
Usability Testing Web Sites At the Bureau of Labor Statistics

Transcript from:

National Institute of Standards and Technology Symposium
Usability Engineering 2: Measurement and Methods (UE2)

March 3, 1997

Speaker:

Michael D. Levi
U.S. Bureau of Labor Statistics

Levi_m@bls.gov

Good morning. I'm Michael Levi from the Bureau of Labor Statistics (BLS). I'm going to be
talking to you about usability testing Web sites.

My talk is based on the experiences several colleagues and I have had working primarily on three
Web sites. The first is the BLS public access Web site, where all of our historical data, including
information about the data, is available to anyone with a Web browser. The second site is a joint
BLS/Bureau of the Census site for the Current Population Survey. The third is the beginning of a
BLS intranet, where BLS is trying to bring Web technology inside our fire wall to coordinate
within and between the various program areas.

Why Test Usability?

Now the first question is: "Why do we care, why do we want to test usability?" or the broader
question: "Why are we concerned about usability in general within our products?" One answer is
that a small group of us just thinks this is kind of cool stuff, and we have an opportunity to mess
around, so we do. That may be more true than I'd be willing to acknowledge.

We have, however, also built a business case for usability within the organization. First of all there
is the volume of requests. Some 80,000 to 100,000 users every month come to the BLS public
access Web site to get our economic data. It makes sense to make user interaction with the
system as straight forward and as efficient as possible. It certainly saves us money in terms of
hardware, software and support costs. If we can get by with a slightly less powerful machine
because the interface is good enough that people can get in, get what they want and get out, then
there's a clear dollar savings there.

Beyond reducing the load on the hardware, like every other agency, the BLS current mandate is
to do more with less. One of the ways that some groups have identified saving money is to try and
redirect at least some of the data requests from the telephone and from letters to the Web site,
people being more expensive than the Web server. In order to do this the Web site has to at least
approximate the ease of use associated with interacting with a human being. Obviously we will
never reach that, and we're not saying that we're going to eliminate a human being at the other



end of the telephone, but there's actually a very large set of standard requests that people come to
the Bureau and ask for, for instance, this month's consumer price index top level number. Scores
of thousands of people want this information every month; if we can make it easy for them to get
it by themselves, we have saved ourselves a lot of staff time. Users are going to go to the system
that is easiest and cheapest for them. If the Web site is too cumbersome and annoying, they're not
going to stop making phone calls. If the Web site approaches the convenience of a human, on the
other hand, they may start using it as their primary information gathering tool. So if we want to
move standard requests from phone calls that take a lot of staff to the Web, we'd better build a
pretty good Web site.

Again related to user support costs, the more usable the system is the less people would be calling
and saying "Well I found your Web site, but I can't find the top level CPI number, how do I do it"
or sending e-mail or whatever. So the idea is the more usable access is, the less burden on the
Help Desk; again, presumably, there is some dollar costs savings.

Finally, and on some level the most important, the various Web sites we're putting up have
become the public face of the Bureau of Labor Statistics. There are many thousands of people
whose only interaction with BLS is the Web site. More and more people know about us only
through our Web site. They never have talked to a staff member or made a personal visit, they
may not have seen any of our publications. As far as they're concerned, BLS is this Web site.
Simple pride in ourselves and our product mandates that we put our best face forward, that we
make the public's interaction with our agency as straightforward, as easy, as pleasant an
experience as possible.

This is pretty much the business case that we've made for taking usability seriously as far as the
Web is concerned.

Testing as Part of a Process

Now I'm going to be talking about testing, but want to put this in context first. Testing is only one
part of the process. You can't "test in" usability. If you have not done any HCI work before the
testing phase, you've pretty much already failed. But if you don't do the testing we also think your
chances of failure are higher.

When [the previous speaker: Steve Cross, Director of the Software Engineering Institute] talks
about the software engineering approach to software development and how that's merging with
the HCI approach to software development, I agree with him 100%. I think there's a usability
development life cycle just like there is a standard software development life cycle and it follows
much the same stages and typically can be done more or less in parallel.

Like software engineering, an HCI development process starts with user task and requirements
analysis, goes through a design phase, and ends with a testing stage. As Steve Cross said earlier,
we have moved away from the waterfall metaphor where one phase flows neatly into the next
phase, and processing keeps going from phase to phase, never backing up, until you're done, and
then you sign off. Instead we are looking at a circular process where you go through
requirements, analysis, design, implementation, testing and then you do it again and you do it
again and you do it again until you get it right (or until you're close enough).



Now the first time I heard about an iterative development life cycle it made sense to me and I
thought "I can do that". Having tried it a couple of times there are two dangers to look out for
that I've come across. First is that you really do need to iterate. It is not uncommon to get a
release out and then be assigned to the next project and have your staff taken away because they
also have another project. During project planning you have every intention of iterating the
process, but you never actually get to do it, so what goes out is essentially a prototype or early
version of a piece of software. This early version never gets revised and the process breaks down.

The other danger is that if the first release you put out is no good, then it will take a long time for
your user base to regain any confidence in the product. Regardless of how often you say "We're
putting something out for you to look at and to start using and we will incorporate your feedback
rapidly and improve the product", if the first release is not good enough people may never come.
So it is important that the first release be pretty decent or at least good enough so that the user
community is willing to use it for a while and to give you feedback and to look for the second
release. That way you can iterate problems from a position of strength and then you move
forward, but if the first iteration doesn't work, you're in big trouble.

Testing Site Structure

In my mind, there are two significant aspects of Web site design: site structure (What is the
organization of the site as a whole? What is the dialogue between the user and the site? How do
you navigate through?) and individual page design (How does the page look? Where do the
individual elements go? What typeface is used? How many graphics on a page? What are the
standard elements on each page?) These two design modes can be, and I think need to be,
approached somewhat differently as far as analysis, design, and also testing is concerned.

Starting with the site structure, at BLS we have fairly successfully implemented three testing
techniques. I'm not going to go into minute detail as to how all these works. Instead I'll refer you
to a paper that Fred Conrad and I wrote. This paper is a cook book approach to most of the
techniques I'll be talking about during the remainder of my presentation.

The idea in evaluating site structure is to determine from the users how they partition the
information space, what is their mental model of the information you will be providing in your
Web site. We have used a fairly standard card sort for this. You write down a number of leaf
pages, like "Consumer Price Index News Release" or "Employment and Earnings Statistical
Methodology" or "BLS Contacts" on index cards, one title per card. Give the stack of cards to a
group of users and ask them to sort these into meaningful piles and put a label on each pile. You
aggregate all your users together (we use the SPSS hierarchical cluster analysis function for that,
but often simply eyeballing the results is sufficient) and you can come up with a pretty good
hierarchy of users' expectations when they come into a site.

Another technique, which we call a "Category Membership Expectations Test" works the other
way. You say here are six or eight category names, what sort of information would you expect to
find within each category? Card sort is from the bottom up, category membership is from the top
down.

Icon recognition is where you produce a number of different possible icons or possible graphics



for portions of the site and you ask the user to match an icon with a category. You are looking for
high recognition and low interference (interference being where one icon is identified with more
than one category.)

These techniques are usually identified as analysis and design tools, and, in fact, I believe that is
when they are best employed. But we found that they also work pretty work as evaluation tools
to validate a design after it has been completed. This is especially useful when a Web site has been
built without much up-front analysis or design (and certainly many sites just grow without careful
planning). This kind of structural test can be very illuminating in determining whether the site
creators successfully met their users' expectations.

Testing Site Pages

As far as page design is concerned, the best place to start is with a style guide that is given to
content providers before they begin work. There are a lot of good references out on the Web
now. I like the Yale style guide in particular, but there are a growing number of quite decent
guides. The goal is to get consistent, readable, legible, comprehensible pages and make it as easy
as possible for a reader to find information on any given page (or recognize that the information
does not exist on a given page).

The technique that we've used to evaluate page level design is a heuristic evaluation. It's an
inspection technique. You're not actually going to end users, but instead you're having usability
experts go through a site and analyze it. There are a number of inspection methods. Jakob Nielsen
has written a book called "Usability Inspection Methods", where he catalogs quite a few of them
and discusses some of the advantages and drawbacks to the different methods. We found that a
heuristic evaluation really does a very good job at identifying things like inconsistencies between
pages, inconsistencies between the words you use as a link and the title of the page that you're
jumping to, differences in layout, jargon, incomprehensible acronyms and things of this nature.

Testing Site Usage

Now it's all fine and well to have a style guide and to follow it, and it would be nice if we could
say "Well if you follow the style guide then you will have a perfectly usable site", but it often
doesn't work quite as cleanly as that. There is certainly no substitute for having actual end users
run through the tasks that they actually will do on the site and to pay attention to them. That's
what we call Scenario-Based Testing. This is where you assemble a group of (hopefully)
representative end users, you give them a set of tasks that reflect what users will be doing with the
site once it goes up, and then analyze their performance. Some of the things to look for are how
quickly users are able to accomplish the tasks, how many errors they made, how many
intermediate pages they went through. Did they follow the path that you expected them to follow?
Did they find a more efficient path or conversely did they find a much less efficient path?

There are various ways of capturing the interesting information: talk aloud protocols, the Web
logs, video taped sessions. The idea is to observe and record what real users are doing on your
system.

Then there's the issue of subjective user satisfaction. Regardless of how quickly a user gets
through the task and how accurate they are, the question is whether they liked the system,



whether they enjoyed the experience or whether they found it terribly frustrating and annoying.
One tool that we have used to approach this is the Questionnaire on User Interface Satisfaction
(QUIS), which was developed by the University of Maryland and can be licensed from the
University of Maryland. I recently heard about a similar questionnaire called SUMI, developed
and used in Europe. I hope to learn more about that. In fact I think one of the speakers later today
knows a little more about it than I do and maybe we can ask him.

Post-Implementation Testing

I believe that there's no reason why usability testing should stop after a system has been deployed.
One of the nice things about the Web is that the Web daemon does capture a reasonably
comprehensive log of usage and there's an incredible wealth of information as to how real users
are using the system in a production environment. Let's say BLS has a million hits a month.
There's a million plus entries in the log; there's a lot of things that we can learn from that. Find out
what users are searching for, find out where they appear to give up in the middle of a session, find
out what the most popular pages really are, things of this nature. Of course, there is also direct
user feedback to the Help Desk, telephone calls, e-mails, etc., all of which we try to gather and
feed back to the developers, feed back to the design team for the next iteration of the system.

Special Characteristics of the Web

A lot of this is very similar to usability testing in the other system. On some levels, a Web site is
just another software system and all the techniques that I've described were originally developed
for non-Web systems.

We believe, however, there are some real differences between a Web site and a Windows or Text
based application. There are some characteristics I believe that make the Web unique and we have
been working within BLS to fine tune some of the testing techniques specifically for Web sites
and for some of the specific characteristics of the Web.

The user population interacting with a Web site is typically much more diverse in terms of goals,
experience level, domain expertise, and also system configurations (what hardware platform
they're using, what operating system, what browser). A Web site seen through a windowed
browser gives an illusion of power insofar as the site looks like a windowed system, and so naïve
users are deluded into expecting the kind of interactivity that they get from their Windows word
processor, but they don't get it because the Web doesn't actually support much in the way of real
interactivity. That's changing a little now with Java, ActiveX, some of the other more powerful
languages, but it will be a long time, if ever, before the Web has the same immediate capabilities
that a desktop use of software does. Finally, naive users are not always clear as to what is a
feature (or shortcoming) of the site and what is a feature (or shortcoming) of the browser being
used.

The Organizational Context

To conclude, I wanted to talk a little bit about the organizational context. Certainly our
experience at BLS is that there has been a gradual evolution or capabilities. We started, as an
organization, seriously thinking about HCI seven or eight years ago. There was a long period of
internal education where a number of the analysts trained themselves and started going to classes.



We then started bringing instructors in-house, developed a HCI curriculum, taught in-house for
our analysts and started expecting a certain level of understanding. We developed a set of
guidelines for interactive systems. Then usability testing kind of followed out of all of that. There
has been a progression, and usability testing is the latest stage in our progression.

Given the realities of resource constraints, we had to look for techniques that were safe to
implement. For me personally, there's been an interesting evolution from being a developer and
code jockey frustrated by management not letting me do the usability analysis and testing that was
clearly necessary, to being a manager who has to deal with budgets and delivery dates and things
of this nature. And the fact of the matter is, there is a real deep faith involved here. It doesn't
matter how many times someone tells me that if I do the up front work it'll cost me less in the
long run, at some point I have to take a deep breath and say, "OK, I'll give it a shot, I am going to
invest X person-weeks and Y dollars in this effort and hope that it will all work out for the best at
the end". So to minimize my risk what I'm looking for is "easy, fast and cheap". I'm looking for
techniques that do not require Ph.D. level human factors expertise, because I don't have it and I'm
not going to be able to hire it; techniques that are reasonably fast so if things go wrong I haven't
delayed delivery too much; and techniques that don't cost me much because I don't have much to
spend.

And in fact all the methods that I've talked about so far are all three of them, they're easy, fast and
cheap. In spite of that they have made a real difference in our systems. Having done a lot of these
we are now slowly beginning to invest in what we're calling a usability lab. We've got a little more
equipment so that we can do some slightly more sophisticated things. I expect if our efforts
continue to be successful, we will get marginal increases in a non-existent budget, and be able to
get some of the nifty and more expensive tools, but the fact of the matter is we've come a long
way without spending much money and it's made all the difference in terms of moving forward. I
think that's pretty much it. Are there any questions?

 

Questions and Answers:

Q. Do you have a formula for costing a usability test on a Web site?

Levi. No we really don't. Our experience is that the only dollar cost is really in staff time and
depending on the task it can take anywhere from one person-week to three or four person-weeks,
depending a lot on the expertise of the staff, the kind of tests and how thorough we want to be.

 

Q. Have you found a good log analysis package?

Levi. Not yet and in fact that's one of the things that we are most interested in finding at some
point. What we have done is hacked together a collection of Perl scripts that will go through the
logs and pull out some of the things we're interested in. I've heard recently about some log
analysts tools that are coming out of Europe. Apparently there is at least one piece of software
that has been developed specifically for this purpose, but I don't know anything about it yet. I'm
just hoping that it's going to be something valuable.



In particular what we don't have a good handle on is measuring deviation from an expected or
ideal path. At least in the designer's mind there is an ideal path from one point to the next. That's
the expected, fairly efficient way of getting from point A to point B. Now what we find is that
users frequently do not follow that path. They wander around. What we'd like to be able to do is
to compare the user's actual path to the presumed ideal path and make some deductions. Where
do they diverge? What is the average number of steps? What can we expect in terms of use? I've
found nothing so far that supports such investigation. If anyone knows of anything, please let me
know; I'd be most grateful.

 

Q. In reference to what you said about iterating and the first release needing to be pretty good:
I've seen examples where that's really not the case. Where the first one is really atrocious but if
you have strong management support for this iterative process you can recover. Without
management support, you're right, you're dead.

Levi. I think management is actually likely to recognize a dismal failure and say, "You've got to
do it again." The problem is the user base. If you have users who must use the system, they're
going to keep coming back anyway because they don't have any choice. No matter how horrible it
is. There may be high costs for the agency but the users have to use the system because it's their
job. If, on the other hand, you have discretionary users who get to decide, "Am I going to use this
system or not, am I going to use the Web site as opposed to making a phone call?" or something
like that, they may not come back for a second try. In fact they probably won't, until you persuade
them that it is worth their while. It's that initial credibility that makes all the difference, that
determines whether they will give you another chance

 

Q. Are you set up to do usability testing on other software products or do you just concentrate on
the Web site?

Levi. To date, we have done most of the testing on Web sites just because that is where the
interest of people were. But we also have started applying various usability tests on non-Web
systems and find the testing extremely successful.

 

Q. Some friends were over for dinner the other night and mentioned being frustrated with one of
the sites you mentioned, the Census Bureau site. At work my friend has Windows 3.1, and on the
basic Census site she can get only 2/3 of the way through the screens and then it would stop. I
knew it was supposed to work, so we came to my house and tried it on Windows '95 and got all
the way through. I didn't notice a good, simple way to provide user feedback.

Levi. I think that one of the things that's hard about testing Web sites is that ideally you'd run
from all standard user configurations. Unfortunately there are too many possibilities. If you have
ten standard scenarios and you break your user population into three major groups, that's 30
major tests right there. Now multiply by all the different browsers and configurations -- there's no
way you can do it, it's impossible. All you can do is try to pick the most important and hope for



the best.

 

Q. I was browsing through one site and they said their site worked best with Netscape 2, and they
downloaded a copy of Netscape 2 for you to run.

Levi. A lot of sites do that, but a lot of users don't like it, because they've already customized
their browser. If they were to accept a new download it might write over what existed.

 

Q. I've seen situations where the site provides a button that the user can click on and everything is
taken care of.

Levi. But you still have the same situation. There is an arrogance here. The site designer knows
best, even as far as what resides on the users hard disk.

 

Q. I have a comment and a question. The comment is sometimes if I'm stuck in the browser,
particularly if my PC has hung, I can't send a message to the webmaster or anybody else, and it's
very frustrating because I want to get certain document, I really want to get this and I don't know
how to get it because I can't make it download and I can't send E-mail to get help either.

My question is: What sort of people do you have designing your Web sites? In my organization
just about anybody feels competent to do Web design.

Levi. That seems to be one of the special characteristics of the Web. Most applications software
at this point is developed by professional software developers. Most Web sites are not developed
by professional Web developers. If you're lucky you've got a central group that reviews pages as
they come in, but a lot of organizations don't even have that level of control. It's pretty much
anyone who wants to put anything out can, and that makes for highly unusable systems.

Certainly it's unlikely that you will achieve consistency under those circumstances. Everybody is
likely to solve the same problem in their own way. One way to address it is to at least try to route
everything through one group who checks for adherence to standards. Be very clear up front what
you're looking for, what you and will not accept and why.

 

Q. That central group you talk about, did they do editorial review?

Levi. At BLS there are two independent groups. One does editorial, or content, review. The
other does Web standards review.

 

Q. What other functions might a centralized group perform?



Levi. Build common functionality, common graphics, establish the common graphic design.

 

Q. And you mentioned the central feedback, so mail to the site comes to one place then gets
spread out?

Levi. We have always given users two options. The nice thing about the Webmaster is it's easy.
The user can remember it, or at least there's some chance that the user will remember Webmaster
@ bls.gov or HelpDesk @ bls.gov, so even if they end up stuck somewhere and have to get out of
their browser then they would fire up their e-mail and probably reach somebody. On the other
hand the Web Master cannot answer real questions about content. If someone wants to know why
the CPI minus food and energy is X% this month, when blah, blah, blah, the Web master is not
going to be able to answer that question and will have to forward it to the right person. Best case,
there is a loss of time because it takes a while for the Web master to read the mail, to forward it to
the right person, and that person to read it; there's an extra step. Worse case is that it will never
get sent to the right person.

So we've also tried to have feedback to the content expert who can actually answer content
questions. We try very hard to explain the difference between a content question and a system
question, and my guess is about 60% of our users understand what we're trying to tell them.


