over respondents with the youngest child less than 2.

Marital Disruption. Marital disruptions often impose major finānćalal losses on respondents, which in turn are likely to stimulate greater labor force activity. The impact of marital disruption on changes in work activity between 1967 and 1.989 are reported in Table 17 . In this table, marital state is described by a zero-one dichotomous variable MSP equal to one if the respondent reports being married with spouse present, zero otherwise. In panel A of this table, the 1967-1989 work status transition matrix is computed in total and for the four possible marital transitions-married in 1967 and 1989 (MSP67/MSP89); married in 1967 but not in 1989 (MSP67/NMSP89); not married in 1967 and married in 1989 (NMSP67/MSP89); and unmarried in both years (NMSP67/NMSP89).

There is strong evidence that marital disruption does increase labor market entry. In 1989, 23 percent of those whose marriages were intact were in full-time work; of those with disrupted marriages 37 percent were in

```
full-time work. This pattern is evident for the entry rates into full-time
employment independent of initial work state forstable and disrupted mar-
riages:
```

 The Rate of Entry into Full-Time Work in i989
 By Work Status in 1967 and by Marital Status Transition 67-89
MSP/MSP MSP/NMSP
Work Status:

NONE

PYR/PWK
PYR/FWK
FYR/PWK

FYR/FWK

TOTAL
17.9%
34.0%
30.4
47.5
29.6
28.3
29.4
29.1
40.8
23.0
36.8

All statistics are weighted.

SOURCE: Table 17
Not oniy are respondents who were not working in 1967 more likely to be full-time workers in 1989, those who were already working full-time were ten percentage points more likely to stay employed full-time (4i percent versus 29. percent). The reverse holds for exit from the labor force. Respondents in stable marriages were slightly more likely to be engaged in part-time work of one type or another than were those in disrupted marriages.

Abstract

Labor Force Withdrawal of the Husband. It is natural to imagine that the withdrawal of the husband from the labor force would have the same Iabor market effect on the spouse as a marital disruption since the major economic effect is the same in both cases-loss of husband's earnings. Such is not the case, however, Table 17 . The behavioral difference between disrupted

marriages and stable ones with a nonworking husband becomes quite clear if we construct data comparable to that immediately above, describing the rate of entry into full-time work by work status:
The Rate of Entry into Full-Time Work in 1989
By Work Status in 1967 and by Transitions
in Husband's Work Status, $1967-89$
LFPH/LFPH
LFPH/NLFPF

Work Status 67:

NONE

PYR/PWK
PYR/FWK
FYR/DWK
FYR/FWK

TOTAL
23.6 늠
42.0
46.8
30.7
39.8
30.2
10.7 \%
15.9
17.0
28.0
20.6^{-1}
15.3

All statistics are weighted.
SOURCE: Table 17
Not oniy is the rate of entry into full-time work not increased, it shrinks. The likelihood that a respondent will be working full-time in 1989 is cut in half if she is married but the husband is not in the labor force.

This may partly resuit from complementarities in leisure between wives and husbands. If the husband withdraws voluntarily (retires), the wife may retire as well. A large number of labor force withdrawals at this age are not voluntary, however, but are due to the onset of a disability. What this suggests is the importance of wife nursing activities. When the husband is forced to withdraw from the labor force for reasons of poor health, the wife may find that the demands on her home time increase more dramatically than do the demands for her work time, Parsons (1977). The work differentials between married respondents whose husbands are in the labor force and those
who are not differ by age in a way that is at least consistent with the nursing hypothesis. At the younger ages, when the husband's withdrawal is most likely to be health related, the differentials are greatest. Among those 30 to 34 years of age in 1967 (52-56 in 1989), for example, the Iikelinood of a married woman being in full-time work is 39 percent among respondents whose husbands were in the labor force in both 1967 and 1989; among those whose husbands dropped out of the labor force between 1967 and 1989, only 30 percent were in full-time work in 1989. For chose 35-39 in 1967 (57-61 in 1989), the comparable statistics are 27 percent and 17 percent, but for those $40-44(62-66$ in 1989$)$ 12 percent and 8 percent respectively, for a differential of only 4 percent.
VII. Work Structure and the Retirement Mechanism

Abstract

Retirement Behavior. It is not clear a priori how work structure influences retirement rates. On the one hand, one could conjecture that part-time workers are less committed to the labor force and therefore are more likely to withdraw as they reach traditional retirement ages. On the other hand, one could imagine that part-time workers might find it easier to continue working into the retirement years. The five-year transition matrices for the 1982 to 1987 interval provide evidence on this question. The full tables are reported above in Table 14. Below I summarize the probability that the respondent will not be working in 1987 as a function of work status in 1982, in total and by the three age brackets, 50-54, 55-59, and 60-64 in 1987:

> Percent of Respondents Not Working in 1987 By Prior Work Status (1982) and Age in 1987

Age 87: : 50-54 55-59 60-64 TOTAL
Woris Status 82

NONE	85.1%	84.4%	96.2%	89.6%
PYR/PWK	31.1%	59.8%	51.4	46.9
PYR/FWK	20.1	--	24.4	67.1
FYR/PWK	14.6	19.9	34.3	38.5
FYR/FWK	7.7	17.1	30.4 .6	17.9
AII	33.8	46.1	64.3	48.8

All statistics are weighted.

The evidence supports the conjecture that less work intensity in the preretirement years increases the early retirement rate. The average work withdrawal rate of the various part-time categories is twice that of the full-time workers. Although the levels of not working are higher in each category than earlier transitions-by the age of 60 almost no female respondents were working who were not working five year previously--the basic structure of nonwork rates across work status categories is not much different than that reported for earlier transition matrices.

Pension Coverace. Pension coverage is closely but not perfectly linked with a more financially comfortable retirement and more loosely with eariy retirement. But pension coverage is not uniform across work environments. For exampie, it is well-known that pension coverage is much lower in parttime work situations, where part-time is defined in the usual manner of part-week work. But what of coverage across types of part-time work?

Beginning in 1977, a sumary question on the variety of fringe benefits available to the worker was asked periodically of members of the NLS Mature Women's cohort. Fortunately the fringe benefit question was asked in more or less identical form in each of the five year intervals following 1977. The question asks the respondent to identify from a flashcard the fringe benefits her employer makes available to her. Fox ail years except 198.9, one possibility is a "retirement program." In 2989 the response possibility was changed to a "retirement pension program." Detailed informarion on own pension coverage, including standard CPS pension coverage questions of the form Does your employer or union have a pension plan other than Social Security or Railroad Retirement benefits?" was collected for this cohort for the first time in 1979.) A comparison of the responses to the "retirement program" response to a standard CPS pension coverage question in the first five year interval year in which both questions were asked (1982) indicates a strong correspondence of the two questions. Of the respondents who answered YES to the CPS coverage question, all but 7 percent identified a "retirement plan" as one of the fringe benefits their employer offered. Of the respondents who answered No to the CPS question, only 8 percent identified a "retirement plan" as one of the fringe benefits their employer offered. See Table 18.

Tables 19 through 22 present pension coverage by work status for the survey years 1977, 1982, 1987, and 1989. The data for 1982 through 1989 include some not-employed respondents the fringe benefit questions are not limited to those currently working), but a more standard measure of pension coverage can be computed by dropping this group from the tabuiations. An important regularity of pension coverage by work structure emerges:

All statistics are weighted.
Although there are year-to-year fluctuations in pension coverage, especially in the smalier categories, the general pattern that emerges is one in which the most casual employees (PYR/PWK) have only one fourth the coverage of the full-time workers (FYR/FWK). More interesting, perhaps, the FYR/PWK workers have coverage only modestly higher than the $P Y R / P W K$ workers, 28 percent versus 22 percent. In contrast, the PYR/FWK workers have coverage rates that, while less than full-time workers, are double those of the other pyR categories. Apparentiy a full work week is the crucial pension eligibility factor. Of course pension coverage is quite distinct from pension receipt. A worker may leave the firm before her pension is vested. Many if not most of the part-year workers will have job separations that make chem ineiigible for pension payouts even though they are "covered" by a plan. In fact, of those respondents who were out of the labor force in 1989 , only 60 percent reported receipt of pension income in 1989, Table 23. Of course workers may be eligible for future payments, but not present ones, because many plans have age restrictions for payout. Pension receipt in 1989 rises to 72 percent for the oldest third of the sample, those who would be 62-66 years of age and eligible for pension payouts under most plans. Nonetheless low coverage rate for those who work a full-weeks but not full-hours is a source of concern, particularly given its growing incidence.

Abstract

The National Longitudinal Survey of Mature. Women provides a valuable data set for the investigation of recent trends in the structure of female work activity, including the growth of part-time work. It offers a quarter of a century of detailed information on approximately 5000 female respondents 30 to 44 years of age in the first year (1967), and provides an important opportunity to explore the dynamics of work choices from midlife to the eve of retirement for the entire sample and into the retirement period for a substantial subset of the sample during the time of this great transition.

Major findings of the analysis include:

1) The most obvious trend in work-time structure over the 1967-1989 period for the Mature women's cohort is the life cycle shift from no work to full-time (full-time weeks and full-time hours per week) and then back again. The percent of all respondents who work full-weeks and hours rises from 27 percent in 1967 to 40 percent in 1977 before falling to 28 percent in 1989. Conversely the percent not working at all falis from 48 percent in 1967 to 39 percent in 1982 before rising again to 49 percent in 1989: There is also a major shift out of part-year/fullweek work and into full-year/part-week work between 1967 and 1972 that persists persists throughout the sample period.
2) Among employed women, the most obvious phenomena in this data are i) the life cycle sensitivity of part-year work (the midiffe shift from part-year to filllyear work and return) ; and ii) the secular increase in full-year/part-week status, which doubles between 1967 and 1977 (to 19 percent of all employed respondents).
3) Large and sustained differences in work-time structure exist across industries--strong evidence that the employer's preferences are important. Manufacturing, for example, offers few part-time hours jobs. Ninety-three percent of all employees in that sector work full-time hours, though a significant share, 28 percent work less than forty weeks a year. This pattern is consistent with a great deal of specialized training and a relatively institutional work structure that admits little diversity. Conversely in the wholesale and retail sector, 35 percent of all employees work less than 35 hours a week; in the professional sector 26 percent; and in personal services 47 percent.
4) Part-year work appears to be driven by seasonal and cyclical factors. Industries such as agriculture and manufacturing have large numbers of employed female workers who usually worked full hours but for less than forty weeks in the year. Agriculture, wholesale and retail, personal services, and the entertainment industries have the greatest number of "casual" jobs, those with part-year and part-week employment. This no doubt reflects strong seasonal factors. Among the larger employment sectors, personal services and to a lesser extent wholesale and retail stand out as especially likely to offer part-time hours but fuil weeks.
5) At the individual level, the polar states-no work and full-time work-are quite stable over five year periods. Eighty percent of the nonworkers and two-thirds of the full-time workers were in the same state five years later. Among the various combinations of part-time states, part-year or part-week, only the fuli-year/part-week state was stable, with 40 percent of these found in the same state five years later. The other categories, especially casual work (part-year AND part-week), are transitory states, at least from a five year perspective. Only ten percent of the casual workers in the first period were casual workers five years later.
6) Casual work (part-time weeks and hours) would appear to be a stepping stone to more stable work commitments. Among casual workers in 1967, fifty percent were split more or less equally between full-year/partweek work and full-year/full-week work in 1972. About one-third were not working. Conversely two-thirds of the respondents who were in casual jobs in 1972 were out of the labor force five years earlier. Few full-year workers return to casual, part-year and part-week, work.
7) Marital disruption increases labor market activity. It is natural to imagine that the withdrawal of the husband from the labor force would have the same labor market effect on the spouse as a marital disruption since the family income effect is the same in both cases-loss of husband's earnings. Such is not the case. Not only is the rate of entry into full-time work not increased with the departure of the husband from the work force, it shrinks. The likelihood that a respondent who is married with spouse present will be working full-time in 1989 is cut in half if the husband is not in the labor force. The evidence is consistent with the hypothesis that this is due to greater home nursing demands on the woman.

Less work intensity in the pre-retirement years increases the early retirement rate. The average work withdrawal rate of the various parttime categories is twice that of full-time workers in the early retirement period. This is despite the limited pension coverage among part-time workers. Although there are significant year-to-year fluctuations in pension coverage, especially in the smaller work status categories, the general pattern is one in which the most casual employees (PYR/PWK) have only one fourth the coverage of the full-time workers (FYR/FWK). More interesting, perhaps, the FYR/PWK workers have coverage only modestly higher than the $\mathrm{PYR} / \mathrm{PWK}$ workers, 28 percent versus 22 percent. : In contrast, the PYR/FWK workers have coverage rates that, while less than full-time workers, are double those of the other

PYR categories. Apparently a full work week is the crucial pension eligibility factor.

Altonji, Joseph G. and Cristina H. Paxson, "Labor Supply Preferences, Hours Constraints, and Hours-Wage Trade-offs." Journal of Labor Economics 6 (April 1988): 254-276.

Blank, Rebecca M. "Simultaneous Modeling the Supply of weeks and Hours of Work among Female Household Heads" Journal of Labor Economics 6 (April 1988): 177-204.
\qquad . "The Role of Part-Time Work in Women's Labor Market Choices Over Time." AEA proceedings (May 1989): 295-299.

. "Understanding Part-Time Work", Research in Labor Economics 11 (1990): 137-158

Hanoch, Giora. "Hours and weeks in the Theory of Labor Supply." in James P. Smith, ed., Female Labor Supply. Princeton, N.J.: Princeton University Press, 1980. (1980a)
. "A Multivariate Model of Labor Supply: Methodology and Estimation." in James P. Smith, ed., Female Labor Supply. Princeton, N.J.: Princeton University Press, 1980. (1980b).

Mellor, Eā̄ F. and William Parks II, "A Year's Work: Labor Force Activity from a Different Perspective." Monthiy Labor Review Ill (September 1988): 13-18

Parsons, Donald O. "Health, Family Structure, and Labor Supply, "American Economic Review 67, September 1977, 703-712.

TABLE 1

The Distribution of Work Hours, the NLS Mature Women's Cohort 1967-1989

	Hours per Week			
	1-19	20-34	$35+$	TOTAL
1957	9.8\%	15.4\%	74.8\%	$\begin{aligned} & 100.0 \% \\ & (2756) \end{aligned}$
1972	10.7	17.1	72.2	$\begin{aligned} & 100.0 \\ & (2447) \end{aligned}$
2977	8.7	18.1	73.3	$\begin{array}{r} 200.1 \\ (2045) \end{array}$
1982	8.0	19.0	73.1	$\begin{array}{r} 100.1 \\ (1966) \end{array}$
1987	--..- 9.3	18.8	72.0	$\begin{array}{r} 100.1 \\ (14.73) \end{array}$
1989	11.9	19.9	68.3	$\begin{aligned} & 100.0 \\ & 11442 \end{aligned}$

All data are weighted.

TABLE 2
Rate of Entry into Full-Time Weekly Work Hours By Initial Work Hours for Workers Employed in Both Years. Time Intervais of Five and Twenty-two, 1967-1989

ENTIRY INTO FULL HOUR

The Percent of Weeks Worked, The NLS Mature Women's Cohort, 1967-1989

Percent of Weaks Worked

All data are weighted.

Unweightod	Weeks Worked (In Percent), 1967										
	0\%		1-25\%		28-50\%		51-75\%		78-100\%		$\underset{\mathrm{N}}{\mathrm{~N}}$
	N	Pct	N	Pct	N	Pct	N	Pct	N		
All	2078	40.9	352	8.8	372	7.3	348	6.8	1829	38.0	5077
Age											
A 1	712	44.2	121	7.5	135	8.4	198	7.2	528	32.8	1812
2	878	41.8	109	6.7	119	7.3	115	7.1	608	37.3	1625
3	690	37.5	122	6.8	118	6.4	115	6.3	795	43.2	1840
Race											
1	1655	45.9	239	8.6	229	8.4	228	6.3	1254	34.8	3605
2	387	27.9	104	7.5	137	9.8	108	7.8	649	46.9	1385
3	38	41.4	9	10.3	6	6.9	10	11.5	28	29.9	87

Weighted

	0\%		1-25\%		26-50\%		51-75\%		78-100\%		$\underset{\mathrm{N}}{\mathrm{~N}}$
	N	Pct									
All	2235	44.0	330	6.5	338	8.6	331	6.5	1845	38.3	5077
Age											
1	746	47.2	114	7.2	126	8.0	107	6.8	487	30.8	1581
2	763	45.2	104	6.2	104	8.2	116	6.9	601	35.6	1688
3	727	40.2	111	6.1	108	5.9	108	6.0	757	41.8	1808
Race											
1	2059	46.0	288	6.5	280	6.3	284	6.4	1561	34.9	4473
2	146	27.2	35	6.5	51	9.5	40	7.4	285	49.3	537
3	30	45.7	5	7.8	5	7.0	7	10.9	19	28.7	66

Weeks Worked (in Percent), 1989

	0\%		1-25\%		26-50\%		51-75\%		76-100\%		$\begin{gathered} \text { All } \\ \mathrm{N} \end{gathered}$
	N	Pat	N	Pct	N	Pct	N	Pct	N	Pct	
All	1348	45.7	148	5.0	157	5.3	118	4.0	1181	40.0	2951
Age											
1	287	29.4	43	4.4	56	5.7	44	4.5	547	56.0	977
2	431	44.8	50	5.2	50	5.2	40	4.2	392	40.7	963
3	630	62.3	53	5.2	51	5.0	35	3.5	242	23.9	1011
Race											
1	953	44.6	111	5.2	119	5.6	87	4.1	869	40.6	2139
2	379	48.8	32	4.1	36	4.7	30	3.9	298	38.5	775
3	16	43.2	3	8.1	2	5.4	2	5.4	14	37.8	37

Weighted
Weeks Worked (in Percent), 1989

	0\%		1-25\%		26-50\%		51-75\%		76-100\%		$\begin{gathered} \text { All } \\ \mathrm{N} \end{gathered}$
	N	Pct									
All	1312	44.5	148	5.1	154	5.2	118	4.0	1217	41.2	2952
Age											
1	268	27.9	42	4.3	55	5.7	45	4.7	552	57.3	962
2	434	44.2	52	5.3	51	5.2	39	3.9	408	41.5	984
3	609	60.6	56	5.5	48	4.8	35	3.4	258	25.6	1005
Race											
1	1162	44.2	138	5.2	141	5.4	104	4.0	1085	41.3	2628
2	137	46.8	12	4.2	12	4.2	13	4.4	118	40.3	293
3	13	43.6	1	3.0	1	2.0	2	5.0	14	46.5	30

Cumulative Weeks Worked, 1967-1989, By Age and Race ${ }^{\text {a }}$

	Cumuiative Weeks Worked, 1967-1989												
	0\%		1-20\%		21-40\%		41-60\%		81-80\%		81-100\%		AllN
	N	Pct	N	Pet	N	Pct	N	PCt	N	Pet	N	Pet	
Unweighted													
Al	330	13.4	345	14	320	13	427	17.3	378	15.3	668	27.1	2468
Age													
1	81	10.2	90	11.3	89	11.2	148	14.8	151	18	264	33.3	783
2	103	12.6	120	14.6	89	12.1	128	15.6	131	16	239	29.1	820
3	146	17.1	135	15.8	132	15.4	181	21.2	96	11.2	165	19.3	855
Race													
1	282	14.5	228	12.5	237	13.1	339	18.7	283	15.6	462	25.5	1809
2	64	10.2	415	18.3	78	12.4	85	13.8	89	14.2	196	31.3	627
3	4	12.5	4	12.5	5	15.6	3	9.4	6	18.8	10	31.3	32
Weighted													
Al!	344	13.9	317	12.9	309	12.5	450	18.2	387	15.7	662	26.8	2468
Age													
1	86	11.0	76	9.7	84	10.8	126	16.2	149	19.1	259	33.2	780
2	413	13.4	119	14.2	98	11.7	134	16.0	135	16.1	238	28.5	837
3	145	17.0	123	14.4	126	14.8	189	22.2	103	12.1	165	19.3	851
Race													
1	318	14.4	275	12.4	277	12.5	415	18.8	349	15.8	577	26.1	2211
2	22	9.4	40	17.1	28	12.1	32	13.9	35	14.9	76	32.6	232
3	4	15.8	2	9.9	3	12.9	3	10.9	3	12.9	9	37.6	25

a The ratio of reported weeks worked in 1967, 1972, 1977, 1982, 1987, and 1989 to the number of total weeks covered in these surveys.

Weeks Worked (in Percent),1967	0\%		1-25\%		26-50\%		51-75\%		76-100\%		$\begin{gathered} \text { All } \\ \mathrm{N} \end{gathered}$
	N	Pct									
0 \%	1224	63.3	112	5.8	63	3.2	108	5.6	428	22.1	1934
1-25\%	79	29.9	31	11.7	20	7.5	15	5.5	120	45.4	265
26.50\%	77	27.7	16	5.7	12	4.2	25	9.1	148	53.3	279
54-75\%	53	19.6	16	5.9	14	5.3	25	9.3	161	59.9	269
76-100\%	171	10.9	44	2.8	46	2.8	88	6.2	1207	77.1	1564
All	1604	37.2	219	5.1	154	3.6	271	6.3	2065	47.9	4312
Age $=1$											
0 \%	386	59.0	48	7.4	32	4.9	50	7.7	138	21.1	654
1-25\%	29	30.3	12	12.4	8	8.8	7	7.1	40	41.5	96
26-50\%	25	24.4	4	3.9	6	5.7	8	7.8	59	58.3	101
51-75\%	28	28.5	5	5.1	2	2.0	11	12.1	47	52.3	90
76-100\%	52	12.4	9	2.1	17	4.0	31	7.3	313	74.2	421
All	518	38.0	77	5.7	65	4.7	107	7.8	597	43.8	1363
Ages 2											
0 \%	384	60.8	43	6.9	17	2.6	33	5.2	155	24.5	632
1-25\%	25	28.8	9	10.6	3	3.4	6	6.7	44	50.6	87
26-50\%	24	28.0	4	4.8	3	3.1	8	8.8	48	55.3	86
51-75\%	12	13.3	7	8.1	5	6.2	10	11.7	53	60.7	87
76-100\%	56	11.3	9	1.8	16	3.2	25	5.1	388	78.7	493
All	500	38.1	73	5.2	43	3.1	82	5.9	687	49.6	1384
Age $=3$											
0 \%	454	70.2	19	3.0	14	2.2	25	3.8	134	20.7	647
1-25\%	26	30.7	10	12.4	9	10.5	2	2.6	36	43.7	83
26-50\%	28	30.9	8	8.7	3	3.6	10	10.8	42	46.1	92
51-75\%	16	16.9	4	4.3	7	7.9	4	4.3	61	66.7	92
76-100\%	63	9.7	27	4.1	13	2.0	42	6.5	506	77.7	652
All	587	37.5	68	4.4	47	3.0	83	5.3	780	49.8	1565
Race=1											
0 \%	917	63.1	81	5.6	47	3.2	84	5.8	324	22.3	1454
1-25\%	57	30.5	21	11.4	13	7.1	10	5.3	86	45.8	188
26-50\%	49	26.3	10	5.1	7	3.5	17	9.2	105	55.9	188
51-75\%	36	19.3	12	6.3	11	5.8	18	9.6	111	59.1	188
76-100\%	119	11.1	30	2.8	30	2.8	69	6.4	825	76.9	1073
All	1179	38.1	454	5.0	108	3.5	198	6.4	1452	47.0	3090
Race $=2$											
0 \%	201	65.2	24	7.7	11	3.4	7	2.1	67	21.6	309
1-25\%	21	27.4	11	14.7	2	2.9	7	8.8	35	46.3	77
26-50\%	42	37.7	8	7.2	5	4.5	10	9.0	46	41.5	110
51-75\%	18	21.5	3	3.9	3	3.0	7	8.0	53	63.6	84
76-100\%	61	10.5	18	3.2	19	3.3	30	5.1	450	77.8	579
All	343	29.6	65	5.6	40	3.4	59	5.1	652	56.3	1158

TABLE 7

The Time Structure of Work Activities, The NLS Mature Women's Cohort, 1967-1989

WORK status

	NONE	PYR/PWR	PYR/FWK	PYR/PWK	FYR/FWK	TOTAL
1967	47.78	6.9\%	12.3\%	5.6%	27.4\%	$\begin{gathered} 99.98 \\ (4697) \end{gathered}$
1972	40.4	4.5	5.3	12.1	37.7	$\begin{aligned} & 100.0 \\ & (3960) \end{aligned}$
1977	40.5	4.3	3.9	11.3	40.0	$\begin{aligned} & 100.0 \\ & (3282) \end{aligned}$
1982	39.4	5.3	5.1	10.8	39.3	$\begin{array}{r} 100.0 \\ (3137) \end{array}$
1987	49.1	4.6	5.7	9.5	31.1	$\begin{aligned} & 100.0 \\ & (2799) \end{aligned}$
1989**	49.0	6.2	7.3	9.8	27.6	$\begin{array}{r} 99.9 \\ (2698) \end{array}$

All data are weighted.

TABLE 8

Work Status by Industry, 1967

Work Status In 1967

Industry In 1967	Unwelghted								
	PYR/PWK		PYR/EWK		FYR/PWK		FYR/FWK		All
	N	Pct	N	Pct	N	Pct	N	Pct	N
AGRIC	28	40.0	28	40.0	3	4.3	11	15.7	70
MIN	-	-	2	33.3	1	16.7	3	50.0	6
CONS	1	8.3	2	16.7	4	33.3	5	41.7	12
MANU	20	3.4	170	28.9	22	3.7	377	64.0	589
TC\&PU	10	13.3	9	12.0	3	4.0	53	70.7	75
W\&R	87	17.5	116	23.3	73	14.7	222	44.6	498
FINAN	5	5.1	12	12.2	10	10.2	71	72.5	98
BUSE	9	20.0	12	26.7	6	13.3	18	40.0	45
PSER	79	19.7	57	14.2	123	30.7	142	35.4	401
ENTER	8	26.7	11	36.7	3	10.0	8	26.7	30
PROF	95	14.2	189	25.3	58	8.7	345	51.7	667
PUBA	7	5.6	28	22.2	11	8.7	80	63.5	126
ALL	349	13.3	616	23.5	317	12.1	1335	51.0	2617

PYR/PWK		PYR/FWK		FYR/PWK		FYR/FWK		All
N	Pct	N	Pct	N	Pct	N	Pct	N
15	31.6	21	45.8	2	4.0	9	18.6	46
-	.	3	44.0	0	4.0	3	52.0	7
1	9.1	3	18.2	5	32.7	6	40.0	14
20	3.1	181	27.5	25	3.7	432	65.7	657
13	14.8	11	11.9	4	4.6	62	68.7	90
107	19.1	122	22.0	89	16.0	238	42.8	557
5	4.0	15	12.8	10	8.5	87	74.7	117
8	15.5	14	26.0	7	14.0	23	44.5	52
51	21.8	35	15.1	58	25.1	88	38.0	232
9	22.9	15	38.9	4	11.1	10	27.1	38
111	16.3	169	24.8	66	9.7	335	49.2	682
6	5.1	29	23.7	11	9.1	77	62.2	124
346	13.2	617	23.6	282	10.8	1372	52.4	2617

Work Status In 1977

Industry$\text { In } 1977$	Unwalghted									Wolghted								
	PYR/PWK		PYR/FWR		FYR/PWK		FYR/FWK		$\underset{\mathbf{N}}{\mathbf{A l l}}$	PYR/PWK		PYR/FwK		FXR/PWR		FYR/FWK		$\underset{\sim}{\text { An }}$
	N	Pct	N	Pct	N	Pct	N	Pct		N	Pct	N	Pct	N	Pet	N	Pet	
Agric	0	36.4	3	13.6	5	22.7	6	27.3	22	5	29.0	2	9.7	3	18.3	8	43.0	18
MIN			.		.			100.0	2	.		.				2	100.0	2
CONS	2	10.5	3	15.8	4	21.1	10	52.6	19	3	10.7	4	17.4	5	23.1	11	48.8	23
MANU	8	2.2	34	9.4	13	3.6	308	84.9	363	9	2.5	35	9.1	15	3.9	323	84.5	382
TC\&PU	2	3.1	2	3.1	0	12.5	52	81.3	64	3	3.8	3	3.8	10	13.7	55	78.6	70
W8R	29	10.4	16	5.7	79	28.3	155	55.6	279	34	11.1	17	5.6	91	29.5	166	53.7	309
FINAN	2	1.8	3	2.5	22	18.0	95	77.9	122	3	1.8	4	3.0	28	19.6	108	75.6	142
Bust	3	6.4	7	14.9	12	25.5	25	53.2	47	3	6.8		17.1	11	23.1	28	53.0	49
PSER	20	10.8	10	5.4	88	47.6	67	36.2	185	19	16.8	7	6.1	43	39.1	42	37.9	110
ENTER			1	12.5	1	12.5	6	75.0	8			0	2.6	1	15.4	6	82.1	8
PROF	47	6.7	43	6.1	134	19.0	480	68.2	704	55	7.8	38	5.4	150	21.5	457	65.3	700
PUBA	6	5.0	6	5.0	9	7.4	100	82.6	121	6	4.7	8	6.4	10	8.2	100	80.7	123
All	127	6.6	128	6.6	375	19.4	1306	67.5	1936	139	7.2	126	6.5	368	19.0	1303	67.3	1936

Work Status by Industry, 1989

Work Status in 1989

	Industry In 1989	Unweighted									Weighted								
		PYR/PWK		PYR/PWK		FYR/PWK		FYR/PWK		$\underset{\mathrm{N}}{\mathrm{All}}$	PYR/PWK		PYR/FWK		FYR/PWK		FYR/FWK		${ }_{\text {AH }}$
		N	Pct	N	Pct	N	Pct	N	Pct		N	Pct	N	Pct	N	Pct	N	Pat	
	AGRIC	6	35.3	5	29.4	4	23.5	2	11.8	17	4	22.6	6	36.5	4	27.0	2	13.9	16
	MIN			1	25.0			3	75.0	4			1	30.3			3	69.7	4
	CONS	1	12.5	1	12.5	1	12.5	5	62.5	8	1	14.3	0	2.9	1	12.9	7	70.0	9
	MANU	8	4.3	46	24.5	10	5.3	124	66.0	188	10	4.9	51	25.1	11	5.5	130	64.4	202
	TCAPU	2	5.3	9	23.7	5	13.2	22	57.9	38	3	7.1	9	22.7	7	17.4	20	52.8	38
	W\&R	37	19.6	19	10.1	50	26.5	83	43.9	189	36	17.9	18	9.3	59	29.7	86	43.2	189
	FINAN	9	9.8	8	8.7	18	19.6	57	62.0	92	9	8.8	8	7.9	22	21.1	66	62.2	106
$\stackrel{ }{\circ}$	Busk	13	22.8	8	14.0	11	19.3	25	43.9	57	14	25.0	8	14.3	11	19.5	23	41.2	57
	PSER	28	20.1	16	11.5	55	39.6	40	28.8	139	21	21.7	13	13.6	30	31.5	32	33.2	95
	ENTER	5	41.7	1	8.3	4	33.3	2	16.7	12	6	40.6	1	8.9	5	39.6	1	10.9	14
	PROF	54	10.6	70	13.7	99	19.4	288	56.4	511	53	10.4	71	13.9	101	19.8	285	55.9	510
	PUBA	8	8.6	7	7.5	9	9.7	69	74.2	93	10	9.7	6	6.1	8	8.6	75	75.6	99
	ALL	171	12.7	191	14.2	266	19.7	720	53.4	1348	166	12.3	192	14.3	260	19.3	730	54.2	1348

Weighted

Work Status	None		PYRRPWK		PYR/FWK		FYR/PWK		FYRFWK		All
	N	Pct	N	Pct	N	Pct	N	Pct	N	Pct	
1967											
None	1221	68.8	101	5.7	61	3.5	170	9.6	221	12.5	1774
PYR/PWK	85	35.2	11	4.7	12	5.0	61	25.3	72	29.8	241
PYR/FWK	108	25.1	18	4.2	52	12.2	32	7.5	218	51.0	428
FYR/PWK	43	19.0	19	8.5	4	2.0	73	32.5	85	37.9	224
FYR/FWK	89	8.8	19	1.9	61	6.0	73	7.3	762	75.9	1003
All	1544	42.1	168	4.6	191	5.2	409	11.1	1358	37.0	3671
Agem 1											
None	388	66.1	50	8.6	24	4.1	67	11.4	58	9.8	587
PYR/PWK	28	30.2	7	7.1	6	6.0	29	31.2	23	25.6	92
PYR/FWK	43	30.7	3	2.4	15	11.2	10	6.9	68	48.8	138
FYRPWK	14	22.4	4	6.2	3	4.2	22	33.8	21	33.4	64
FYR/FWK	28	10.0	7	2.5	19	6.8	29	10.2	197	70.4	279
All	500	43.1	71	6.1	67	5.8	155	13.3	367	31.6	1160
Age=2											
None	383	67.0	31	5.3	17	3.0	52	9.0	89	15.6	572
PYR/PWK	32	38.4	3	4.0	2	2.8	14	16.5	32	38.3	83
PYRAFWK	28	20.2	2	1.4	19	13.7	13	9.7	75	55.0	136
FYR/PWK	15	21.3	5	7.1	2	2.6	22	31.4	27	37.6	71
FYRFWK	29	9.2	3	1.0	18	5.8	23	7.3	237	76.7	309
All	486	41.5	44	3.7	58	5.0	123	10.5	460	39.3	1171
Age $=3$											
None	450	73.2	20	3.2	20	3.2	52	8.4	73	11.9	615
PYR/PWK	25	37.3	2	2.6	4	6.6	19	28.9	17	24.6	67
PYR/FWK	38	24.7	13	8.5	18	11.7	9	6.0	76	49.1	155
FYR/PWK	13	14.5	10	11.3	0	0.0	29	32.7	37	41.5	89
FYR/FWK	32	7.7	9	2.2	24	5.7	22	5.4	328	79.0	415
All	558	41.7	54	4.0	66	4.9	132	9.8	530	39.6	1340
Race=1											
None	917	68.5	79	5.9	47	3.5	132	9.8	164	12.3	1338
PYR/PWK	60	35.9	5	3.1	9	5.3	43	25.4	51	30.3	168
PYR/FWK	72	24.4	13	4.5	36	12.1	23	7.9	150	51.4	294
FYR/PWK	29	20.0	13	9.1	3	2.2	45	30.7	55	38.0	145
FYR/FWK	61	8.8	12	1.8	43	6.2	51	7.4	524	75.9	690
All	1138	43.2	122	4.6	138	5.2	293	11.1	944	35.8	2635
Race $=2$											
None	198	71.5	10	3.4	7	2.4	19	7.0	43	15.6	277
PYR/PWK	27	35.1	9	12.4	3	4.1	19	24.3	18	24.1	78
PYR/FWK	45	30.0	4	2.9	12	8.1	8	5.5	81	53.4	151
FYR/PWK	18	16.2	7	6.4	1	1.3	46	42.8	36	33.4	108
FYR/FWK	34	9.2	10	2.8	18	4.8	27	7.2	283	76.0	372
All	322	32.7	41	4.1	41	4.2	118	12.1	461	46.9	984

Weighted

Work Status	None		PYR/PWK		PYRRWK		FYRPPWK		FYR/FWK		$\begin{gathered} \text { All } \\ \mathrm{N} \end{gathered}$
	N	Pct									
1972											
None	935	77.2	47	3.8	34	2.8	88	7.3	107	8.9	1210
PYR/PWK	31	25.4	22	17.5	5	3.8	30	24.6	35	28.7	123
PYRFFWK	41	26.9	3	1.8	9	6.2	6	4.1	92	61.0	151
FYR/PWK	66	19.6	27	8.1	11	3.2	130	38.7	102	30.4	335
FYR/FWK	119	10.5	18	1.6	49	4.4	71	6.3	874	77.2	1129
All	1191	40.4	118	3.8	108	3.7	325	11.0	1208	41.0	2948
Age $=1$											
None	266	69.1	22	5.6	15	3.9	34	8.9	48	12.5	385
PYR/PWK	9	15.9	12	21.7	0	0.0	12	22.9	21	39.6	54
PYR/FWK	15	23.4	0	0.0	5	7.2	3	5.3	41	64.0	64
FYR/PWK	16	13.5	9	8.1	4	3.8	51	43.5	36	31.1	116
FYRFWK	26	8.5	8	2.6	17	5.5	16	5.3	235	78.1	301
All	331	35.9	51	5.5	41	4.4	116	12.7	382	41.5	920
Age=2											
None	306	80.6	14	3.7	12	3.1	29	7.7	19	4.9	380
PYR/PWK	6	18.3	7	20.4	2	5.0	7	23.0	11	33.3	32
PYRFFWK	6	16.1	1	2.9	1	1.2	1	3.4	30	76.5	39
FYR/PWK	17	16.4	8	8.0	3	2.9	39	37.6	37	35.1	104
FYR/FWK	39	10.2	4	1.1	14	3.7	25	6.5	304	78.5	387
All	375	39.8	34	3.6	31	3.3	102	10.9	400	42.4	942
Age $=3$											
None	362	81.3	11	2.4	7	1.5	24	5.5	41	9.3	446
PYR/PWK	17	45.8	3	8.7	3	8.1	11	28.7	3	8.7	38
PYR/FWK	20	40.6	1	2.9	5	9.4	1	2.9	21	44.2	48
FYR/PWK	33	28.8	10	8.3	3	2.6	40	35.0	29	25.2	115
FYR/FWK	54	12.3	6	1.5	18	4.2	29	6.7	331	75.4	439
All	486	44.8	31	2.9	36	3.3	106	9.8	426	39.2	1086
Race $=1$											
None	689	77.2	37	4.1	25	2.7	64	7.2	78	8.8	892
PYR/PWK	23	25.8	16	17.8	3	3.7	22	24.1	26	28.6	90
PYRFFWK	30	27.5	2	1.9	7	6.1	4	4.0	67	60.5	111
FYRPWK	45	18.7	20	8.2	8	3.2	95	39.8	72	30.0	239
FYR/FWK	83	10.7	13	1.7	32	4.1	49	6.2	605	77.4	782
All	870	41.2	88	4.2	74	3.5	234	11.1	848	40.1	2114
Race $=2$											
None	200	79.5	3	1.0	8	3.3	17	6.8	24	9.4	252
PYR/PWK	7	25.4	1	2.4	1	4.8	9	33.7	9	33.7	27
PYRFWK	7	23.2	0	0.0	3	9.9	2	5.6	19	61.2	31
FYR/PWK	27	27.5	7	7.5	3	3.2	30	30.9	30	31.0	98
FYR/FWK	38	9.3	6	1.4	25	6.5	24	6.3	296	76.5	387
All	277	34.9	16	2.0	41	5.2	82	10.4	378	47.6	794

Work Status, 1982

Work	None		PYR/PWK		PYR/FWK		FYRPWK		FYRFWK		$\begin{gathered} \text { AlI } \\ \mathrm{N} \end{gathered}$
Status	N	Pct	N	Pct	N	Pct	N	Pct	N	Pct	
1977											
None	868	80.5	58	5.4	16	1.5	66	6.1	70	6.5	1078
PYR/PWIK	27	24.6	17	15.0	4	3.7	27	24.8	35	31.9	110
PYR/FWK	19	17.9	5	4.3	14	12.8	7	6.4	62	58.7	106
FYR/PWK	37	12.1	26	8.6	21	6.9	127	41.9	92	30.5	303
FYRFWK	98	8.8	24	2.1	77	6.9	54	4.8	859	77.3	1112
All	1049	38.7	129	4.8	131	4.8	280	10.3	1119	41.3	2709
Age ${ }^{1}$											
None	212	71.8	22	7.6	12	4.1	20	6.8	28	9.6	295
PYR/PWK	6	12.1	9	18.2	3	5.4	17	33.0	16	31.3	51
PYRFWK	7	17.0	3	7.2	8	17.8	2	5.7	22	52.3	42
FYR/PWK	9	7.9	8	7.2	11	10.1	40	35.8	44	39.0	112
FYR/FWK	22	6.2	4	1.2	27	7.6	21	5.7	287	79.3	361
All	257	29.8	47	5.5	61	7.1	100	11.6	396	46.0	861
Age $=2$											
None	283	80.5	26	7.5	2	0.4	22	6.2	19	5.4	351
FYRIPVK	13	35.1	3	9.1	1	4.1	6	16.6	10	30.8	34
PYRFWWK	6	18.7	0	0.9	1	2.0	2	6.1	22	72.2	30
FYR/PWK	14	14.2	9	8.7	4	3.7	47	46.9	28	26.5	100
FYRAFWK	23	6.5	9	2.6	22	6.2	10	2.7	296	82.0	361
All	339	38.7	48	5.5	30	3.4	86	9.8	373	42.6	875
Age=3											
None	372	86.4	9	2.1	2	0.6	24	5.6	23	5.4	431
PYR/PWK	8	28.9	4	16.5	0	0.0	5	19.9	9	34.6	26
PYRFWK	6	17.9	2	4.2	6	16.8	3	7.3	19	53.8	35
FYR/PWK	14	14.9	9	10.1	6	6.7	40	43.4	23	24.9	92
FYR/FWK	52	13.5	10	2.6	27	6.9	24	6.0	277	71.0	390
All	452	46.5	34	3.5	41	4.3	95	9.8	350	36.0	973
Race=1											
None	615	79.8	43	5.6	12	1.6	48	6.2	53	6.8	771
PYR/PWKK	18	23.2	11	14.3	3	4.1	20	24.9	26	33.4	79
PYRFFWK	12	16.8	2	2.7	10	14.4	5	7.0	42	59.1	71
FYR/PWK	27	12.4	18	8.6	16	7.8	88	41.3	65	30.2	214
FYR/FWK	67	8.7	16	2.1	52	6.7	39	5.0	599	77.5	772
All	739	38.8	91	4.8	94	4.9	199	10.4	784	41.1	1907
Race $=2$											
None	236	86.9	8	2.8	1	0.4	16	5.7	11	4.1	272
PYRPPWK	7	30.4	3	12.1	0	0.0	7	30.7	6	26.8	23
PYRFWK	10	23.1	6	12.7	2	5.4	1	3.2	25	55.6	45
FYR/PWK	9	12.1	8	10.0	2	2.1	41	52.1	19	23.8	78
FYRFFWK	34	10.0	8	2.4	25	7.3	14	4.0	281	76.3	343
All	297	39.1	32	4.2	30	4.0	78	10.3	322	42.4	760

Work Status, 1987

Work Status	None		PYR/PWK		PYR/FWK		FYRPWK		FYRFWK		$\underset{N}{\mathrm{~A}!}$
	N	Pct	N	Pct	N	Pct	N	Pct	N	Pct	
1982											
None	883	89.6	22	2.2	15	1.5	34	3.5	31	3.2	985
PYRPWWK	62	48.9	14	10.4	4	3.3	32	24.4	20	15.0	132
PYRFWK	49	38.5	11	8.9	20	15.7	7	5.8	40	31.2	128
FYR/PWK	63	22.6	38	13.5	7	2.5	121	43.4	50	18.0	279
FYRIFWK	183	17.9	26	2.5	98	9.6	39	3.8	674	66.1	1019
All	1241	48.8	111	4.4	145	5.7	234	9.2	815	32.0	2544
Age ${ }^{1}$											
None	204	85.1	4	1.9	3	1.3	14	5.7	15	6.1	239
PYR/PWK	17	31.1	10	17.8	3	5.6	13	24.2	11	21.2	53
PYRRFWK	11	20.1	6	9.8	11	18.8	4	7.6	25	43.6	56
FYRPPWK	14	14.6	12	12.2	3	3.0	45	45.8	24	24.4	98
FYR/FWK	28	7.7	5	1.4	34	9.4	15	4.0	281	77.5	362
All	274	33.8	36	4.5	54	6.6	90	11.2	355	43.9	809
Age $=2$											
None	273	84.4	12	3.7	11	3.5	11	3.3	17	5.1	323
PYR/PWK	30	59.8	3	5.8	1	2.8	11	22.5	5	9.0	50
PYR/FWK	6	24.4	2	6.6	6	24.4	0	1.3	11	43.2	26
FYRPPWK	19	19.9	16	16.6	1	1.5	38	40.8	20	21.2	94
FYRFWK	59	17.1	10	2.9	31	8.8	8	2.2	240	69.0	348
All	387	46.1	42	5.0	51	6.1	68	8.1	292	34.7	841
Age $=3$											
None	404	96.2	5	1.3	0	0.1	10	2.5	0	0.0	420
PYRJPWK	15	51.4	2	5.8	0	0.0	8	28.3	4	14.6	29
PYFJFWK	32	67.1	4	9.1	3	7.2	3	6.2	5	10.4	47
FYR/PWK	30	34.3	10	11.3	3	2.9	38	43.8	7	7.8	87
FYRAWK	94	30.4	11	3.5	34	10.8	17	5.4	155	49.9	311
All	575	64.3	32	3.6	40	4.4	76	8.5	171	19.1	894
Race=1											
None	614	89.2	15	2.2	11	1.6	26	3.7	23	3.3	689
PYR/PWK	46	49.0	10	10.4	3	3.6	22	23.3	13	13.7	94
PYR/FWK	37	40.6	9	9.6	14	15.7	5	5.9	26	28.2	91
FYR/PWK	43	21.7	28	14.1	5	2.5	85	43.0	37	18.6	198
FYR/FWK	130	18.2	17	2.4	69	9.6	25	3.4	473	66.3	713
All	870	48.7	79	4.4	103	5.8	163	9.1	571	32.0	1786
Race $=2$											
None	260	92.0	8	2.9	2	0.8	5	1.8	7	2.6	283
PYR/PWK	11	34.2	4	11.5	0	0.0	13	38.7	5	15.6	33
PYR/FWK	7	23.4	1	2.6	3	11.0	2	7.0	17	56.1	31
FYR/PWK	24	30.6	6	8.2	1	1.8	36	46.4	10	13.0	79
FYR/FWK	48	16.4	12	4.1	30	10.0	18	6.1	187	63.4	295
All	351	48.7	31	4.3	37	5.1	75	10.4	227	31.5	720

TABLE 15

The Distribution of Work Activities Conditional on Work Status Five Years Earlier The NLS Mature Women's Cohort, 1967-I987

Panel A
Work Status Distribution In T, Total
PYR/PWK PYR/FWK FYR/PWK FYR/FWK

1972	\cdots	7.6	8.9	20.3	63.3
1977	7.2	6.6	19.0	67.2	100.1
1982	8.8	8.4	17.8	65.0	100.0
1987	9.0	11.2	18.7	61.1	100.0

Panel B
Work Status Distribution In T Conditional On Not Being Employed Five Years Earlier

	PYR/PWK	PYR/FWK	FYR/PWK	FYR/FWK	TOTAL
1972	18.2%	11.1%	30.8%	40.0%	100.1%
1977	16.9	12.2	32.0	38.9	100.0
1982	27.6	7.6	31.3	-33.4	99.9
1987	21.4	14.7	33.5	30.3	99.9

All data are weighted.
SOURCES: Panel A, Table 7; Panel B, Tables 11-14.

By Age and Race
Weighted

Age of	None	PYR/PWK	PYR/FWK	FYR/PWK	FYRFWK	All
Youngest	N Pct	N Pct	N Pct	N Pct	N Pct	A

0-2	578	71.8	53	6.5	85	10.6	20	2.5	69	8.6	805
3-5	568	65.2	57	6.5	91	10.4	31	3.6	125	14.3	872
6-18	883	41.1	176	8.2	294	13.7	165	7.7	629	29.3	2147
$19+$	41	27.2	10	6.6	23	15.4	12	7.9	64	42.9	150
None	148	26.6	28	4.7	68	11.8	29	5.2	287	51.7	555
All	2217	49.0	322	7.1	559	12.3	257	5.7	1174	25.9	4530
Age=1											
0-2	311	69.4	33	7.3	52	11.7	16	3.5	36	8.1	448
3-5	255	61.2	32	7.7	50	12.0	14	3.4	66	15.7	416
6-18	169	35.8	51	10.8	74	15.7	31	6.5	147	31.1	471
$19+$							0	18.2	1	81.8	2
None	26	19.3	4	3.2	12	9.2	10	7.1	82	61.2	134
All	760	51.7	120	8.2	188	12.8	70	4.8	332	22.6	1470
Age=2 ${ }^{\text {a }}$											
0-2	190	73.3	18	6.8	23	8.9	3	1.2	25	9.8	259
3-5	182	66.1	18	6.5	26	9.5	11	4.2	38	13.8	275
6-18	318	42.6	59	7.9	98	13.1	56	7.5	215	28.8	747
$19+$	5	19.6	0	1.3	5	22.8	4	17.1	9	39.2	23
None	34	22.9	7	4.7	22	14.7	5	3.5	80	54.2	148
All	728	50.1	102	7.0	174	12.0	80	5.5	388	25.3	1453
Age=3											
0-2	79	77.8	2	2.4	11	10.6	2	1.7	8	7.6	102
3-5	132	72.5	8	4.1	15	8.4	6	3.1	22	11.9	183
6-18	392	42.6	66	7.1	122	13.2	77	8.4	265	28.7	922
19 +	37	29.0	10	7.8	18	14.1	8	6.1	54	43.0	126
None	88	32.2	15	5.4	31	11.4	15	5.3	125	45.6	274
All	729	45.4	100	6.2	197	12.3	107	6.6	474	29.5	1607
Race=1											
0-2	424	75.6	34	6.1	52	9.2	10	1.8	40	7.2	561
3-5	425	68.5	38	6.2	59	9.6	16	2.6	81	13.1	619
6-18	668	43.4	126	8.2	210	13.6	113	7.3	425	27.6	1540
$19+$	30	29.2	6	6.3	17	16.4	6	6.3	43	41.8	102
None	105	26.9	17	4.4	45	11.5	17	4.3	208	53.0	393
All	1652	51.4	222	6.9	383	11.9	163	5.1	797	24.8	3216
Race=2											
0-2	112	45.3	22	9.1	46	18.6	19	7.7	48	19.3	247
3-5	83	35.4	25	10.8	37	15.6	29	12.2	61	25.9	235
6-18	117	22.0	39	7.3	76	14.2	57	10.7	245	45.8	535
$19+$	10	16.0	5	9.1	6	9.9	10	18.0	29	49.0	60
None	36	23.0	11	7.1	25	15.7	21	13.4	64	40.7	157
All	358	29.0	104	8.4	188	15.3	138	11.0	447	36.3	1234

TABLE 17
Work Status Transitions, 1967-1989
By Marital Status and Husband's Activity

Yos	No
N Pct	N Pet

Yes	035	93.2	48	6.8	681
No	78	7.9	915	92.1	984
Don't know	36	63.2	21	38.8	57
All	750	43.3	982	56.7	1732
Age $=1$					
Yes	243	93.1	18	6.9	281
No	24	6.5	343	93.5	387
Don't know	13	54.2	11	45.8	24
All	280	42.9	372	57.1	652
Age $=2$					
Yes	187	94.7	11	5.3	208
No	28	7.8	308	92.2	334
Dort know	16	72.7	6	27.3	22
All	239	42.4	325	57.6	584
Age $=3$					
Yes	195	82.0	17	8.0	212
No	29	9.9	264	90.1	293
Don't know	7	63.6	4	36.4	11
All	231	44.8	285	55.2	516
Race $=1$					
Yes	421	94.6	24	5.4	445
No	58	7.8	688	92.2	746
Don't know	18	62.1	11	37.8	29
All	497	40.7	723	59.3	1220
Race $=2$					
Yes	210	90.9	21	9.1	231
No	21	8.9	214	91.1	235
Don't know	14	58.3	10	41.7	24
All	245	50.0	245	50.0	490

Pension Coverage in 1977

	Unwelgited									Weighted						
Work Status	No Pension		Pansion		Nat Employed		$\underset{\mathbf{N}}{\mathbf{N}}$	No Perision		Pension		Nat Employed		${ }_{\text {Al }}^{\text {N }}$		
in 1977	N	Pct	N	Pet	N	Pa		N	Pat	N	Pct	N	Pat			
Norse			1	0.1	1338	008	1360	-	-	1	0.1	1310	∞	1321		
PYRPPWK	88	84.6	16	15.4		.	104	85	821	21	17.9			118		
PYRFFWK	59	58.7	45	433	.	.	- 104	57	5. 2	48	44.8			104		
FYRPPWK	178	65.2	94	34.8	.	.	270	158	58.8	109	412			205		
FYRFWK	348	292	844	70.8		.	1150	325	27.0	878	73.0			1203		
Al	571	223	100	33.2	1338	44.5	3000	834	21.1	TCES	35.1	1318	43.8	3000		
Age $=1$ A 1																
None			1	0.3	375	80.7	378			1	0.3	373	80.7	374		
PYRPWWK	38	85.7	8	14.3			42	43	83.7	8	18.3			52		
PYRFWK	22	50.5	15	40.5	.		37	22	58.	15	41.1			38		
FYRPWW	57	0.3	36	30.7	.	\cdots	93	54	55.4	44	44.6			98		
FYR/FWK	128	322	269	878	\cdot		307	111	289	273	71.1			384		
All	243	25.7	327	34.8	375	30.7	845	231	24.4	342	382	373	30.4	945		
Age $=2$																
None					423	100.0	423					422	100.0	422		
PYRPPWK	26	78.5	8	23.5		.	34	27	74.1	9	25.9			37		
PYR/FWK	18	54.8	15	45.5			33	16	528	14	472			30		
FYRPWWK	60	71.4	24	28.6	-	-	84	52	652	28	34.8			∞		
FYR/FWK	104	28.1	295	73.9			350	101	24.7	307	75.3			407		
All	208	21.3	342	35.0	423	4.7	978	188	20.1	358	38.7	422	43.2	976		
None			,		537	100.0	537					525	100.0	525		
PYRPWWK	26	829	2	7.1	.		28	25	89.5	3	10.5			28		
PYRFWK	19	53.8	15	44.1	.		34	20	53.8	17	46.1			38		
FYRPWK	50	63.4	34	38.6	.	,	83	40	58.5	38	40.5			87		
FYR/FWK	116	29.3	290	70.7			398	114	27.7	297	723			411		
All	200	20.2	331	30.4	537	4.4	1088	208	18.9	355	328	525	48.3	1088		
None			1	0.1	970	98	871			1	0.1	5	80.	858		
PYRPPWK	72	83.7	14	16.3	.	.	86	71	821	15	17.9			87		
PYRFWK	39	5.7	31	44.3	.		70	40	57.1	30	428			70		
FYRPWWK	103	5.4	83	44.6	.	.	188	105	5.2	86	44.8			191		
FYRFWK	203	28.6	016	73.4	-		838	224	23.4	625	73.6			84		
None			;		350	100.0	350	$\dot{5}$				331	100.0	331		
PYRPWK	15	98.8	1	6.3			18	15	85.4	1	4.6			16		
PYR/FWK	19	57.6	14	424	.		33	20	45.3	24	54.7			44		
FYRPWW	08	88.1	11	13.0			78	53	86.1	9	13.9			62		
FYRFWK	121	38.1	214	63.9			335	118	326	243	67.4			300		
All	220	27.4	20	29.5	350	4.1	813	208	25.3	276	33.8	331	408	813		
None					18	100.0	18					14	100.0	14		
PYRPWW	1	50.0	1	500	.		2	2	51.9	2	48.1	14		4		
PYRFWK	1	100.0	.		.		1	0	100.0		4.1			0		
FYRPWWK	5	100.0			.		5	7	100.0				*	7		
FYRFWK	4	222	14	77.8			18	4	21.0					19		
An	11	25.0	15	34.1	18	40.8	4	13	30.3	17	38.2	14	31.5	44		

Work Status in 1982	Peramion Coverage in tise													
	Umanighted									Whighted				
	No Pention		Pencion		Not Employed		AM_{N}	No Penmion		Perabion		Not Employed		A
	N	Pct	N	Pet	N	Pet		N	Pet	N	Pet	N	Pct	
None	1	0.1	-	-	1205	000	1208	1	0.1	-	-	1205	90.8	1237
PYRPWKK	00	50.0	19	11.8	81	38.1	100	80	40	21	124	83	30.6	167
PYRFWK	47	20.4	33	225	77	48.1	100	50	312	30	20.4	77	43.3	160
FYRFWK	258	73.0	78	21.8	15	43	340	240	70.7	83	24.4	17	4.9	309
FYR/FWK	341	28.4	824	68.7	34	28	1190	327	28.6	887	70.4	38	3.1	1231
An	727	20.2	95	30.5	142	46.3	3134	689	223	1003	320	1433	45.7	3134
Age = 1														
None	-	-	-		324	1000	324	\cdots	-	-	${ }^{\circ}$	315	100.0	315
PYRIPWK	29	48.0	10	15.9	24	38.4	63	30	448	11	17.3	25	38.0	66
PYRFWK	24	353	17	25.0	27	30.7	¢	20	37.9	16	23.4	27	38.7	70
FYRPPWK	89	730	27	221	8	40	122	87	70.8	29	20.9	7	5.4	123
FYR/FWK	128	29.0	308	08.2	8	18	42	122	275	312	70.2	10	23	445
AM	270	28.5	300	35.3	380	382	1010	265	23.1	309	36.3	384	37.7	1019
Age $=2$														
Nore	1	0.3	-	-	385	¢0.8	304	1	0.3			392	80.7	320
PYRAPWK	31	525	8	10.2	22	37.3	50	31	50.0	5	8.8	23	41.4	62
PYR/FWK	11	30.6	8	22.2	17	472	33	10	29.0	7	21.8	17	43.3	34
FYRPPWK	81	71.1	30	28.3	3	28	114	72	670	32	20.9	3	3.1	107
FYR/FWK	114	27.5	277	88.7	15	3.7	403	108	28.0	289	70.8	14	3.4	409
AH	285	23.4	321	31.9	40	44.7	1008	200	219	334	33.2	452	44.9	1008
Age $=3$														
None	.	-	.	*	548	100.0	58	-	.	-	.	527	100.0	527
PYR/PWK	20	528	3	7.9	15	39.5	33	20	503	4	10.8	15	39.1	39
PYR/FWK	12	21.4	11	49.6	33	58.9	56	14	24.7	9	162	34	50.2	58
FYRPPWK	88	77.9	19	18.8	8	5.3	113	81	74.4	21	19.2	7	6.3	108
FYFFWK	102	28.8	241	68.1	11	3.1	354	89	282	205	702	13	3.5	378
All	220	20.0	274	24.7	013	55.3	1100	213	183	300	27.0	598	53.7	1109
Race $=1$														
None	1	0.1	.	*	874	99.9	875	1	0.1	-	-	884	09.0	805
PYRPPWK	54	45.8	15	127	4	41.5	118	54	432	15	13.0	48	408	118
PYRFFWK	35	30.7	22	103	57	50.0	114	34	30.8	22	19.4	58	40.7	112
FYRPPWK	165	69.0	62	25.9	12	5.0	239	168	63.2	61	25.6	13	5.2	240
FYR/FWK	224	28.4	588	70.5	27	3.2	850	205	26.2	009	70.7	27	3.1	881
All	479	21.8	688	31.8	1018	46.4	2188	481	21.8	707	322	1008	45.9	2188
Norv		${ }^{-}$.		371	1000	371					357	1000	357
PYRAPWK	25	84.1	3	7.7	11	28.2	39	28	058	3	8.2	12	27.9	42
PYRFWK	11	28.2	14	33.3	17	40.5	42	14	33.5	14	324	15	34.1	43
FYRPWK	91	84.3	14	13.0	3	2.8	108	78	822	15	15.3	2	2.5	95
FYRFWWK	113	34.1	211	63.8	7	21	331	106	29.9	238	67.2	10	2.9	354
All	240	28.9	242	27.2	400	45.8	891	226	25.4	200	30.2	396	44.5	801
None	-	.	-	-	20	1000	20	18	1000	18
PYRPPWK	1	33.3	1	33.3	1	33.3	3	2	40.1	0	11.8	1	30.0	3
PYR/FWK	1	25.0	.		3	75.0	4	1	35.7			2	843	3
FYRPWWK	2	100.0	-	.	.	.	2	2	100.0	,		.		2
FYR/FWK	4	202	14	77.8	-		18	5	25.7	15	74.3	-	*	20
All	8	17.0	15	31.9	24	51.1	47	10	21.4	15	328	22	45.8	47

Dension Coverage by Work Status in 1987 By Age and Race

Penaion Coverage in 18e?

	Unweiphted									Welghted				
Work Status	No Ponsion		Peneion		Not Employed		$\underset{\mathrm{N}}{\mathrm{~A}}$	No Parneion		Pention		Nox Employed		$\stackrel{\text { an }}{\mathrm{N}}$
In 1907	N	Pet	N	PCt	N	Pct		N	Per	N	Pa	N	Put	
None	15	1.1	3	0.2	1377	08.7	1305	10	0.7	3	0.2	1380	50.1	1373
PYRPWK	62	48.8	22	173	6	330	127	61	47.0	23	178	48	35.1	130
PYRFWK	31	20.1	44	28.6	79	51.3	154	30	18.8	45	23.6	83	525	158
FYRPWK	220	77.1	50	17.4	18	5.8	288	200	750	53	19.7	14	5.3	268
FYRFWK	25	30.6	583	67.6	15	18	833	2205	30.5	501	67.9	13	1.5	870
All	535	20.9	e82	24.4	1530	54.7	2797	585	202	715	25.6	1597	54.2	2787
Age $=1$														
None	8	28	1	0.3	305	97.1	314	5	18	0	0.1	2 H	98.0	297
FYRPWK	21	52.5	8	20.0	11	27.5	0	23	529	9	20.0	12	27.1	43
PYRFWK	17	28.3	25	43.1	16	27.0	58	15	235	29	40.1	18	30.3	84
FYRPWK	82	74.6	20	18.2	8	7.3	110	75	70.6	22	212	θ	8.2	105
FYRFWK	114	31.4	247	68.0	2	0.6	303	418	34.5	254	67.2	3	0.8	375
At	242	27.3	301	34.0	342	38.6	885	238	28.7	315	35.6	334	37.7	885
Age $=2$														
None	4	0.0	.	-	420	6.1	463	2	0.5	-	-	424	99.5	426
PYRPWWK	22	44.0	θ	18.4	18	38.7	4	21	43.1	9	178	19	39.0	49
PYRFWK	8	14.6	12	21.8	35	83.6	55	8	15.4	12	224	34	621	55
FYRPWK	63	77.8	16	19.8	2	25	81	5	735	18	24.3	2	22	75
FYRFWK	93	30.0	203	67.4	5	1.7	301	94	208	215	68.6	5	1.6	314
Al	180	20.7	240	28.1	480	53.2	818	181	18.7	$2{ }^{6}$	27.7	484	526	918
Age $=3$														
None	3	0.5	2	0.3	643	90.2	83	2	0.3	3	0.4	641	98.2	848
PYRPWK	18	50.0	5	13.2	14	30.8	38	17	46.8	8	15.4	14	38.8	37
PYRFWK	6	14.6	7	17.1	28	68.3	41	7	18.8	4	10.2	29	732	40
FYRAPWK	77	79.4	14	14.4	6	8.2	97	71	81.7	12	13.8	4	4.5	87
FYRFWK	48	23.4	113	68.	8	4.7	168	5	20.8	123	87.2	6	3.0	184
A ${ }^{\text {a }}$	153	15.4	141	14.2	600	70.4	963	151	15.2	148	14.9	694	68.9	880
Race $=1$														
Nore	4	0.4	2	0.2	880	80.4	886	5	0.5	2	0.2	900	89.3	975
PYRAPWK	48	48.9	17	18.1	31	33.0	9	4	47.9	16	17.7	32	34.4	93
PYRFWK	23	20.5	32	28.6	57	50.9	112	21	188	33	28.8	50	524	113
FYRPPWK	140	729	41	21.4	11	5.7	192	138	73.4	40	21.2	10	5.4	188
FYR/FWK	183	30.4	410	68.0	10	1.7	603	187	30.3	21	68.1	10	1.5	618
Alt	308	19.9	502	2.3	1089	54.8	1887	385	19.9	512	25.8	1078	54.3	1887
Race = 2														
Nore	11	28	1	0.3	377	88.9	330	10	28	1	0.2	303	97.0	378
PYRPPWK	18	48.5	5	15.2	12	38.4	33	15	40.1	7	18.3	15	0.5	37
PYRFWK	8	21.6	12	324	17	48.0	37	θ	23.2	12	31.7	18	4.1	30
FYRPWW	80	85.1	9	9.6	5	5.3	94	70	88.4	7	9.1	4	4.5	81
FYRFWK	67	30.9	145	88.8	5	23	217	73	31.2	157	672	4	1.6	234
All	182	23.6	172	223	418	54.0	770	177	23.0	185	24.0	408	50.0	770
Race $=3$														
Nore	.			.	20	100.0	20	.	.	,		19	100.0	10
PYRPPWK	.	.	-		- .				.	\cdot	-*	-	\square	- -
PYRFWK				\sim	5	100.0	5					3	100.0	3
FYRPWWK	2	100.0					2	2	1000					2
FYRFWK	5	38.5	8	01.5			13	6	390	9	e2.0			15
Al	7	17.5	8	20.0	25	625	40	8	19.7	-	23.0	23	572	40

Work Status in 1909	Pommion Covarage in 180															
	Unveighted									Welghted						
	No Pension		Pention		Nat Employed		$\underset{\mathrm{N}}{\mathrm{~A}}$	No Pernaion		Perasion		Nat Employed		${ }_{\text {A }}^{\text {N }}$		
	N	Pat	N	Pat	N	Pat		N	Pat	N	Pat	N	Pt			
Nore	5	0.4	7	0.5	1332	00.1	1344	5	0.4	8	0.8	1305	90.0	1319		
PYRPWK	84	4.1	47	9.	70	008	171	84	48.2	18	10.7	60	41.1	188		
PYRFWK	35	18.2	41	21.4	116	00.4	192	33	18.6	50	25.4	114	58.0	197		
FYRPPWK	188	70.7	ω	228	18	68	206	183	68.8	6	2388	18	7.3	285		
FYR/FWK	22	30.8	473	65.6	20	3.6	721	24	30.1	460	65.6	32	4.2	745		
Al	534	18.8	568	222	1582	58.0	2004	520	19.5	03	23.3	1540	57.2	2804		
Age = 1																
None	3	1.1	2	0.7	290	88.3	285	4	1.5	2	0.9	287	97.6	273		
PYRPWK	24	46.2	8	15.4	20	38.5	52	22	44.3	8	16.1	20	39.6	51		
PYR/FWK	18	23.2	22	31.9	31	44.9	69	15	20.3	24	33.9	33	45.8	72		
FYRPWWK	72	70.8	25	24.5	5	4.8	108	70	67.5	28	20.8	8	5.6	103		
FYRFWK	104	28.8	247	68.4	10	28	301	103	27.8	23	68.8	12	3.3	370		
Al	218	25.2	304	35.0	346	398	860	214	24.6	317	38.5	338	38.8	809		
Age $=2$																
None	1	0.2	3	0.7	45	80.1	420	0	0.1	3	0.8	423	90.2	427		
PYRPWWK	33	524	4	8.4	28	41.3	Q	30	50.1	4	7.4	2	425	50		
PYRFWK	14	21.5	14	21.5	37	56.9	es	13	19.5	∞	30.0	34	50.5	${ }^{68}$		
FYRPWW	46	58.2	28	35.4	5	6.3	70	40	58.5	29	389	4	4.8	78		
FYR/FWK	79	321	150	64.8	8	3.3	248	70	31.7	181	64.4	10	4.0	250		
Ad	173	19.6	208	23.6	501	58.8	88	188	19.1	218	24.7	46	50.3	882		
Age $=3$																
None	1	0.2	2	0.3	627	90.5	630	1	0.2	3	0.4	613	99.4	017		
PYRPWWK	27	48.2	5	8.8	24	429	58	29	40.5	6	0.6	24	40.8	59		
PYR/FWK	5	8.8	5	8.6	48	828	58	5	8.5	5	0.5	47	81.8	57		
FYPAPWK	70	824	7	8.2	8	9.4	85	68	80.5	6	7.4	10	12.1	84		
FYRRWK	38	34.2	67	58.8	8	7.0	114	43	33.8	74	58.9	9	7.3	126		
All	142	15.1	88	9.1	715	75.8	943	145	15.4	94	10.0	703	74.8	943		
Race $=1$																
None	4	0.4	6	0.6	940	89.0	950	4	0.4	7	0.7	991	88.9	941		
PYRPPWK	©	46.5	15	11.6	54	49.8	129	59	47.4	14	11.2	51	47.5	124		
PYRFWK	22	15.7	39	27.9	78	58.4	140	22	15.7	40	28.0	80	58.3	142		
FYRPPWK	132	¢9.8	43	228	14	7.4	180	132	00.1	44	23.2	15	7.7	182		
FYR/FWK	153	29.8	338	65.8	23	4.5	514	157	30.1	343	65.4	24	4.5	524		
Alt	371	18.3	41	229	1110	57.8	1828	375	18.5	447	23.3	1100	57.2	1822		
None	1	0.3	1	0.3	378	80.5	378	1	0.3	1	0.2	300	89.5	392		
PYRPWWK	23	56.1	2	4.8	16	39.0	41	21	550	2	5.8	15	30.1	38		
PYRAFWK	11	23.4	2	4.3	34	723	47	11	220	2	3.8	37	74.2	50		
FYRPWW	页	73.3	18	21.3	4	53	75	45	70.0	16	25.1	3	4.9	64		
FYRFWK	66	33.3	129	65.2	3	1.5	198	67	29.6	153	678	6	25	225		
Nore			.		16	100.0	18	.				18	100.0	16		
PYRPPWK	1	100.0	.				1	1	100.0					1		
PYR/FWK	2	40.0	.		3	00.0	5	1	47.6			1	58.4	2		
FYRPWK	1	50.0	1	50.0			2	1	408	2	59.2			3		
FYRFWK	3	33.3	6	68.7			0	5	41.4	7	58.6			11		
All	7	212	7	21.2	19	57.6	33	7	224	a	28.0	17	51.8	33		

```
Pension Coverage in 1982 and Pension Receipt in 1989 Among Those Out of the Labor Force in 1989, By Age and Race
```

ALL
Cross Tabulation of Pension Coverage in 1982 and Receipt in 1989 (Out of the Labor Force in 1989)

Pension Coverage in 1982	No		Pension Receipt in 1989					Weighted Yes		AllN
			Unweighted Yes		$\begin{gathered} \text { All } \\ \mathbf{N} \end{gathered}$	No				
	N	Pct	N	Pct		N	Pct	N	Pct	
Employed-No Pension	186	89.9	21	10.1	207	169	88.5	22	11.5	191
Employed-Pension	110	41.8	153	58.2	263	112	38.5	172	60.5	284
Not Employed	957	89.4	114	10.6	1071	948	89.0	118	11.0	1066
All	1253	81.3	288	18.7	1541	1230	79.8	311	20.2	1541
Age=1										
Employed-No Pension	54	98.2	1	1.8	55	52	96.8	2	3.2	54
Employed-Pension	30	69.8	13	30.2	43	32	68.5	15	31.5	46
Not Employed	231	98.3	8	3.8	240	228	95.8	10	4.2	238
All	315	93.2	23	6.8	338	312	92.2	26	7.8	338
Age 2										
Employed-No Pension	55	88.7	7	11.3	62	48	88.4	6	11.6	54
Employed-Persion	37	45.1	45	54.9	82	39	44.5	49	55.5	88
Not Employed	315	92.4	28	7.6	341	319	92.9	24	7.1	343
All	407	83.9	78	16.1	485	408	83.6	79	16.4	485
Age $=3$										
Employed-No Pension	77	85.6	13	14.4	90	70	83.5	14	16.5	84
Employed-Pension	43	31.2	95	88.8	138	42	27.8	108	72.2	150
Not Employed	411	83.9	79	16.1	480	401	82.8	83	17.2	484
All	531	74.0	187	26.0	718	513	71.4	205	28.6	718
Race $=1$										
Employed-No Pension	118	88.8	15	11.2	134	117	87.9	16	12.1	133
Employed-Pension	79	39.3	122	60.7	201	79	38.9	124	61.1	204
Not Employed	677	89.3	81	10.7	758	674	89.1	82	10.9	757
All	875	80.1	218	20.0	1093	870	79.6	223	20.4	1093
Employed-No Pension	66	91.7	6	8.3	72	60	92.6	5	7.4	65
Employed-Pension	31	51.7	29	48.3	60	36	46.2	42	53.8	78
Not Employed	265	89.5	31	10.5	296	252	88.5	33	11.5	285
All	362	84.6	66	15.4	428	348	81.4	80	18.6	428
Race=3 420										
Employed-No Pension	1	100.0			1	2	100.0			2
Employed-Pension			2	100.0	2			1	100.0	1
Not Employed	15	88.2	2	11.8	17	14	81.1	3	18.9	18
All	16	80.0		20.0	20	16	79.4	4	20.6	20

1. Hanoch (1980a,b) and Blank (1988) are exceptions. These studies explore both the hours and weeks dimensions of the work decision. Both conclude that the two dimensions have quite distinct determinants.
2. As Blank (1990) recently remarked, "There is very little research on the dynamics of part-time work over a worker's lifetime." Blank (I990, p.142).
3. Blank (1989) reports that hours per week are quite stable over relatively short time intervals, e.g. a year.
4. Blank concludes, "Preliminary current work indicates that part-time work among adult women is only rarely used as a stepping stone between nonemployment and full-time employment, but is instead used as an alternative either to full-time employment or to nonemployment, Blank (1990, p.142).
5. Blank characterizes the results of two employer surveys as revealing that "the primary reason firms hire part-time workers is to resolve scheduling problems. Firms with high weekly and daily variance in workload were most likely to employ part-time workers." Blank (1990, p.143)
6. Blank (1988) presents evidence of the "simultaneity" of the hours and weeks decisions.
7. See also Hanoch (1980a,b) and Blank (1988).

National Longitudinal Surveys (NLS)
 Discussion Paper Series

Number	Author	Title
01	Michael R. Pergamit	How the Federal Government Uses Data from the National Longitudinal Surveys
02	Norman M. Bradburn Martin R. Frankel Reginald P. Baker Michael R. Pergamit	A Comparision of Computer-Assisted Personal Interviews (CAPI) with Paper-and Pencil Interviews (PAPI) in the National Longitudinal Survey of Youth
03	Saul Schwartz Robert Hutchens George Jakubson	Dynamic Models of the Joint Determination of Labor Supply and Family Structure
04	A. Colin Cameron R. Mark Gritz Thomas MaCurdy	The effects of Unemployment Compensation on the Unemployment of Youth
05	Henry S. Farber	Evaluating Competing Theories of Worker Mobility
06	Frank L. Mott Paula Baker	Evaluation of the 1989 Cbild-care Supplement in the National Longitudinal Survey of Youth
07	Audrey Light Manuelita Ureta	Gender Differences in the Quit Behavior of Young Workers
08	Lisa M. Lynch	The Impact of Private Sector Training on Race and Gender Wage Differentials and the Career Patterns of Young Workers
09	Evangelos M. Falaris H. Elizabeth Peters	Responses of Female Labor Supply and Fertility to the Demographic Cycle
10	Anne Hill June E. O'Neill	A Study of Intercohort Change in Women's Work Patterns and Earnings
11	Arleen Leibowitz Jacob Alex Klerman Linda Waite	Women's Employment During Pregnancy and Following Birth
12	Lee A. Lillard	Work Experience, Job Tenure, Job Separation, and Wage Growth
13	Joseph G. Altonji Thomas A. Dunn	Family Background and Labor Market Outcomes

23.
24.

George J. Borjas Stephen G. Bronars Stephen J. Trejo

James J. Heckman Stephen V. Cameron Peter Z. Schochet
R. Mark Gritz Thomas MaCurdy

Alan L. Gustman Thomas L. Steinmeier

Audrey Light

Christopher J. Ruhm

Mark Lowenstein James Spletzer

Jacob Alex Klerman

Jacob Alex Klerman Arleen Leibowitz

Stephen G. Bronars Carol Moore

Donald O. Parsons

Self-Selection and Internal Migration in the United States

The Determinants and Consequences of Public Sector and Private Sector Training

Participation in Low-Wage Labor Markets by Young Men

Retirement in a Family Context: A Structural Model for Husbands and Wives

Transitions from School to Work: A Survey of Research Using the National Longitudinal Surveys

High School Employment: Consumption or Investment

Informal Training: A Review of Existing Data and Some New Evidence

Characterizing Leave for Maternity: Modeling the NLSY Data

Employment Continuity Among New Mothers

Incentive Pay, Information, and Earnings: Evidence. from the National Longitudinal Survey of Youth

The Evolving Structures of Female Work Activities: Evidence from the National Longitudinal Surveys of Mature Women Survey, 1967-1989

