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1. Introduction

Classification is ubiquitous throughout the survey process. Most analyses require that
respondents’ experiences, opinions or knowledge be assigned to categories in order to be
treated as data. Sometimes this is done by the respondents themselves. For example, when
counting their expenditures for a particular product category -- perhaps “meals in
restaurants” -- respondents must first determine if individual purchases involve members
of that product category -- should “going out for dessert” be figured in the response?  On
other occasions, data are classified by the interviewer. For example, the interviewer might
need to indicate whether the respondent lives in an “apartment building”  or “private
home.”  On still other occasions, classification is carried out by classification specialists,
sometimes called “coders,” who assign open-ended statements, for example about work or
educational background, to categories in a formal classification scheme, such as an
occupational or field of study classification system.

By assigning open-ended responses to a category, the researcher is essentially signaling
that they share certain critical features. This allows researchers to aggregate the responses
and produce summary statistics, even if the responses differ from one another in some of
their features. In principle, a response can be uniquely associated with a single category,
though, in practice, the ambiguous mappings between responses and categories is one of
the factors which makes the classification process challenging.  Reliability between coders
is not perfect, and the agreement rates can vary from one category to the next (Cantor &
Esposito, 1992).

When responses are relatively short -- just a few words in length -- they are typically
classified by coding clerks, some time after the data have been collected. The clerks either
do this manually or with computer support, such as on-line coding manuals or software
that suggests possible categories (codes) from which the clerk must select one.  In some
survey operations, the computer actually assigns codes to responses, though in even the
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best of these systems, some responses still need to be coded clerically. Computer support
for classification tasks has been justified on the grounds that, relative to manual coding, it
makes the process more reliable, makes additional resources available to the coder, and
does so without increasing costs (e.g. Andersson & Lyberg, 1983).  Whether they are
coded manually, automatically or by some combination of the two, simple, open-ended
responses are usually classified by looking up the response in a dictionary where it is
associated with a small number of codes -- possibly a single code.

Some surveys involve more complex classification which is based on large numbers of
variables, possibly elicited through unscripted dialogue with a respondent. These tasks are
performed by professionals who have acquired expertise in the relevant subject area. They
investigate hunches (classification hypotheses) by looking for relevant evidence much as a
detective would. Because many factors are potentially relevant, they focus on just those
factors that, experience tells them, promise to help in making the decision. The kinds of
data required for these decisions may vary between categories.  For example, the
difference between a “material handler” and a “fork lift operator” may depend on the
equipment they operate but the relevant criterion for distinguishing an “optometrist” from
an “ophthalmologist” is more likely to be their education and certification, though
equipment could be pertinent as well.  The current chapter is concerned with this kind of
classification expertise and a type of software that can support such tasks, expert systems.

We have developed two prototype expert systems that model classification tasks of this
sort performed at the Bureau of Labor Statistics (BLS) and will use them throughout the
chapter to illustrate general concepts about expert system technology in the survey
process.  In the next section (two), we review recent research and development in
automated coding.  By and large this work has been applied to the classification of short,
open-ended responses and so contrasts with our work using expert systems.  The
following section (three) presents some of the basic concepts of expert system technology
and discusses why expert systems are appropriate for a more complex classification. Then,
in the fourth section, we describe the prototype expert systems.  The section is intended to
characterize the kinds of tasks for which this technology is appropriate. In the fifth
section, we present representative results from an evaluation study and discuss some of
the practical considerations of developing this kind of software in survey organizations.

2. AUTOMATED AND COMPUTER-ASSISTED CODING

Since the late 1970s, computers have been used to code simple, open-ended responses to
survey questions.  These responses usually consist of a few words each, for example, “I
work in a cannery -- at the loading dock.”  The response is classified on the basis of its
content and known statistical relationships between the content words and categories in
the classification scheme.  The task does not require knowledge of the subject area. This
contrasts with more complex classification where subject matter expertise is required and
can be provided through expert systems.  To provide a backdrop for our discussion of
expert systems, the current section reviews some of the major developments in software
for coding simple responses.  The general idea involves matching the response string to an
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entry (or entries) in a dictionary in which each entry is associated with a category or
numerical code. The innovation in this research has occurred in developing algorithms for
constructing and searching dictionaries of this sort.

This approach has been applied primarily to industrial and occupational coding (e.g.
Andersson & Lyberg, 1983; Appel & Hellerman, 1983; Appel & Scopp, 1987; van
Bastelaar, Hofman & Jonker, 1987; Campanelli, Thomson, Moon & Staples, this volume),
but has also been used to classify descriptions of products (Andersson & Lyberg, 1983),
field of study (Bobbitt & Carroll, 1993; Ciok, 1993; Pratt & Burkheimer, 1994; Pratt &
Mays, 1989), library book loans (Andersson & Lyberg, 1983) and demographic
characteristics such as ethnic origin and language (Ciok, 1993). This effort has been
carried out throughout the world, primarily in government statistical agencies (for reviews
see Bethke & Pratt, 1989, Gillman & Appel, 1994, and Lyberg & Dean, 1990).

The various efforts to automate the coding process can be divided into “autocoding” (or
“batch”) processing -- applications that entirely automate the coding process -- and
“computer-assisted” (or “interactive”) coding systems -- software that provides human
coders with pertinent information which the coders then incorporate into their
classification decision making. Some coding systems can be run in both batch and
interactive modes (e.g. ACTR, the system developed by Statistics Canada).  Sometimes
the two are used in conjunction:  A large data set is submitted to batch processing in a first
pass; those cases that cannot be coded automatically are classified interactively in a second
pass. Unlike manual coding of these data, which usually occurs after the data have been
collected, automated coding (in all of the above forms) can take place during the interview
in both CATI (Computer Assisted Telephone Interviewing) and CAPI (Computer Assisted
Personal Interviewing) environments (Pratt & Burkheimer, 1994).

Dictionaries, which associate possible response with codes, can be derived from coding
manuals or previously coded data sets.  There is sometimes a one-to-one mapping
between content words (or phrases consisting of such words) and codes, though on other
occasions a word or phrase is associated with multiple candidate codes.  The process of
mapping words to codes is sometimes carried out manually (e.g. Pratt & Mays, 1989), but
for large classification systems it is usually automated.  The U.S. Census Bureau’s
Automated Industry and Occupation Coding System or AIOCS (Appel & Hellerman,
1983; Appel & Scopp, 1987) relies on an automatically generated dictionary (O’Reagan,
1972).  The words from all of the phrases in the coding manual are converted to a
standard form (basically the root word stripped of affixes).  A dictionary is created from
all of these standardized words.  The dictionary includes weights for each word
determined by the number of different codes with which it is associated.  Links are created
between the words in the dictionary and the phrases containing those words.  The links
and the phrases themselves form the knowledge on which the classification is based. In
general, no subject matter knowledge is involved.

The actual coding process involves matching response words and phrases to a dictionary
entry.  This is done through either dictionary algorithms or weighted algorithms
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(Andersson & Lyberg, 1983).  A dictionary algorithm requires a response string (a word
or phrase in standard form) to match a single dictionary entry (sometimes independent of
word order).  While the match need not always be exact (e.g. Pratt & Mays, 1989) it must
be close enough to an entry so that the match is unambiguous.  If such a match is found,
the response string is assigned the associated code.  This is an effective strategy when
responses are simple; as the response strings become longer, perhaps spanning the answers
to several questions, they are more likely to match multiple entries.

Weighted algorithms make it possible to code such ambiguous matches with acceptable
accuracy.  In AIOCS, the words in the dictionary are weighted according to how well they
predict a particular code: A word that is associated with only a single code receives a large
weight while the weight is smaller for a word associated with many codes.  The algorithm
selects candidate phrases from the dictionary based on a score which is computed from the
number, percent, and weight of matching words (Appel and Scopp, 1987). If it identifies a
single phrase then the code associated with that phrase is assigned to the response string.
If the algorithm selects multiple phrases, then the one with the highest score is chosen,
assuming it exceeds the score of the closest competitor by a specified ratio, and the
response is classified accordingly. It is possible that the algorithm will not identify any
phrases with an acceptable score, in which case, the response is coded manually.

Certain systems include a type of knowledge that enables them to circumvent the
algorithmic matching process.  AIOCS performs a “logical analysis” in which rules map
particular keywords directly to codes. If such keywords are present in the response field,
they trigger the appropriate rule and the code is assigned without the usual lexical search.
The number of keywords is kept small to assure that the approach is efficient.  If the set of
keywords were to become large, then complex matching issues would compromise its
value. Clearly, the approach is beneficial:  By one recent evaluation, AIOCS assigned
codes using logical analysis at a much lower error rate than was found overall (Gillman
and Appel, 1994).

A coding system for classifying field of study that uses a comparable approach is described
by Pratt & Mays (1989).  The abbreviated names of academic departments offering
particular courses were mapped to field of study categories by rules that were general
across institutions (“CS” => computer science) unless an institution used unconventional
abbreviations in which case rules were developed that were specific to an institution (at
institution 12345 “CS” => classical studies). These researchers were able to tune the
system’s effectiveness by manually re-ordering the rules until they found an optimal
sequence.

The logical analysis in AIOCS and mapping of abbreviated department names in the Pratt
& Mays (1989) system, are both examples of a “rule-based” approach, in that knowledge
is encapsulated in a set of rules which are invoked under precisely specified circumstances.
They both exploit relationships between responses and codes that experts know to be the
case, but which are not the result of executing an algorithm.  In addition, they improve
performance by avoiding computationally intensive matching procedures.  This type of
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decision making is a version of the reasoning that drives expert systems, discussed in the
remaining sections.

A range of performance has been reported for the numerous automated and computer
assisted coding systems (Bethke & Pratt, 1989).  The two measures that are jointly used
to evaluate a system are (1) coding or production rate and (2) agreement rate (or its
inverse, error rate).  The first of these refers to the proportion of cases that are coded
(regardless of accuracy) and the second is an accuracy measure, usually derived by
comparing computer generated codes to “truth codes,” that is, the judgments of coding
experts for some test set of responses.  Without updating the dictionary, one can increase
the coding rate by relaxing certain matching requirements, although this comes at the
expense of lower agreement rates.  It is hard to compare performance of different coding
systems because the criteria for acceptable levels depend on the particular circumstances
of the survey.  In general, however, rates are considered acceptable if they are comparable
to or better than the results of manual coding, and the amortized cost of developing and
maintaining the systems is lower than personnel costs for the same task.

One new technology that has performed well in pilot, coding studies is neural nets (e.g.
Bechtel & Abrahamson, 1991; Rummelhart & McClelland, 1986). Neural net technology
is a type of classification software that “learns” the associations between a set of inputs
and a set of outputs. In survey coding tasks, an input would be the words in an open-
ended response and the associated output would be a code.  Each association is
represented as a pattern of activation in a network, where every node is either an input,
output or mediating (“hidden”) unit. A node becomes active in response to external input
or input from another node.  When a node becomes active, it affects the activation level of
all other nodes in the network; eventually these interactions subside and the entire network
becomes stable. The resulting pattern is “remembered” by the network as the association
between the input and output.

The network is “trained” on a set of many example cases where both input and output are
known (i.e. the responses have been manually coded by experienced personnel). A
learning algorithm repeatedly adjusts the weights that governs the influence of one node
on another until the net produces an output pattern close to the known output. Once the
network has been trained, it can be used for data processing, which, in the case of open-
ended survey responses, means it can automatically code cases that have not previously
been encountered. A system based on neural net technology (Raud & Fallig, 1993) was
tested with Census Bureau industry and occupation data and produced about the same
overall coding rate as AIOCS (48%) though its agreement rate was slightly lower (87% as
opposed to about 90% for AIOCS) (Gillman & Appel, 1994).

Another technology that has performed well for simple coding tasks is Memory-based
Reasoning (MBR) (Stanfil & Waltz, 1989). MBR computes the similarity of each
unclassified case to every case in a database of classified cases.  Similarity between any
two cases is usually implemented as a measure of feature overlap -- usually some variant
of the  “nearest neighbor” metric -- where each case consists of multiple features. In a
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survey coding application, the features might include the content of open-ended responses,
demographic variables like age and gender, as well as combinations of all those features.
Although the similarity metric itself is computationally simple, the number of such
comparisons can become astronomical for large databases.  Because of this, MBR is
intended to run on parallel computers where each case is a separate (physical) processing
unit, making the number of comparisons far less relevant to performance time than it is on
serial hardware.

MBR technology was tested on Census Bureau industry and occupation data (Creecy,
Masand, Brij, Smith & Waltz, 1992). The MBR approach was more productive than
AIOCS (61% coding rate with an overall agreement rate of about 88%) and was
constructed in a fraction of the person months required to build AIOCS.  However, the
associated costs have led to some skepticism about its practicality (Gillman & Appel,
1994).  MBR, like neural net techniques, requires a training set for any new domain; the
clerical expense involved in certifying that the codes are accurate can be substantial.  In
addition, MBR must run on a massively parallel computer; one was borrowed for the test
by Creecy, et. al., (1992), but currently, they cost over a million dollars.

3. CONCEPTS BEHIND EXPERT SYSTEMS

The automation of simple coding tasks has been well served by the technological
approaches described in the previous chapter.  For the most part, the applications
described above take advantage of the relationship between the words used by
respondents and the way those words are usually coded.  There is another category of
survey classification task which relies on larger amounts of information, some of which
may not be explicitly stated by respondents. In light of this extra complexity, it is generally
not possible to create a dictionary of mappings between responses and codes. In these
more complex cases, the classification specialist may infer the unstated information based
on extensive knowledge of the subject area. Often the process is driven by a working
hypothesis about the likely classification; the specialist decides which data to investigate
based on their relevance to the hypothesis. This approach, which has many of the
hallmarks of expert problem solving (e.g. Glaser & Chi, 1988), mirrors the approach that
has been embodied in expert system techniques (e.g. Kahn, 1988), suggesting that there is
a good fit between the task and the technology.

An expert system is a piece of software that reasons about a problem much as a human
expert would.  For example, several classic expert systems were developed to diagnose
medical problems based on the knowledge and diagnostic strategies of physicians (e.g.
Buchanan & Shortliffe, 1984).  Expert systems are the oldest and most stable technology
to emerge from research in Artificial Intelligence (AI).  In one survey of AI practitioners
(Hayes-Roth & Jacobstein, 1994) expert systems were deployed in 27 broad industrial
categories, with about 30% of the applications in Finance and Manufacturing.  There are
several well known success stories in which expert systems have increased productivity,
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improved quality and timeliness of products, and saved money well beyond their
development costs (see, for example, Leonard-Barton, 1987).

The general kinds of problems that have been addressed by this technology include
diagnosis, classification, scheduling, configuration, monitoring and design (Kelly, 1991).
While several expert systems have been developed for various statistical applications (see
Gale, Hand & Kelly, 1993, for a review),  the technology has seen relatively little use in
survey research.  The one application of which we are aware, other than our own, is in the
area of questionnaire design (Halfpenny, Parthemore, Taylor & Wilson, 1992; Taylor,
Parthemore, Wilson & Halfpenny, 1992).

What distinguishes these problems from those to which more conventional techniques
have been applied is that (1) there may not be an optimal solution -- or at least it may be
hard to evaluate optimality -- but there may be many acceptable solutions, and (2)
solutions require intimate familiarity with the problem domain rather than abstract
formulae.  This situation-specific knowledge is often referred to as heuristics.

3.1 Heuristic Knowledge

Heuristics are rules of thumb that lead to acceptable solutions, although the exact rationale
for their success may be unknown to the problem solver. They just work. They are not
guaranteed to produce the right answer but usually do, and do so in relatively few steps.
For example, a seasoned taxi driver might know that it is wise to avoid a particular tunnel
at certain hours of the day and certainly knows this without having constructed a
quantitative model of traffic flow.

Heuristics are often compared to algorithms, which are precisely specified computational
recipes, guaranteed to produce the expected outcome.  If one bakes a cake by following a
recipe to the letter, one is guaranteed to produce the expected cake.  Algorithms are
derived from “first principles,” that is, from what is known about the fundamental
properties of the problem. Heuristics, in contrast, are based on experience -- they have
been shown to work on many previous occasions, though their success cannot necessarily
be explained on theoretical grounds. Algorithms tend to be general purpose. They are
tailored to a particular situation when specific values are passed to them. Heuristics tend
to be narrower in scope than algorithms, defined in terms of particular conditions.

Consider the traffic example above.  A heuristic might consist of a simple set of rules such
as  “If you are in a hurry to reach the airport and the current time is between three and six
o’clock PM, do not use the tunnel to reach the expressway. Instead, cross the river on a
bridge and take Carson Street to the West End where there is an entrance to the
expressway.”  To reach the same conclusion algorithmically, one would need to consider a
vast number of parameters (typical traffic volume, tunnel capacity, likelihood of
breakdowns, presence of road construction, etc.) and determine how these factors interact
with one another in general.  The algorithm could then be applied to specific values, such
as times of the day, in order to produce a recommendation on when to use the tunnel.  In
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this problem, familiarity with particular city streets leads to a far simpler solution than
would an algorithm.

The time to solve certain problems seems to grow exponentially as a function of their size.
These are known as NP-complete problems (see, for example, Poundstone, 1988, Chapter
9).  One goal of AI, and in particular, expert systems, has been to reduce the speed of this
growth, even if it is exponential, and the key has proven to be informal knowledge about
the domain, that is, heuristics (Nilson, 1980).  Again, the solutions may not be optimal but
they are serviceable.  Many of the methods developed for solving problems of this sort
have proven useful for other applications, even if the problems are not NP-complete.
Heuristic methods simplify the problem by focusing on just those variables that, experience
dictates, are relevant to the solution.

Because heuristics are informal and learned through experience, they are often not
documented. One benefit of building expert systems is that the process creates a
permanent record of this knowledge -- even if the software is never used.  Of course,
running the expert system assures that the knowledge is applied systematically and
reliably.

3.2 Components of an Expert System

The knowledge in expert systems is generally represented as IF-THEN rules: IF certain
conditions are present, THEN take a particular action or reach a particular conclusion. In
this approach, small packets of knowledge are invoked when particular circumstances of
the problem occur. The collection of rules required to solve problems in the particular
content area is known as the knowledge base or rule base, hence the technique for
developing expert systems is called “rule-based” programming.

Because rules are specific to a particular problem area, a knowledge base for automotive
trouble shooting would share virtually nothing with a knowledge base for occupational
classification. However, expert systems in these two different areas could have in common
the reasoning mechanism that determines which rules to apply and the particular sequence
in which to apply them.  This mechanism is known as the inference engine. When the
inference engine applies or “fires” a rule, that changes the current state of the problem --
hopefully to a state closer to a solution.  The inference engine then searches for other rules
in the knowledge base that might be applied under the new circumstances and continues
this cycle until the problem is solved, or until it is determined that the system cannot solve
the problem.

Inference engines come in two varieties, backward chaining and forward chaining.
Different types of problems are better suited for one or the other of these. A backward
chaining inference engine begins with a hypothesis about the solution to the problem and
the reasoning process seeks evidence to support the hypothesis. They are appropriate for
problems where there is a small set of possible hypotheses, such as diagnosis or
classification tasks where the categories correspond to hypotheses. In contrast, forward
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chaining inference engines construct solutions in the absence of hypotheses.  Strictly on
the basis of the data describing the problem state, rule actions manipulate and create data
that eventually comprise a solution.  Appropriate problems for forward chaining are
scheduling or configuration tasks where there are many possible solutions, none of which
is known in advance.

In addition to the knowledge base and inference engine, an expert system requires data on
which to operate and some mechanism to store the data elements. Data describe the
problem state and determine which rules are eligible to be fired.  This is because the
condition elements of a rule (the IF part) are matched by the inference engine to the data
elements present at that time.  As rules are applied they create more data, changing the
problem state, enabling other rules to become eligible. Data become available by being
read from a file, entered by a user or created through the actions of rules. They are stored
in a temporary memory, referred to by such terms as “working memory” or “session
context.”  In most contemporary expert system tools, the data are object-oriented (cf. Cox
& Novobilski, 1991).

One thing an expert system does not have is an explicit control structure.  The inference
engine determines which rules to apply on the basis of the circumstances at any moment.
This contrasts with conventional approaches, where the programmer uses such techniques
as looping, subroutines, and “Go To” statements to explicitly control the program’s flow.
The lack of an explicit control structure is one reason why expert systems are well suited
for use in unstructured tasks, such as those for which we’ve developed our prototypes.
This idea is illustrated in section 4.2.

In principle, one could develop an expert system from scratch, building the tools to encode
rules and data as well as building an inference engine. However, most expert system
programmers do their work in development environments or “shells” that include rule
editors, object editors, an inference engine (or sometimes both forward and backward
engines) and other tools. These are specialized for expert system development and help
produce an application that performs efficiently. They are derived from significant research
in computer science (see, for example, Forgy, 1982, or Cooper & Wogrin, 1988, Chapter
10, for a discussion of one procedure to optimize an inference engine).  Organizations that
are considering this technology are advised to use an expert system shell instead of a
traditional computer language to avoid reinventing the wheel.  A relatively recent review
of available development products can be found in Stylianou, Madey, & Smith (1992).

3.3 Knowledge Engineering

One thing that expert systems shells are not equipped with is the knowledge from any
particular content area.  That must be extracted from the mind of the expert(s).  This
extraction process is usually carried out by a knowledge engineer who interviews the
experts about their practices in particular circumstances or observes experts at work and
encodes those practices as rules. Because experts’ procedures have become second nature
over the years, it can be difficult for them to articulate what they do.  The knowledge
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engineer must help the expert to specify his or her knowledge at a sufficiently detailed
level so that it can be modeled as rules that successfully solve problems.  Knowledge
engineering is an iterative process of modeling the expert’s knowledge and refining the
model based on the expert’s feedback. It is considered the primary bottleneck in
developing expert systems (Hoffman, 1987).

4. CASE STUDIES

When it is possible, most surveys use standardized procedures to collect and process data.
The best example of this approach is the structured questionnaire. However, there remain
essential activities -- particularly classification tasks -- for which it is difficult to develop a
scripted procedure.  In such situations, professional data collectors and processors have
license to determine what data elements to investigate, how to word any questions they
ask, what order to ask them in, how to keep their inquiry to a minimum, etc. as long as
they can produce reliable results. These people have amassed expertise of a particular
problem area from years of work and study, and their knowledge has a heuristic character.
Much of their knowledge is undocumented and is communicated orally from senior to
junior staff.

We have chosen two classification activities at the Bureau of Labor Statistics, both of
which rely on extensive heuristic knowledge, to explore the applicability of expert system
techniques. The first of these is a data review activity in which an analyst evaluates
decisions made by data collectors about the comparability of products. It is a classification
task in the sense that the reviewer assigns each such decision to one of a small number of
categories to indicate the adequacy of the decisions, and therefore, the usefulness of the
data.  Both the task and the expert system, which is referred to as COMPASS, are
described in section 4.1. The second task for which we have explored expert systems is a
type of occupational classification done primarily during the interview.  Unlike the
occupational classification tasks described in section two, for which a simple dictionary
look-up is possible, this task requires many subtle distinctions and a flexible dialogue
between the interviewer and respondent.  The task is described in section 4.2 along with
the expert system which is known as MatchMaker.

4.1 COMPASS

The Consumer Price Index (CPI) is conducted monthly by BLS to measure the average
change in price for a fixed set of goods and services.  The index is updated each month by
comparing the price of commodities in the current month to the price previously collected.
Because of marketplace changes, a product priced in an earlier month may no longer be
available. In order to maintain a continuous sample under these conditions, a comparable
product may sometimes be substituted for the unavailable product. Commodity Analysts
(CAs) review each product substitution to determine its comparability to the original
product.  If the CA deems the substitute and original products to be comparable then their
prices can be compared in computing the CPI.
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In addition to price data, the Field Representatives collect data about numerous
specifications of a product -- for example “screen size” and “sound quality” for televisions.
The specifications are enumerated on a check list for each major product area, and a
particular collection of specification values describes a particular product. The CAs rely on
specification values in making comparability judgments. The CA must compare all of the
relevant specification values for the original and substitute products and evaluate the
pattern of specification data from the perspective of comparability.  By judging the
original and substitute products to be comparable, the CA has essentially assigned them to
the same narrow, product category, for example, the category of 27 inch, color televisions
with “surround sound” and “picture-in-picture” capability; in this sense, the CA is
performing a classification task.

CAs’ knowledge is deep and specialized. Their knowledge in one product area is detailed
and extensive, but unrelated to knowledge of other product areas.  For example, a CA
who specializes in apparel might consider linen and cotton to be equivalent fabrics when
comparing certain garments because their effect on quality is equivalent, yet distinguish
between linen and nylon because this difference affects quality. Such knowledge is
meaningful in only this particular apparel area and would not be useful in judging
comparability of products in other areas, for example insurance or fruit. However, there is

general, analysts tend to look for evidence that products are not comparable, and only
after failing to find such evidence do they accept the substitution as comparable.  Such a
process is efficient because each checklist includes some specifications or groups of
specifications for which a mismatch allows the analyst to immediately reject the
substitution.  In contrast, a match between specification values does not allow any
conclusions until other specifications -- possibly all -- are compared.

At certain points in the monthly production cycle, comparability decisions can constitute a
substantial portion of the CA’s duties.  Of the 78,000 products priced each month for the
CPI, about 2700 are substitutes and must be reviewed by a staff of about 25 CAs.  In
addition to being labor intensive, reviewing substitutions is prone to visual search errors as
analysts locate information in the product descriptions, comprehension errors as they
extract the content of those descriptions, and consistency lapses if they should irregularly
apply a piece of knowledge. Rare as these performance complications may be, they are a
potential source of error for the CPI, one that might be reduced through computer
support.

The Expert System

COMPASS (Comparability Assistant) is an experimental, expert system designed to check
CAs’ comparability judgments about product substitutions (Conrad, Kamalich, Longacre
& Barry, 1992)2. After a CA has reviewed a month of substitution data, COMPASS is

                                               
2 This expert system should not be confused with another expert system, also called COMPASS, described
by Prerau, Gunderson,  Reinke & Goyal (1985).
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used to make comparability decisions about those same substitutions. The value in the
procedure lies in the discrepancies that might arise between CA decisions and those made
by COMPASS:  Because such differences are potentially due to errors by the CA,
resolving them should improve data quality. In principle, a tool such as COMPASS could
be used in data collection, or, for the routine cases, in place of the CA. The current
architecture and knowledge engineering procedures would not change if COMPASS’
functionality were extended in these directions. COMPASS has been implemented as a
quality check because this allows us to explore the feasibility of expert system technology
in substitution review without impacting concurrent production activities.

To date, the COMPASS experiment has been conducted for 13 of the roughly 350
product categories surveyed for the CPI. The thought is that knowledge bases will
eventually be developed for all product areas following the procedure used thus far. In
order to evaluate the generality of the procedure, the test categories were sampled from
throughout the universe of products.  Four categories were chosen from the food area
(Fruit, Cereal, Fish, and Dinner), three from the apparel family (Women's Swimsuits,
Women's Pants and Shorts, and Women's Nightwear), three from services (Theater
Admission, Automobile Finance Charges, and Hospital and Patient Services ), and three
that were unrelated to each other (TV, Automotive Body Work, and Ski Equipment).

Knowledge Engineering.  Expert systems are sometimes criticized because after being
developed for test cases, they are not easily scaled up for production use (e.g. Creecy,
Masaland, Smith & Waltz, 1992). Large knowledge bases can be unwieldy and hard to
maintain (Bachant & Soloway, 1989). Scalability should not be a problem for COMPASS
because the knowledge engineering process has been distributed: A separate, relatively
small knowledge base is constructed for each product category. However, the task of
building 350 individual knowledge bases is still likely to be enormous, even if spread
among many CAs.  To address this, the COMPASS methodology places the knowledge
engineering task into the hands of the experts themselves -- the CAs.  The basic idea is for
each CA to develop a knowledge base for the product area(s) in which he or she is expert.
By giving the CAs direct responsibility for encoding their own expertise, COMPASS’
decisions receive extra credibility: If COMPASS and a CA reach different decisions
because COMPASS applied a rule and the CA did not, then either the CA invoked
“special case” knowledge to which COMPASS was not privy, or the CA forgot to apply
the rule; in either case, it cannot be argued that COMPASS was provided with the wrong
rule because it was the CA who entered the rule in the first place.

One reason that professional knowledge engineers are usually involved in this type of
activity is because they have the skills to elicit knowledge from experts -- even when
experts are unaware of that knowledge (Hoffman, 1987; Kelly, 1991). The substitution
review task makes knowledge engineering by the CAs possible because CAs can often
reach a decision on the basis of a single inference (rule), and rarely more than two.  Such
inferences are easier for CAs to articulate than are the more complex inference sequences
typical of expert problem solving. The brevity of these inferences seems to be related to
the use of checklists.  They make explicit the criteria that analysts believe determine a
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product's value, and reduce the need to infer one criterion from another.  Consider another
apparel example.  The checklist for Women’s Pants and Shorts includes a specification for
fiber content and a specification for washability.  The latter might be inferred from the
former -- most silk, for example, cannot be machine washed -- but because data are
collected specifically for these criteria, there is no need for the CA to make such
inferences.

Even if experts can articulate their own knowledge, they are usually unable to write a rule
that a computer could process. This is relatively easy in COMPASS for several reasons.
First, the expert system shell in which it is implemented uses simple, English-like syntax in
its rule language. This enables CAs, who are typically not programmers, to easily
understand and encode such rules.  Second, CAs are provided with a set of rule templates
which present the structure of common comparability rules but are written without
reference to particular product areas or specifications.  In many cases, by adding only a
few pieces of information to a rule template, the CA can construct a rule for his or her
particular product area from a template. Finally, CAs are given the basic computer code to
run the system, but without any domain-specific rules.  This “skeletal knowledge base” is a
starting point to which they can add any rules they create. It enables CAs to concentrate
on entering their knowledge rather than thinking about how the program will run.

In addition to software, COMPASS entails a methodology for developing a knowledge
base.  Each CA first writes in English the criteria they believe to be relevant in determining
product comparability.  In addition they indicate the criteria required for a product
description to be considered complete and internally consistent. Regardless of how
successful the remainder of the exercise, this step documents a body of knowledge that
was previously unwritten. Next, the CA encodes these criteria as rules and adds them to
the skeletal knowledge base.  An example rule is presented in Figure 2.   It is taken from
the knowledge base for Televisions (“E31011” is a code for TVs, well known to the CAs
in this area) and the A spec (“new_a” is the value for the substitute product and “old_a” is
the value for the original) describes a product’s color capability, where a value of 1
indicates black and white, a value of 2 indicates color.  The rule concludes the products
are not comparable if the two products have different values for this spec (“<>“ indicates
“does not equal”), that is, if one TV set is black and white and the other is color.

RULE for comparability A spec
IF new_a OF dB3 E31011R 1 <> old_a OF dB3 E31011R 1
THEN comparability OF quote IS no

Figure 1.  Example Rule from Television Knowledge Base.

This initial knowledge base is executed on 3 months of substitution data consisting of the
keyed specification data collected in the field as well as the CA’s own comparability
decisions (or possibly decisions by another CA). Any discrepancies between CA
judgments and those of COMPASS are then resolved by either (1) revising the knowledge
base, (2) accepting the discrepancy as the result of knowledge too specialized to warrant a
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specific rule, or (3) accepting it as the result of knowledge available to a CA but
unavailable to COMPASS, for example, hand written messages by the field representative.
If the CA determines that a rule needs revising, then the effort is usually confined to that
rule; this modularity is direct result of the way knowledge is represented in expert systems.
After the CA is satisfied with the performance of the knowledge base, the procedure is
repeated three times on new data sets, each consisting of one month’s substitutions.  Some
data on the effectiveness of this approach are presented in the next section.

One challenge in developing COMPASS knowledge bases is data in the form of open-
ended or “free” text.  Most of the specifications take fixed values (one out of a small set of
acceptable numbers) but some are assigned unrestricted values.  For example, the
specification for the brand names of certain apparel items takes the brand name itself as its
value.  When COMPASS encounters such free text, it compares it to a dictionary of
previously encountered free text entries which the CA has judged to be equivalent and
associated with a single classification. For example, the CA might have created a list of all
brands judged to be “high quality,” consisting, in the apparel example, of several designer
brands, including spelling variations. If the current free text entry is found in the list,
COMPASS can reason as if brand quality were a fixed value specification. If the entry is
not already listed, the CA must classify the free text entry and add it to the appropriate
list.  Our experience has been that in certain product areas, such as apparel, one should
expect a steady, but small, percent of new brand names each month, implying a
corresponding amount of knowledge base maintenance each month.

Architecture.  The skeletal knowledge base includes control knowledge that orders the
rule application in a way that resembles CA decision making. CAs tend to gather evidence
to support one of a small set of hypotheses, for example, “not comparable,” rather than
constructing hypotheses from the patterns of specification values.  This is mirrored in the
system by its primary use of a backward chaining (i.e. hypothesis driven) inference engine.
In addition, CAs search for evidence of non-comparabilities prior to evidence for
comparability.  COMPASS’ decision making is structured so that it attempts to eliminate
comparability in seven different ways before concluding two products are comparable.
This is shown in Table 1.

1. completeness OF quote IS incomplete
  2. completeness OF quote IS complete
    2.1 consistency OF quote IS inconsistent
    2.2 consistency OF quote IS consistent
      2.2.1 comparability OF quote IS no
      2.2.2 comparability OF quote IS refer
      2.2.3 comparability OF quote IS adjust
      2.2.4 comparability OF quote IS yes

Figure 2.   Goal Hierarchy (Level5 Object Agenda)

COMPASS initially evaluates the completeness of the product descriptions, terminating if
either is incomplete.  It then checks their consistency, terminating if either contains logical
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anomalies.  Finally it determines comparability.  There are four goals associated with
comparability. COMPASS first tries to prove that the substitution is not comparable.
Barring that outcome, it seeks evidence that the substitution requires review by the analyst
and if so, it concludes refer.  This resembles the flagging of an item for manual coding in
traditional automated coding systems and gives it the character of computer-assisted
automated coding (see Section 4).  If COMPASS cannot prove that the quote should be
referred, it then tries to establish that the substitution can be compared if it is quality
adjusted, that is, if its price is statistically adjusted to account for quality differences
(Armknecht & Weyback, 1989). It does not execute the adjustment but signals it may be
applicable.  If there is no evidence for that, COMPASS concludes that the products are
comparable.

4.2 MatchMaker

The second task that we have modeled with expert system techniques is a type of
occupational classification known as job matching. The Occupational Compensation
Survey Program (OCSP) publishes national and regional rates of pay for each of about 80
job categories.  The job categories are those found in the U.S. Federal Government and
are used in part to set the wages of Federal employees.  (They are also considered by
many private sector employers in establishing their rates of pay.) The data are collected by
means of face to face, establishment interviews, in which a Field Economist (FE) collects
information from a personnel or payroll representative at the establishment. Based on
information from the respondent, the FE attempts to match establishment positions to
government job definitions.  These definitions range in length from several paragraphs to
several pages, and describe the job at up to eight levels of sophistication, for example
Engineer I, Engineer II, etc.. Once a job has been matched -- and many are not matched --
the FE can record the wages paid by the establishment to employees holding that job. The
FE therefore, is both the interviewer and the “coder.”

The FE must account for each position in the establishment, by either matching or
explaining why it cannot be matched.  The FE must document each decision and the
criteria used in sufficient detail so that a supervisor can review their decision making.  Job
matching requires the FE to be (1) intimately familiar with the government descriptions,
(2) skilled at interpreting the respondents’ descriptions of establishment jobs, and (3) able
to judge the similarity of one to the other. This presupposes that the FE is able to elicit
informative statements from the respondent.  To do this, the FE must formulate questions
during the course of the interview, tailoring them to the particular respondent in the
current interview situation.

FEs usually concentrate their questions on the duties, skills and credentials required by the
position but there is no scripted questionnaire for the interview. This is because
organizations vary so much that a single instrument would likely be inapplicable in many
establishments and because the respondents, whose participation is voluntary, usually lack
the time to answer any but the most pertinent questions. To reduce the length of the
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interview, the FE must ask primarily about those jobs that will plausibly be found in the
establishment -- a kind of knowledge that is not explicitly documented --  and ask only
those questions necessary to confirm a match. This requires more flexibility than can be
accommodated through a structured instrument.

The job matching process is vulnerable to inconsistency.  FEs develop different
approaches from one another, potentially leading to different conclusions.  In addition,
being human, individual FEs may be inconsistent from one interview to the next. The risk
of incomplete information is also inherent in the job matching procedure. FEs may forget
to collect all of the information on which to base their decisions because of time pressure
and the unscripted nature of the interview. Both of these potential sources of error would
be reduced through computer support for the job matching process. The problem is that
current CAPI tools do not provide the kind of flexibility to model an interview like this
which is essentially improvised.  Traditional CAPI tools primarily implement structured
paper and pencil instruments, where the skip pattern among questions is specified in
advance and is invariant. In principle an expert system could enable FEs to tailor the
sequence of their questions to the particular interview situation while assuring they collect
all information about relevant job criteria using essentially the same approach.

The Expert System

MatchMaker is a prototype expert system to support job matching.  It questions the FE
about characteristics of an establishment job that must be present in order to match the
job.  The FE responds to MatchMaker on the basis of information from the respondent,
so the FE must craft an appropriate question to the respondent in order to reply to
MatchMaker.  By using MatchMaker, any two FEs will ask respondents about the same
features of a job.  MatchMaker has been designed for use on a notebook computer in the
interview, but even if it is not ultimately used in that situation, it can be used (1) to prepare
for an interview, (2) to create a data report after an interview, and (3) as an interviewer
training tool. Having encoded the relevant job knowledge, we could deploy the same
knowledge base in these various situations.

In our research efforts to date, we have encoded knowledge for six of about 80 OCSP job
definitions: Accountant, Accounting Clerk, Computer Programmer, Engineer, Engineering
Technician and Personnel Specialist.  These were chosen to span the range of job
matching complexity.  Accountant is considered one of the more straightforward jobs to
match; Personnel Specialist is viewed as one of the most challenging and is associated with
a high rate of supervisory intervention. In addition to knowledge for individual jobs, we
have encoded knowledge about the jobs that are likely to be found in particular industrial
sectors in establishments of various sizes.  This is intended to help FEs generate
hypotheses about likely jobs and confirm them by questioning the respondent.

Knowledge Engineering. The expertise in MatchMaker was encoded by analyzing
publications, by interviewing and observing FEs, and by searching pertinent data bases. By
analyzing how the FEs do their work (a task analysis), we recognized that before they
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engage in job matching per se, they learn as much as they can about the current
establishment, for example its industrial sector, its employment size, and its organizational
structure.  Based on this, FEs adjust their expectations for likely matches. A facility was
developed to rank order job match hypotheses for different combinations of these factors
based on the experience of experts and historical data. The knowledge to support job
matching itself was derived largely from the OCSP definitions (published in a manual for
FEs) as well as supplementary documents (collections of questions and answers) and
technical memoranda (responses to questions about specific field situations).

The task analysis revealed that, in practice, most matches hinge on the job’s duties, its
required skills and education, the supervisory relations (who reports to whom) and the
absence of exclusionary evidence3. As a result, the knowledge engineering staff4 formed
rules primarily about this information.  Once the knowledge was implemented as
functioning software, FEs reviewed it and the knowledge base was refined. While there is
a single knowledge base for all of the jobs in MatchMaker, in practice the knowledge for
each job is modular.  As in COMPASS, this is intended to simplify the development and
maintenance of the knowledge as the full set of job definitions are encoded.

Architecture. Much like the FEs, MatchMaker seeks evidence to confirm each job match
hypothesis.  As a result, it is built around a backward chaining inference engine. Each
hypothesis is supplied by the FE, possibly by selecting it from the rank ordered list
mentioned above. The inference engine then queries the FE for the conditions to apply
each rule. It first seeks to confirm the overall match, for example, an Accountant, and then
it pinpoints the level, for example Accountant IV. Under some conditions, when a match is
not confirmed, MatchMaker can propose alternative jobs. To date this has been
implemented when two jobs differ only on one criterion. For example, educational
requirements (degree versus no degree) can be the primary distinction between
accountants and accounting clerks. While MatchMaker may suggest an alternative, the FE
must decide whether or not it should be investigated.

One advantage to the expert system approach in the case of job matching is that the
inference engine determines the branching sequence (skip pattern in a conventional
interview).  This is helpful because the numerous job attributes under consideration
combine into a complex branching structure (see Figure  3) that would be hard to encode

                                               
3 Each job definition includes a list of criteria that specifically rule out a match even if other criteria
would confirm the match -- “exclusions.”  For example, a company position that otherwise matches the
Computer Programmer definition but requires a bachelor’s degree in a scientific field other than computer
science, is explicitly excluded.
4 The development of MatchMaker was a collaboration between BLS and colleagues at the American
Institutes for Research (AIR).  AIR staff were involved in most aspects of the design process and were
entirely responsible for implementing the executable code.
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explicitly for the full set of jobs, and that would make an instrument difficult to maintain.
Rather than focusing on the precise sequence in which rules should be applied, the
knowledge engineer can focus on the massive quantity of content knowledge that needs to
be captured in rules.  The inference engine determines which pieces of information to
query based on what information has (and has not) been collected at any point.

To illustrate this, consider the logic depicted in Figure 3.  If the duties (upper left) match
those in the definition of Personnel Specialist, but none of the education requirements are
satisfied (middle left), the inference engine applies a rule that redirects control to an
alternative, less skilled job -- Personnel Assistant (far right).  There is nothing in the rule
that indicates its sequence, simply the knowledge that an alternative job shares some of the
duties of Personnel Specialist and requires less education.

-----------------------------
Insert Figure 3 about here
------------------------------

The FE can initiate several computational tasks as needed.  In particular, MatchMaker
includes a help feature that provides increasingly detailed (hypertext) descriptions of the
jobs and a notepad feature to document the circumstances surrounding any decisions. In
addition, each activity of the inference engine is written to this notepad, providing an
annotated reasoning history that could be examined by a supervisor.

By building flexibility into the design of MatchMaker and providing tools to support
various component tasks, we intended to design a software system that would fit into the
FEs work. This seems to have been reasonably successful.  In a questionnaire about
usability, 22 FEs were asked “How well does the system model the steps involved in job
matching?”.  On average, they rated it 6.1 out of 9 where 1 was “not at all” and 9 was

5. Evaluation and Resource Issues

This section addresses two issues about the value of expert systems in survey
organizations: “Do they work?” and “What resources are required?.”  To address the first
of these, we present performance data from a COMPASS knowledge base.  This type
evaluation compares the decisions of the software to those of CAs for the same data.  The
second issue is hard to address with specific monetary figures at this point because the
research and design character of our work is so different from the production environment
in which systems like ours will ultimately be deployed.  Instead we focus on the types of
human resources that are needed and potential impact on the expert system on the
organization.
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5.1 Performance Evaluation

A cornerstone of the autocoding and computer-assisted coding research is quality
measurement of the sort described in section two. Expert systems for classifying survey
responses need to be subjected to similar evaluation. Because COMPASS has been
designed as a post-production check on CA decision making, it is straightforward to
compare its performance to that of the CAs: They have already judged the comparability
of each substitution considered by COMPASS and their judgments are entered into the
data base.

The evaluation procedure we used compares the performance of the analyst and the
system for a given knowledge base, run on three months of data.  The statistics of interest
are the proportion of substitutions actually evaluated by COMPASS, and the correlations
between CAs and COMPASS for the three comparability5 decisions: comparable, not
comparable and quality adjustable; refer decisions are not included because there is no
corresponding CA decision. Once an acceptable level of performance has been attained,
the knowledge base is run again on three more months of data, one month at a time. Any
additional knowledge engineering is performed at this point and statistics are calculated
again.

We present results below from a representative knowledge base, Women's Pants and
Shorts6. COMPASS referred 19% of the decisions back to the analyst, recognizing that it
lacked sufficient knowledge to make these decisions.  (In the terminology of autocoding
quality measurement, the production rate for this knowledge base was 81%.)  Over the
four data sets used to develop the knowledge base, the system and analyst agreed on 68%
of the trials and disagreed 13% of the time. The correlation between the system's and
analyst's decisions over the four iterations is .79, p < .0001 (N = 300).  The correlations
for the four iterations were .79, .17, .85, and .79. The correlations for Iterations One,
Three and Four were significant; for Iteration Two, the correlation was small and non-
significant.  This appeared to be due to a shortage of Analyst No and Adjust decisions,
effectively exaggerating any discrepancies for Yes decisions.

A more detailed way of evaluating COMPASS’ performance is to separately compare its
decisions to those produced by the CA for each type of decision.  Table 1 presents this
sort of analysis for each iteration of the knowledge base. The table can be thought of as
four separate 3 x 3 tables, one for each iteration.  Within each iteration, the nine cells are

in a given cell represents the proportion of decisions (for that iteration) due to that
combination of COMPASS and CA decisions. For example, the upper most left cell in the
first iteration corresponds indicates that both COMPASS and the CA reached a “Yes”
decision 71% of the time.

                                               
5 Completeness and consistency decisions will not be discussed here though some data are provided in
Conrad, et. al.(1993).
6 Analyses for all knowledge bases are available from the author.
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The entries in the main diagonal cells are agreement rates and the entries in off-diagonal
cells are disagreement rates.  A high degree of  correspondence between COMPASS and
the CA would appear as large numbers along the main diagonal and numbers close to zero
in the off-diagonal cells. Iterations 1, 3 and 4 approach this pattern, but the row for analyst
No judgments diverges, showing small numbers in all cells, with the smallest in the
diagonal cell. For the second iteration, there are simply no observations in this row. Our
ability to evaluate the system's accuracy for No judgments is compromised by their
infrequent occurrence in this analysis,7 although for those No decisions available, the
number of discrepancies is relatively high.

-----------------------------
Insert Table 1 about here
------------------------------

Because COMPASS is run as a quality check, not all discrepancies indicate inaccuracy.
For example, the system might be applying the CA’s rules consistently even when the CA
has failed to do this.  In such a case, the expert system would improve data quality by
performing the classification task as the CA would perform it under ideal conditions. An
analysis of the discrepancies in the first two iterations confirmed this interpretation. In the
first iteration, 6 of the 17 discrepancies were due to some combination of analyst error,
possible field messages to the analyst which were not available to the system, and peculiar
price changes that were considered too rare to warrant special rules. All of these
discrepancies involved NO decisions by the analyst, helping to explain the apparent
inaccuracy of the system for those items. In the second data set, 15 out of 19
discrepancies were attributed to analyst error, and one to a field message that the system
could not accommodate.  All of these discrepancies concerned analyst Yes judgments.

The discrepancies signal that, by and large, COMPASS was doing what it was designed to
do, namely checking CA decisions and noting inconsistencies. Based on knowledge
entered by the CAs, COMPASS reached the expected conclusions, and when these
diverged from the analysts’ decisions, they were interpretable. If COMPASS is used in a
production context, the CA can revise discrepant decisions of this type.

5.2 Resources and Organizational Issues

In order to develop expert systems for production use, a survey organization must be
prepared to allocate certain human resources and to manage the consequences of
deploying the software. In addition, the chances that the project will be successful are
increased if there is an advocate or champion in the organization.

Human Resources

                                               
7About 30% of Analyst No decisions produced Refer decisions by COMPASS and so are not included here.



21

Most programmers in the data processing or MIS group in survey organizations are not
skilled in rule-based programming or in eliciting knowledge from experts. Rule-based
programming is considerably different from the conventional, “procedural” programming
that these employees are used to and, in our experience, has been difficult to teach to
them.  Knowledge elicitation skills require background in cognitive science and even the
humanities (Kelly, 1991). Because professional knowledge engineers are skilled in both, an
organization embarking on such a project should seriously consider retaining such
personnel.  In the COMPASS project, we created a situation in which the CAs could do
their own knowledge engineering, but this was only possible because project members
understood the technology well enough to develop tools (rule templates, skeletal
knowledge base) for the CAs to use that reduced the programming burden on them.

Of course, one or more experts are needed to supply the knowledge that will become the
substance of the expert system.  This can involve a substantial amount of the experts’
time, so their managers must make the time available by actually reducing other
obligations. A certain amount of communication and coordination is also required to
enable knowledge elicitation to occur.  The expert and knowledge engineer probably work
in different offices or groups, sometimes even in different regions of the country, so their
collaboration will need to be supported by the appropriate managers.  Where travel is
required, additional funds will need to be made available.

Consequences   

Introducing expert systems into the survey process produces certain social consequences.
For example, in developing COMPASS and MatchMaker, we needed to reassure FEs and
CAs that the knowledge elicitation process was not done to evaluate their knowledge or
performance; presumably other experts will have similar concerns.  Additionally, using the
expert system is likley to change the nature of the expert’s work.  One frequently
articulated goal for expert systems is to handle the routine cases and refer the more subtle
and complex cases to the expert.  This is the approach adopted in COMPASS.  It seems as
though it should reduce boredom, reserving the expert for tasks that are stimulating.
However, a possible danger in this approach is that it may increase the amount of stress on
the expert by requiring only difficult judgments; this, in turn, can reduce morale (Hauser &
Hebert, 1992).

Among the technical consequences of introducing expert systems is the need for system
integration. The new software must be made to dovetail with the rest of the data
processing system.  For example, MatchMaker is intended to be used for data collection
so it must write the data to the appropriate data base format and a data communication
procedure must be developed.  Similarly,  if COMPASS is to be used in production, it will
need to be invoked and supplied with data by other programs, possibly running on
different computers.  All of this requires coordination and high level planning.

Additionally, the knowledge in expert systems needs to be frequently updated.  In the case
of MatchMaker, job descriptions change and this needs to be reflected in the knowledge
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base.  In COMPASS, free text items, like brand names, are in continual flux, and these
changes need to be encoded in the knowledge base. Over the lifespan of an expert system,
the most frequent and, therefore, costly activity may be maintaining the knowledge base
(Bachant & Soloway, 1989).

Advocacy

The complexity of large organizations, such as government statistical agencies, can
severely impede the development of an expert system. Numerous parties, all of whom
work in different offices, may need to be involved in making decisions which can slow the
process.  In addition, reluctance to change current, familiar practices can lower the priority
of the project for some of its participants, leading it to fall between the organizational
cracks.  Alternatively, it is possible for an expert system to be technically successful but,
ultimately, unused (Hayes-Roth & Jacobstein, 1994). To overcome organizational inertia
and to promote the use of the expert system, the project needs an advocate within the
organization -- possibly the knowledge engineer (Kelly, 1991).  Whoever the advocate is,
this person must be able to communicate the vision of the project to the skeptics and to
navigate around numerous organizational obstacles.

6. Conclusions

Based on our experience, expert systems are a promising technology for systematizing the
classification of certain survey data. Rather than widespread use of stand alone expert
systems we may see increased embedding of the technology in other software systems.
The autocoding applications discussed in Section 2 have begun to move in this direction.
When considered in this light, expert system technology has a particularly bright future in
the statistical community because there are numerous data processing tasks currently
executed by large software systems that are sometimes simplified by introducing
executable, expert knowledge.

There is an additional organizational benefit from building expert systems. The
documentation that arises from this activity can facilitate training and technology transfer.
By creating a tutoring interface to an expert system’s knowledge base, an organization can
make this knowledge available to its members -- even if the expert from whom it is derived
is unavailable.

Finally, the early vision of applying AI to replace workers with smart software seems to
have evolved into one in which employees are supported in their decision making by this
software.  That is the route we have taken with COMPASS and MatchMaker, and where
the value of the approach seems to be greatest.  The goal is to improve the quality of the
decision making -- not necessarily the quantity of decisions made for a fixed cost.  Expert
systems are highly specialized in their knowledge and generally incapable of the common
sense reasoning at which people are so good.  However, they do not experience memory
lapses and do not get tired, ill or hungry.  By simultaneously exploiting the strengths of the
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software and the strengths of the users, the quality of these important statistics can only be
improved.
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Table 1.  Proportions of comparability decisions for all combinations of CA
and COMPASS decisions.

COMPASS  Decision

Iteration CA Decision Yes No Adjust N

Yes .71 .01 .01
 1 No .05 .01 .02 147

Adjust .02 0 .16

Yes .84 .01 .12
2 No - - - 75

Adjust .01 0 .01

Yes .73 .02 0
3 No .06 0 0 48

Adjust 0 0 .19

Yes .77 0 0
4 No .10 0 0 30

Adjust 0 0 .13


