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1) INTRODUCTION

In survey sampling problems data is usually
being collected on many study variables, some of which
(variables of primary interest) are positively correlated
with the sample design variable(s) and other variables
which are not (peripheral variates). A sample design
which is nearly optimal for estimating (via Horvitz-
Thompson, HT) the means of those variates which are
positively correlated with the design variable may be
extremely inefficient for estimating (via HT) means of
peripheral variates. This problem can be addressed by
post stratifying on one or more other variates which are
correlated with the peripheral variates being gathered
from the sample units. This paper describes a way of
building an estimator, which makes use of these other
sources of data together with the relationships between
these data items to reduce the error of estimates of
peripheral variate means.

The class of estimators to be built are

Response  Error,

generally multivariate and utilize data dependencies -

that can be captured in a covariance matrix. These
estimators minimize MSE in the presence of
nonresponse, response bias, and weak relationships
with the sample design variables. Since they directly
use the type of data dependencies that are exploited by
composite, Bayes, ratio, and regression estimation, they
can achieve, by default, the same reductions in mean
square error that these techniques also provide. The
same is true about nonresponse adjustment, the
information that is used to perform this operation is
also included in the estimation process.

A vector of finite population means (target
means) of the study variables (target variables) is to be
estimated under the following setup.

1) A sampling frame which identifies
members of the finite population and contains
quantitative data on a fixed set of characteristics
(auxiliary variables) for each population unit.

2) From this sampling frame, a sample is
selected. This sample may be selected by a known
randomization procedure, possibly a function of the
auxiliary data. A stratified, clustered, multistage
sample is the general rule.

3) For each member of the sample, some
subset of the target variables is observed and this subset
may vary from sample member to sample member
(item nonresponse). Let a; be the row vector of
auxiliary variables attached to the ith member of the
population and let t; be the row vector of target

variables attached to the ith member of the population.
Let y; = (a; , tj), then a; is known for all i€U (the
population), t; is unknown for all i not in the sample
(s), and for each ies some subset of the components of t;
is known and this subset varies from sample member to
sample member (item nonresponse).

4) Suppose it is appropriate to describe every
y; (whether its components are observed or not) in the
population as the outcome of a vector valued random
variable ,Y=(A,T), with mean p =(tp,u7) and
variance/covariance matrix £ . Thus the (y;} are the
outcomes of independent and identically distributed
random variables {Y;} , each distributed as Y~( i, Z).

Using only the data outlined in 1) through 3)
and data relationships described in 4), an estimator of
the target means ({) that minimizes expected squared
distance between itself and pr is constructed.
Expectation is over the distribution generated by the
distribution of Y (which can include the sampling
distribution and, if known, the response mechanism).

The solution described here is a direct
application of the Gauss Markov theorem. The
estimator is linear in the available data and unbiased in
the appropriate space.  With these constraints,
knowledge of second moments of Y (Z) will be enough
to construct a best (minimum variance) solution to the

. problem of estimating pp. This solution is also

Maximum Likelihood given the missing sample data
(see Little & Rubin 1987) and a fixed point of the EM-
algorithm.

In repeated surveys, Z may be estimated from
historical data and relatively stable over time as the
expected values of the targets and auxiliaries change. In
such cases, it may be appropriate to use this estimate of
Z as the actnal quantity. X may be derived from
superpopulation models, sampling distributions, or
combinations of both. The sample indicator function
and possibly the response indicator functions may be
treated as auxiliary (poststratification) variables. Using
sample and response indicator variables in this way
provides the sampler with a way to adjust for
nonignorable non response (& response bias) in cases
where the nonresponse mechanism can be given an
accurate stochastic description.

Result 1 in section 3 quantifies the effect on
MSE of deleting some of the target variables from the
data structure, described above for Y. Result 2 in
section 3 quantifies the effect on MSE of deleting
auxiliary variables from Y. The theory
presented here is applied in the Johnson, Woodruff
(1990) paper.
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2) BUILDING AN ESTIMATOR

a) An Example- Suppose, the problem is to
estimate the number of production workers and women
workers in a small industry. A simple random sample
of three of the 26 firms in this industry was selected but
the firms in this sample were less than cooperative.
Only one firm provided both the numbers of its
production workers (P) and its women workers (W),
one gave data on only women workers and one gave
only production workers. In addition, the total
employment (E) in cach firm in this industry is known
as is the matrix of variances and covariances for and
between the random variables describing total
employment (E), women workers (W) and production
workers (P). This sample data (outcomes of (E,W,P))
are:

E w P
1 92 35 71
2 90 4 -
3 85 - 75

The average employment in this industry is 76
and the variance/covariance matrix of (E,W,P) is:
205 131 170
131 101 120
170 120 190

Note that all three employment variables are
positively correlated. Employment (E) in this example
is the auxiliary variable and the pair, (Women
Workers, Production Workers) = (W.,P) are the target
variables.

Suppose (E,W,P) are approximately normally
distributed.  Since the average employment in the
industry is 76, the data on the variables of interest from
all three sample members are positively biased and
everything needed to compute the bias (conditional on
the known Employment data) in the observed values of
W and P for each sample member is at hand. These
biases (under normality) for a sample member are the
sample member's employment minus 76 times .64 for
W and times .83 for P (for example, the bias in W for
firm one is 10.24 and the bias in P is 13.28). The
coefficients, .64 and .83, come from the expression for
conditional expectation of the targets given the
auxiliary variable under multivariate normality. The
vector (.64, .83) results from multiplying the reciprocal
of the (1,1) component of the covariance matrix , 1/205
, by the row, (131,170).

Subtract these biases from the observed
measurements on the targets to get bias adjusted
observations.

Establishment W P

1 24.76 57.72

67.53

2 35.04
3 —

These bias adjusted variables are now more
appropriately thought of as outcomes of iid random
vectors with the target mean as their common expected
value and with a common variance/covariance matrix
that measures a smaller dispersion around this target
mean. This new (conditional) variance/covariance

(1729 1137 101 120
matrix s ( 2) as opposed 10 (120 190)

1137 49.0
prior to conditioning on E.

The responding item means of the adjusted
data would be unbiased estimates of the target means.
These target means may also be estimated by imputing
for the missing data items and taking the column
means of both adjusted and imputed data. This second
estimate of the target means would have a smaller
variance than the first. Finally, by applying the EM-
algorithm under normality to reimpute and reestimate
until convergence a third estimate is obtained with a
smaller variance than either of the two above. In this
example, this estimate under the EM-algorithm
converges to (30.288, 64.188). When the

* ' variance/covariance matrix is known (as in this

example) and must not be reestimated with each
iteration of the EM-algorithm, there is a direct closed
form solution that yields exactly the same result as the
EM-algorithm. This is done via the Gauss theorem on
minimum variance estimation by using the following
linear relation between the bias adjusted data and the

target mean, |1,
24.78) (1 0
st.72| [0 1
35.04 | |1 oFTTE
67.53) (0 1
17.29 1137 0 0
11.37 499.02 0 0
whereVar®= | 4 o 1729 o0
0 0 0 49.02
and E(g)=0.
Rewriting thisas ,Y = X1 +¢
where

Vare)= £, we get it =(X ZIx)lx -1y =
(30.288, 64.188)" , exactly as with the EM-algorithm.
The observed data maximum likelihood
estimator (MLE) as described in Chapter 7 of Little &
Rubin is, under normality, the GLS estimator,
it = (X 27'X)71x £71Y. This estimate is also a
fixed point of the EM-algorithm by the theorems in the
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theory section of this chapter. Thus the Normal EM-
algorithm with £ known will converge to the GLS
given above,

b) Generalization of the Example in a)-

There are two phases to estimation once the
set of appropriate target variables and auxiliary
variables has been determined. Phase ome is
poststratification on the auxiliary variables (using the
regression adjustments under conditionality). Phase
two is equivalent w imputation and estimation without
explicitly going through the computational rigors of the
EM-algorithm.

The available data on the population of
interest is represented as the partial ontcome of an
Nx(kg+k) matrix W of random variables. N= the
number of units in the population, k, = the number of
auxiliary variables, k; = the number of target variables,
and n= the sample size. The ith row of W contains the
random variables (auxiliaries and targets) associated
with the ith population unit.

By definition, the auxiliary outcomes are
known for all population units and the target variable
outcomes are observed only for sample units and, due to

nonresponse, we may observe only a subset of the ki,

targets for each sample unit and this subset varies from
unit to onit..

Let Y; = (A; , Tj), the i} row vector of W
containing the two random vectars A; , the 1xk, vector
of auxiliaries (outcomes kmown), and T;, the Ixkg

random vector of target variables, the outcomes of .-

which may be unknown (if i is not a sampie member)
or partially known if i is a2 sample member. From this
point on, redefine i slightly to denote only sample
members. i rans from 1 to n (the sample size) since
only sample members will be considered in what
follows.

The observed targets and all the auxiliary
variables for the it} sample unit are the components of
the realization of the random
vectar, Y = (A;j,Tix;i). where %; is the response
indicator matrix for the row vector of target variables
T; amtached o the ith sampie wnit. x; is constructed
from the identity matrix of order k; (the number of
target variables) by deleting each column j of this
identity matrix for which the ji target variable is a
nonresponse. Thus Y, contains the ith units’
auxiliary variables and only those target variables
observed for the i unit. Lemting I be the identity
marrix of order k, (the number of auxiliary variables)
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1 0
and xi:(o x.J' YY = (AnTixi), =
1
I 0
(A;. Ti)(o .)=(Ai- T )X;.
1

Let g model the difference between realized
and expected values of the components of Y” , then:

YP =(1a, HT)X+eie
All available information (population dara,
sampic data, and the stochastic relationships between
them) is summarized in a linear model:
o o o}
(ve. ¥§. ¥9.... . .¥°)=

(ka. vT)X1. X2, X3.... . ,Xn)

+(g7. €2, €3.... . .&q)
where  (21,£2,€3,...... £q )-N(O,ZYO )

X0 is the block diagonal marrix of he{X;' =X; },

and I is the covariance matrix of the vector , (A, T).
Writing this in compact form : YO=pX + ¢ where e
has mean zero and covariance matrix ZYO.
Now auxiliary variables are used to adjust for

the peculiarities of the realized sample (and possibly
response bias) This is done by post stratification on
the auxiliary variables, using regression adjustments.
Then by a procedure that is similar o imputation or the
EM-algorithm, the observed data items are used

compensate for missing data.
Ty X
Lete T=(_4A AT), where X 4 is
TA IT

the variance/covariance matrix of an A; , It is the
variance/covariance matrix of a T; , and ot is the
matrix of covariances between A; and T; . The
expected value of Yi=(A; , T;) is p=(}L ., L ), and by
definition L, is known. When Y is multivariate
normal the conditional properties of the multivariate
normal distribution are exploited to make inferences
sbout |l based on the conditional distribution of the
target variables given the amxiliary variables.
E(T)A =a)=p,+(a, -, )ZZ,,. The
expected valne of T; is influenced by it's associated
auxiliary outcomes A;=a;. This suggests that when a;,
H 4, and I are all known, the target data should be
translated as follows:
LezZi=[T,.—(A,.-uA)Z;'2A,.] . Then
the conditional expected value of Z; given A=a; is L,
, the quantity to be estimated. The {Z;] are centered on
K, and the dispersion of the {Z;} about |1, is tighter



by ,Z Z,; that is, the conditional
variance/covariance matrix of (Z;lA;=a;) is

The observed componeats of Z; (responses) are
separated from the unobserved components (non
responses) by post multiplying Z; by x; and in order to
avoid introducing another variable name, now let
Z= (T, = (A =R OZLE o i .0
then E(Z;lApD=H i and V(Z;lA))=
%2y - Zmz;lz.u')Xi =XiZ§X;. Letting 3; model
the difference between the realized and expected value
of Z;1A:

Z;= uyx;+5; and summarizing over all sample
units:

(Z1s Z2heer « Zn) =me(X1, X200- - %n)
+(81, 82,aoo . Sn)
or Z=p. %+ 5, .1D

where 8 has mean zero and covariance matrix I, ,
and £, is the block diagonal matrix of the (¥, Z,X; ),

(uIx 0 . . 0 )
0 NaZsX2 O . 0
= . 0 .
. . 0
\ 0 0 xnsz.u)
@),
From (2.1), the generalized least squares
(GLS) estimator for 1% is:

A =ZE70 (Z72)7 . The
variance/covariance matrix of fl,, is (YZ;'x')~.

This estimator seems to ignore the sampling
distribution. As explained in the next section, the
sampling distribution is often implicitly included in the
estimation process. Section 3 contains two results (or
theorems) which quantify the effect on bias and
variance of omitting target and auxiliary variables from
the construction of the estimator outlined above.

Let A=(A.1,A§), and T = (T1,72) be partitions

of A and T into subvectors. In this section, two results
are proved which, quantify the effect on MSE of
deleting the data on T~ from W and the construction of
the GLS for [ = E(T!) and the effect on MSE of

deleting the data on A2 from the construction of the

GLS for [l = E(T). Superscripts denote subvectors.
Bias and variance of the GLS estimators under

these two forms of reduced data structure are

evaluated with respect to the probability space that
these GLSs inherit from the stochastic structure on
(A,T) and all the data on these variates.
Definition1. A2 is redundant for estimating p if
and only if the conditional random vector, T given Al,
is independent of , A2 given Al
[(T1A")L(A*IAV)].
Definition 2. T2 is redundant for estimating ., if
and only if T2 given A, is independent of T! given A
[(T'IA)L(T?IA)].

This last definition is reciprocal, it also
implies that T! is redundant for estimating ., .
A target or auxiliary variable is redundant for
estimating a particular target mean if neither its
inclusion in nor omission from the construction of the
GLS has any effect on the estimator of that target
mean.
Definition 3. A variate (or vector of variates) that is
not redundant is called pertinent.

The next two results are the structure
theorems. Their proofs in the case of multivariate
normality are by direct computation and the Gauss (-

. Markov) theorem on minimum variance estimation.

Bias and variance of these "deleted” GLS estimators are
with respect to the full stochastic structure on (A,T), all
the data on these variates, and conditioned on the
known sample outcomes for A. The proofs below
depend on (and possibly clarify) this last statement.

» Result 1 - Deleting pertinent target variables, T2 from

W, will increase the variance of the components of
ﬁr‘m , the GLS for }l,r, compared to the variance of

the corresponding components of {1, and will have
no effect on their bias,

Proofof 1 _
a) By rearranging the components of Z, (2.1)
can be rewritten with block diagonal X-matrix as:

ol 2 X1 O 142
z=(z' Z%)=(n 3 13 )( 5 x22)+(5 8%) (31

where Z! contains only members of the first set of
target variables, T!, 22 contains only members of the
second set of targets, T2 , and the covariance matrix of

zZ, X
(81,82) s ( 11 12
Zy Zp
b) Note that by ignoring T2 in the construction
of (3.1) we would have:
Zl=p x,+8' (3.2)

where the variance/covariance matrix of §!
isX,, .

). a rearrangement of Z,.
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¢) The GLS for [, under 3.2)is [.,,,. Itis
linear and unbiased under (3.1). By the Gauss
theorem, the first T1 components of ﬁ.m are minimum
variance linear unbiased for Hn under (3.1).
Therefore, V( [15,,Q) < V(ﬁr'u) where Q is the
matrix of zeros and ones that picks out the Tl
components of ﬁ.m » V denotes variance of the
enclosed vector, and < is component by component
comparison.

Finally, since E( ﬁr‘u )= E(fin,Q) under
(3.1) , deleting targets has no effect on bias. END PF1.
Corollary -
An 0= ﬁr'u & Cov(T!,T?*1A)=0. This
corolla:y shows that the definition of redundant target
variable makes sense; when T2 is redundant, the
estimate of L., can borrow no strength from data on
T2,
Result 2, - Letfl , be the GLS for the mean of T

when the auxiliary variables in A2 are omitted from W
and the estimator construction described in the previous
secion. Conditional on A:(Al,Az),

Var(ﬁm) and ﬁn 4 is a biased estimate for the mean

of T, M. "2" is component by component
comparison.
Proofof 2
Let the variance/covariance  matrix of

(AT)=(ALAZT) be:

Zy Iy I
L=|Z, Z,, Z, | Then ignoring A2 and

Zn Ip Ip

conditioning on Al alone, the analog to Z; is Z,.' =

T; - (a: -H, )Z'{I’Z“. , where a: is the ith unit's
realized value for Al and M. is the expected value of
Al The variance/covariance matrix of Z; is
Zor —ZnZ[ Zr. The variance/covariance matrix,
Z,, given in (22) for the vector
has an analog for
Z'=(z,,2;,Z,,........ ,Z.), that is denoted
Z,., and is given by (2.2) with
Z,=X,.=Z;—Z,Z Z,;. Conditioning on
both subvectors of A, T; transforms to Z; by subtracting
the following expression from T;.

Var(f, o2

L,
- ? 1 12 1T
[(ai u-al )a (al a2 )][221 222 ] [221']

R )ENZyr +(a} — 1, )GFG Iy
-(a} —Ha )JGFZ,p - (ai —H,. )FG' Z,;

2
+(a; — K. )) I
whereG =L, %, F = (2, —E,E3%,,)7 . 0
denotes transpose, and aiz and K. arc defined
analogously to a§ and L ,. Thus the difference in bias

—fal
= (ai

adjustment between conditioning on A and
condmonmg on Al alone is given by:
Diff, = (a} - i, )JGFG' ;; — (a} —p, JGFE,; -
(al —HIFG Iy + (al - Ha)FZy =

Z;-Z,

Conditioning on both Al and A2 Diff; is the
bias in Z; when A2 is ignored. Let D =
(Diff, %, , Diff, X5 5eeeenenneee Diffnxn) then, after
deleting the nonresponses from Z; and Z see 2.0)
and forming Z and z*

Z*=Z +D. The GLS given both Al and A2 is:

fima =ZZ7% (XZ7%' )™, and the GLS ignoring
« Agis:

e =(Z+D)ZZX (XZ7x')7'=

ZE A () +DERY (RESx) T =

ZE 2y (xE2x' )™ +BIAS, where
conditional on both A1 and A2, BIAS is the constant
DE; y A (xZ; )™ The variance/covariance
matrix of ﬁm‘ given A is the variance/covariance of
ZX7X' (XE2%')™ conditional on A=(A1,A2), and
this matrix is
(XX )7 KT LT X (XXX

rm-by- the
=7 xZ" I (XT2x')7 is greater
than the diagonal of (sz Y, the
variance/covariance matrix of fly,, . This inequality
follows because {1, is the GLS conditional on A and

'Y . Note that
d:agonal of
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Zz X' (xZ5X' ) is linear and unbiased.

Thus MSE(fl_,,) =
A X ) AEL TN (O x) 7+
(BIAS)'(BIAS)

and the diagonal elements of the first term in this MSE
are greater than the corresponding diagonal elements of

Var(flp,)-

END Pf2
ZZ;1 X (xz; ')~ in the above proof is an unbiased
estimate of the mean of T but, conditional on
A=(A1,A2), this estimator has less than optimal weight

) —1,,0 -1

vectors, X7.X (XZ,X')". and thus a larger
variance than ﬁ,“ Al GLS estimators are generally
robust against misspecification of the optimal weight
vectors, T (XZ7 %' )" . In these cases, the
increase in MSE due to omitting pertinent auxiliary
variables is dominated by bias and the additional
variance due to using the wrong weight vectors is
relatively negligible.

Corollary -  Diff; =0 & Cov[(A2,T)IA1}=0. Thus
the definition of redundant ( not pertinent) auxiliary
variable at the beginning of this section makes sense.

In summary, target variables control variance
and auxiliary variables control mostly bias. There are
three ways to reduce variance: increase the sample
size, increase the number of pertinent target variables
in T, and increase the number of pertinent auxiliary
variables in A. Increasing the number of pertinent
auxiliary variables can reduce bias.

If one includes target or auxiliary variables in
the data structure (data matrix, W) that are redundant
for a particular target mean, then the GLS estimator of
that target mean is algebraically identical to the GLS
estimator derived from the data structure, W, that
excludes them but in every other way is the same. This
means that there is no penalty (except possibly
computer time) for including unnecessary (redundant)
variables in the data matrix, W. In particular, the
sampling distribution may be included in the estimation
process by using the sample indicator function as an
auxiliary variable, but in many common situations it
will prove to be redundant. Many estimators which
seem to ignore the sampling distribution implicitly use
it through other auxiliary variables in the data matrix
that already contain all the pertinent information that
the sample indicator provides.

The observed data maximum likelihood
estimator (MLE) as described in Chapter 7 of Little and
Rubin 1is, under normality, the GLS estimator,

fu=ZZ7x' (xZ7'x')'. This estimator is also a
fixed point of the EM-algorithm (see theorems in the
theory section of that chapter). Thus the Normal EM-
algorithm with I given, will converge to this GLS.
The GLS estimator contains it's own nonresponse
adjustment by default.

5) CONCLUSIONS

Although the sampling distribution is a
necessary part of inference from sample survey data, it
is rarely sufficient because of many features of applied
sampling. These features include nonresponse,
response bias, and data relationships that make applied
sampling a multivariate discipline where univariate
methods generally fail to produce optimal inferences.
In spite of this, sample survey inference has remained
largely univariate with an encyclopedia of corrective
techniques to handle these negative features of sample
data.

This paper discussed theory and applications
of multivariate methods for estimating finite population
mean vectors assuming data deficiencies like
nonresponse (both item and total, ignorable and
otherwise) and response bias, but exploiting data
dependencies modeled by the covariance matrix of
survey variables (both design and target variables).
These data dependencies are used to minimize mean
square error in the presence of the data deficiencies.
The estimator so derived automatically handles many
missing data problems that practitioners face by fully
exploiting known data dependencies. Its use is
indicated in repeated surveys where nonresponse is a
problem and strong data dependencies are present.

The theory presented here is at least two
centuries old, Gauss (1809). Sampling theory is much
newer; its standard methodologies work and can be
applied with primitive computational aids (say 1950s
technology). The material presented here would have
been totally impractical in 1950 but in the 1990s the
computer revolution has made Gauss' methods quite
practical. Present day computers allow instant
availability of huge supplementary data bases and the
computational power to make short work of complex
estimators. The estimation process described in this
paper is applied in Johnson and Woodruff (1990).
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