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Stratification is one of the most widely
used techniques in finite population sampling.
Strata are disjoint subdivisions of a population,
the union of which exhaust the universe, each of
which contains a portion of the sample.  Two of
its essential statistical purposes are to:

(1) allow for efficient estimation, especially in
the case of stratification by size, and
(2) deal statistically with subpopulations or
domains by controlling their sample
allocations.

Stratification by size is typically considered as
serving purpose (1) by creating strata in an
efficient way and optimally allocating the sample
to the strata.  Using model-based analysis, we
show that, in the situation where stratification by
size is generally used, optimal allocation of a
weighted balanced sample achieves exactly the
same variance as unstratified, best linear unbiased
(BLU) prediction coupled with weighted balanced
sampling.  In other words, stratification by size
has no advantage over the optimal, unstratified
procedure.  This and other theoretical findings are
illustrated with simulations using real populations.

1.  A Stratified Linear Model and Weighted
Balanced Samples

Let h denote a stratum and i a unit within
the stratum.  The target variable for unit hi is Yhi .
The population contains H strata with the number
of units in each stratum being N h  (h H= 1, , )

and the population size being N N hh

H
=

=∑ 1
.  A

sample of nh  units is selected from stratum h with
the total sample size being n nhh

= ∑ .  Denote the
set of sample units in stratum h as sh and the set
of nonsample units as rh .  Assume that a  separate
linear regression model holds within each stratum:

( )EM h h hY X= ββ , ( )varM h h hY V= σ 2 (1)
where Yh  is N h × 1, Xh  is N ph h× ,

( )Vh hidiag v=  is N Nh h× , and ββ h  is a ph ×1
parameter vector.  The model in stratum h is
denoted by ( )M h hX V:  and the BLU predictor is
then the sum of the BLU predictors in each
stratum:
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In stratum h define a root(v)-balanced sample to
be one that satisfies
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where 1sh  is a vector of nh  1’s, 1Nh  is a vector of
N h  1’s, Vsh  is the n nh h×  diagonal covariance
matrix for the sample units, and Xsh  is the n ph h×
matrix of auxiliaries for the sample units.  Any
sample satisfying (2) will be denoted by

( )B h hX V: , and, when (2) is satisfied in each
stratum, the entire sample is a stratified weighted
balanced sample.

If the model has a certain structure given
in Theorem 1 below, then a weighted balanced
sample is the best that can be selected in the sense
of making the error variance of the BLU predictor
small.  Let ( )M Xh  be the vector space generated
by the columns of Xh .  A straightforward
application of Theorem 2 in Royall (1992) yields
the following stratified result.

Theorem 1.  Suppose that model (1) holds in
stratum h for h H= 1, , .  If both V 1h Nh  and

( )V 1 Xh Nh h
1 2 ∈ M , then the BLU predictor

achieves its minimum variance when each stratum
sample is ( )B h hX V: .  In that case, the BLU
predictor reduces to

( )/
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and the error variance is

( ) ( )( )var /
M

h
h h h hh hT T
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1 2/ = v Nhii

N

h
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/
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v Nhii

N

h
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In a stratified weighted balanced sample,
the optimal estimator, thus, reduces to a sum of
mean-of-ratios estimators, which, for later
reference, we will write as ( )T vMRS

1 2 .

2. Optimal Allocation for Stratified Balanced
Sampling
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The optimum allocation to the strata of a
weighted balanced sample can be easily calculated.
Assume that the cost of sampling is

( )C C c nh hh
n = + ∑0  where C0  is a fixed cost and

ch  is the cost per unit sampled in stratum h.

Theorem 2.  Assume that model (1) holds, that
V 1h Nh  and ( )V 1 Xh Nh h

1 2 ∈ M , and that a weighted

balanced sample ( )B h hX V:  is selected in each
stratum.  The allocation of the sample to the strata
that minimizes the error variance of the BLU
predictor, subject to the cost constraint

( )C C c nh hh
n = + ∑0 , is

( )

( )
n
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 for h H= 1, , .

When optimal allocation is used and all
costs are equal, the BLU predictor (3) becomes

( )( )/
/T
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Y
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1 2σ

σ
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and its error variance (4) can be rewritten as
( )varM T T− =

( )( )1 1 2
2

2

n
N v N vh h hh h h hh

/ σ σ∑ ∑− (6)

3.  The Case of a Single Model for the
Population

An important special case is having a
single model that fits the whole population.
Assume the model in each stratum is

( )EM h hY X= ββ , ( )varM h hY V= σ 2 , (7)
with X Vh h and  defined as in (1).  Expression (7)
is just another way of writing the unstratified
model ( )M X V: .  Thus, strata can be ignored in
calculating the BLU predictor and its error
variance.  If V1N  and ( )V 1 X1 2

N ∈ M , then, by
Theorem 1 with H=1, a weighted balanced sample

( )s B∈ X:V  is optimal for the BLU predictor.  In
that case, the BLU reduces to

( )T
n

Nv Y vi is
= ∑1 1 2 1 2 (8)

with error variance

( ) ( )( )varM T T n Nv Nv− = −





−σ 2 1 1 2
2

.

On the other hand, suppose we select a
stratified weighted balanced sample and use the
optimal allocation given in Theorem 2 above for

the equal cost case.  Using (5) with σ σh = , the
BLU predictor with the optimal allocation is

( )( )/T
n

N v Y vh hh hi hish h
= ∑ ∑∑1 1 2 1 2

which is exactly equal to (8).  In other words,
stratification with optimal allocation of a stratified
weighted balanced sample gains nothing at all
compared to the strategy of selecting an
unstratified sample with overall weighted balance.

A situation where a common model may
hold for the whole population is one where a
single auxiliary variable x is available.  The
auxiliary can be used for stratification by size as
well as for estimation.  Strata are formed by
ordering the units from low to high based on x so
that the first stratum contains the N1 units with the
smallest x values, the second stratum contains the
next N2 smallest units, and so on.  Take the
special case of model (7) given by

( )EM h hY X= ββ , ( )varM hi hiY x= σ γ2 (9)
where, in many populations, 0 2≤ ≤γ .  When (9)
is true, we can use the idea of the minimal model
introduced by Dorfman and Valliant (1997).  The
minimal model is the one with least variables
satisfying V1N  and ( )V 1 X1 2

N ∈ M .  When

( )varM hi hiY x= σ γ2 , this is

( )E Y x xM hi hi hi= +β βγ
γ

γ
γ

2
2 .  We denote this model

by ( )M x x xγ γ γ2 , : .  With the variance
specification in (9), the optimum allocation in
Theorem 2 becomes

( )

( )
n
n

N x c

N x c
h h h h

h h hh

=
′ ′ ′′∑
γ

γ

/

/

2

2 (10)

When the optimal allocation (10) is used and costs
are all equal, the error variance (4) of the BLU
predictor in a stratified weighted balanced sample
reduces to the variance for an unstratified,
weighted balanced sample:

( ) ( )( ) ( )var /
M T T

n
Nx Nx− = −







σ γ γ2 2 21
. (11)

4. Comparisons with Other Strategies
In this section we denote the polynomial

model having ( )E Y x xM i i J i
J= + + +δ δ δ0 1  and

( )varM i iY v= σ 2  by ( )M vJδ δ0 , , : .
When strata are formed on the basis of a

size measure x, an oft-studied procedure is the
separate ratio estimator, defined as
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=
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x x nhs hi hi sh
=

∈∑ .  Under the working model

( )M x0 1, : , TRS  is unbiased with variance equal to

( ) ( )varM RS
h

h
h

hr h

hsh

T T
N
n

f
x x
x

− = −∑σ 2
2

1 ,

where f n Nh h h=  and ( )x x N nhr hi h hi sh
= −

∉∑ .

If one is completely confident that ( )M x0 1, :  is
correct, then the optimal sample for TRS  would be
to pick the nh  units with the largest x’s in each
stratum.  Even more extreme is the globally
optimal strategy of the simple ratio estimator and
the n largest units in the population.

Confidence in any single model is seldom
this high and having protection against model
failure is usually prudent.  If the true model is

( )M xJδ δ0 , , : , then the estimator has a bias:

( )
( ) ( )

E T T N x
x
x

x
xM RS h h j j

hs
j

hs

h
j

hj

J

h
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=
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where ( )x x Nh
j
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j
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 and ( )x x nhs
j

hi
j

hi sh
=

∈∑ .

If a stratified (unweighted) balanced sample, i.e.
one that is balanced in each stratum ( ( ) ( )x xhs

j
h

j=

for j J= 1, , ), is selected, then TRS  reduces to
the stratified expansion estimator

T N YS h hs
h

H

0
1

=
=

∑ .

Denote a stratified (unweighted) balanced sample
by ( )s J∗  and a simple (unstratified) balanced
sample of order J by ( )s J .  When the working
model ( )M x0 1, :  holds, the optimal allocation of
the sample to strata for TRS  is n N xh h h∝ .

Protection against bias under the
polynomial model ( )M xJδ δ0 , , :  is afforded
either by simple balanced sampling with the ratio
estimator or stratified balanced sampling with the
separate ratio estimator.  Royall and Herson
(1973) showed that if n N xh h h∝ , then under

( )M xJδ δ0 , , :  the strategy ( )[ ]s J TRS
∗ ,  is more

efficient than ( ) ( )[ ]s J T x, , :0 1  in the sense that

( )[ ] ( )E T x T E T TM M RS, :0 1
2 2

− ≥ − .

But, because the separate ratio estimator
does not flow from a model satisfying the
conditions of Theorem 1, the strategy ( )[ ]s J TRS

∗ ,

is not the best that we can do.  When
( )varM i iY x= σ 2 , as in ( )M x0 1, : , the minimal

model is ( )M x x x1 2 , : .  Now, suppose that the
correct model contains some higher order
polynomial terms.  Specifically, let

( )M xJδ δ δ0 1 2, , , :  denote the model with

( )E Y x x xM i i i J i
J= + + + +δ δ δ δ0 1 2

1 2
1  and

( )varM i iY x= σ 2 .  If the sample has weighted
balance—equation (2) above—so that

( )

( )
1

1 2 1 2n
x
x

x

x
i
j

i

j

s
=∑  for j J= 0 11

2, , , , , (12)

then the BLU predictor ( ), :T x x x1 2  under

( )M x x x1 2 , :  is protected against bias if the model

is really ( )M xJδ δ δ0 1 2, , , : .  By Theorem 1,

when (12) is satisfied, ( ), :T x x x1 2  reduces to the

mean-of-ratios estimator ( )T xMR
1 2 =

( )Nx n Y xi is
1 2 1 1 2− ∑  and has error variance

( )[ ] ( )( )varM MRT x T
n

Nx Nx1 2 2 1 2
21

− = −






σ . (13)

By Theorem 1, this error variance will be less than
or equal to any that can be achieved under

( )M xJδ δ δ0 1 2, , , :  using TRS .

5. Formation of Strata
A question traditionally posed when

stratifying by size is how to form the strata.  When
a common model holds for the entire population
as in section 2 and V1N , ( )V 1 X1 2

N ∈ M , we
know that the BLU predictor with a weighted
balanced sample is the best strategy.  That is,
stratification in this common circumstance is
unnecessary.  However, various methods of strata
formation are used in practice, and it is interesting
to investigate their properties.

One set of methods are known as equal
aggregate size rules.  Units are sorted from low to
high based on x.  Strata are then formed in such a
way that each contains about the same total of the
size variable or a monotone transformation of it.

Equalizing ( )N xh h
γ 2  leads to several stratification
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rules.  When γ = 0 , equal values of ( )N xh h
γ 2

correspond to equal numbers of units N h  in each
stratum.  When γ = 1, we have equal aggregate
square root of size, and γ = 2  gives equal
aggregate x.

The equal aggregate size rules can be
derived using only model-based arguments.  Due
to limited space, we will only summarize the
result.  When the model is ( )EM h hY X= ββ ,

( )varM hi hiY x= σ γ2  with V1N , ( )V 1 X1 2
N ∈ M , the

sample is ( )s Bh h h∈ X V: , and an equal number of
units is allocated to each stratum, then the error
variance of the BLU predictor is minimized if

strata are constructed to have equal ( )N xh h
γ 2  in

each.  Moreover, if strata are constructed in this
manner, an equal allocation is the optimal
allocation in the equal cost case.  However, an
optimally allocated stratified, weighted balanced
sample yields exactly the same variance as an
unstratified sample with weighted balance.

Another method of stratification is known
as the cum f  rule due to Dalenius and Hodges
(1959) that we will include in the simulation
reported in section 6 but will not describe in detail
here.

6. Some Empirical Results on Strata
Formation

In this section we will illustrate the
different methods of strata formation and their
effects on estimation in a simulation study.  The
three populations used are known in the literature
as Hospitals, Cancer (Royall and Cumberland
1981), and Beef (Chambers and Dunstan 1986).
Figure 1 shows scatterplots of the three.  Four
methods of stratification were used with H=5:
(1)  equal numbers of units N h  in each stratum,
(2)  equal cum f  in each stratum.

(3)  equal aggregate total of x  in each stratum
(the cum x  rule),

(4)  equal aggregate total of x in each stratum (the
cum x rule).

We used the four methods of stratification listed
above and also did unstratified sampling.  Five

200 400 600 800

10
00

20
00

Hospitals

20000 40000 60000 80000

0
10

0
20

0
30

0

Cancer

5000 10000 15000 20000

0
50

0
10

00
15

00 Beef

Figure 1. Scatterplots of three populations.

combinations of estimators and sample selection
methods were used:
(a)  ( ), :T x x xγ γ γ2 , which is minimal when

( )varM i iY x= σ γ2 , and ( )pp xγ 2  sampling with
γ = 1 2, ,

(b)  ( )T xMRS
γ 2 , the stratified mean-of-ratios

estimator and ( )pp xγ 2  sampling with
γ = 1 2, ,

(c)  T S0 , the stratified expansion estimator, and
stratified simple random sampling (stsrs)
without replacement,

(d)  TRS , the separate ratio estimator, and stsrs
without replacement, and

(e)  TLS , the separate regression estimator, defined
below, and stsrs without replacement.

The separate regression estimator is defined as
( )T T N b x xLS S h hs h hsh

= + −∑0  with bhs =

( ) ( )x x y x xhi hs his hi hssh h
− −∑ ∑ 2

.  Note that

( )T xMRS
γ 2  is the Horvitz-Thompson estimator in

( )pp xγ 2  sampling and that T S0  is both the
Horvitz-Thompson and the Hájek estimator in
stsrs.

For each method of stratification a sample
of n=30 was divided equally among the five strata
giving nh = 6  in each stratum.  As noted in
section 5, when strata are formed to equalize
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( )N xh h
γ 2 , costs are all equal, and

( )varM hi hiY x= σ γ2 , then an equal allocation is
optimal.  In addition, equal allocation is one
method traditionally used with the cum f
method.

Both unrestricted and restricted sampling
techniques were used in the simulation.
Unrestricted ( )pp xγ 2  was implemented using the
random order, systematic method described by
Hartley and Rao (1962).  Restricted ( )pp xγ 2

sampling was done by selecting a sample with the
random-order method and then checking its
closeness to weighted balance on four moments
within each stratum.  The balance measures

( )
( ) ( ) ( )( )

e s
n x x x

sj h

sh
j

h
j

h

jxh

=
−−γ γ2 2

, j = 0 1 21
2, , ,

were calculated in each stratum where
( ) ( )( )s x x xjxh hi hi

j
h

j
hi

Nh= −





−
=∑ π γ γ2 2

2

1

1 2

 and

( )( )π γ γ
hi hi h hx N x= 2 2 .  For the pairs

( )j = =1
2 1,γ  and ( )j = =1 2,γ , ( )e sj h = 0 , and

balance on those moments is trivially satisfied.
For the non-trivial cases, if ( )e sj h ≤ 0.1256613 for
all measures in every stratum, then the sample was
retained; otherwise, it was discarded and another
drawn.  This technique retains only about 10% of
the best-balanced samples.

Balancing on the other moments above, in
addition to j = γ , protects the minimal estimator
against different polynomial terms not in a minimal
working model without losing any precision under
the working model.  With the weighted balance
conditions above, the mean-of-ratios estimator

( )T xMRS
γ 2  is equal to the minimal estimator

( ), :T x x xγ γ γ2 , but in unbalanced samples there
may be important differencesa point that the
simulation results will illustrate.

Unrestricted and restricted stsrs samples
were used for estimators (c)-(e) above.  In the
unrestricted samples, a simple random sample was
selected without replacement in each stratum and
retained regardless of its configuration.  For
restricted samples, a without-replacement srs was
selected in each stratum and checked for simple
balance on the moments ( )xsh

j , j = 0 1 21
2, , , .  As

above, only about 10% of the best-balanced
samples were retained.

For each combination of stratification,
sampling method, and estimator, 1,000 samples
were selected.  For restricted samples this means
that samples were selected until 1,000 were
retained.  The root mean square errors for each
estimator were computed as ( )rmse T =

( )[ ]T T
s

−
=∑ 2

1

1000 1 2

1000 .  Figure 2 presents

results, using a rowplot of the type devised by
Carr (1994).  In each column, the ratio of each
rmse to the minimum rmse among the estimators
for the population is plotted.  Black dots represent
restricted samples while open circles are for
unrestricted samples.  The narrow triangles are
cases where the ratio was truncated at 2 to avoid
scaling problems.  Some observations are:
• In Hospitals and Cancer, the minimal

estimator with unstratified, restricted ( )pp x1 2

sampling has the smallest rmse or very near it.
In Beef the stratified, minimal estimator with

( )pp x1 2  sampling is best.
• Unrestricted sampling is generally inferior to

restricted, balanced sampling.
• The minimal and mean-of-ratios estimators

have about the same rmse’s in weighted
balanced samples as expected.  In contrast,

( )T xMRS
γ 2  can have much higher rmse’s than

( ), :T x x xγ γ γ2  in unrestricted ( )pp xγ 2

sampling.
• The estimators used when sampling is

stsrsexpansion, ratio, and regressionare
improved by balanced sampling, but are
generally inferior to the minimal estimator
with weighted balance as anticipated in section
4.

• For a given selection method ( ( )pp x1 2  or
( )pp x ), stratification with weighted balance

within strata yields rmse’s very near those of
unstratified sampling and weighted balance for
the minimal or mean-of-ratios estimator in
Hospitals and Cancer.  This is expected since
the minimal and mean-of-ratios estimators are
equal in weighted balanced samples, and an
optimally allocated, stratified, weighted
balance sample also has overall balance.  Beef
is the exception because restricted, stratified
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sampling achieved better overall, weighted
balance than unstratified sampling.

• In contrast, stratification with balanced
sampling can substantially improve the
expansion, ratio, and regression estimators.

7.  Discussion
Rules for stratification by size have been in

the literature for many years, e.g., Mahalanobis
(1952).  More recently (Wright 1983) the method
has been justified as a means of approximating the
optimum selection probabilities derived by
Godambe and Joshi (1965).  Thus, there has been
some recognition that stratification by size may
entail a loss of efficiency, but the method remains
a common tool of practitioners.  Exact model-
based optimality can be obtained through
stratified, weighted balanced sampling and
optimum allocation, but the stratification by size is
superfluous, unless the strata are needed for other
reasons, such as estimating domain characteristics
or controlling for differential costs.
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