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INTRODUCTION
The National Compensation Survey (NCS) is a
business establishment survey for occupational
wages and benefits.  This survey includes data on
broad occupational classifications such as white-
collar workers,  major occupational groups (MOGs)
such as sales, and individual occupations such as
cashiers.   Another feature of this survey is that it
includes data by level of the job.   The job level of an
occupational series is derived from generic standards
that apply to all occupations and occupational
groups.

An essential part of NCS is the estimation of mean
wages for different localities.  In this study, an
artificial Metropolitan Statistical Area (MSA) was
created by combining NCS data from 16 different
localities to serve as a sampling frame for 100
simulated samples.  Then, the mean square error
(MSE) for the 100 sample estimates was compared
to variance estimates obtained with the linearized
Taylor Series method of variance estimation and
three different methods of replication:  balance
repeated replication (BRR), Fay’s method, and a
sample jackknife method.

SAMPLE  DESIGN
NCS uses a rotating panel design with three stages of
selection used in selecting each panel.  The first
stage of selection is of geographic area PSUs, which
consist of both Metropolitan Statistical Areas
(MSAs) and non-metropolitan counties.  Much of the
focus in NCS, including all the analysis in this
paper, is on the production of locality estimates, that
is estimates for individual MSAs for which the first
stage of sampling is not an issue.  Consequently, this
stage of sampling is not addressed here.  In the
second stage of sampling, establishments are selected
pps from industry strata, with total employment the
measure of size.  The sampling frame from which
the establishments are selected is constructed from
the unemployment insurance universe.

In the third stage of sampling, occupations are
selected separately from each establishment.
Typically, the occupational selections are done from
a complete list of in scope employees for the
establishment obtained from the respondent.
(Certain cases of employees, such as those who set
their own pay are out of scope).  A systematic equal
probability sample of employees is selected.  Then,
for each selected employee, wage data is obtained for
all employees with the same detailed job as the
selected employee within the particular
establishment.  For example, if one of the employees
selected is a full time, grade 9, non-union,
accountant, whose earnings are time based (as
opposed to incentive based), then data is collected for
all employees satisfying these criteria for that
establishment.  Consequently, the equal probability
selection of employees is equivalent to a pps
selection of detailed jobs.  The number of
occupational selections in each establishment
depends upon the size of the establishment.

The weight for each employee in a selected job is
obtained by taking the product of the reciprocal of
the probability of selecting the establishment, the
reciprocal of the probability of selecting the job
given that the establishment is selected, and
nonresponse adjustment factors for establishment
and occupational nonresponse.

METHODS
In order to compare variance estimation methods, we
artificially created a “medium-sized” locality or
MSA population from which we could draw
simulated samples.  The artificial MSA was created
using 1997 NCS wage data from 16 different
localities.  Based on the sampling weights of a
typical “medium-sized” MSA, the appropriate
number of establishments were determined and
created in each industry and size class.  Since the
establishments were originally selected using a pps
design, we did not have enough data for workers
from small establishments (generally establishments
with less than 100 employees) to create all of the



small establishments for the artificial population.
On the other hand, we had an over abundance of
data for workers from large establishments.
Consequently, some workers were “borrowed” from
the large establishments and separated into small
establishments.

Then, within each establishment the appropriate
number of occupations for each MOG x Level
(MOGL) cell were also determined by using
sampling weights from NCS.  At the time the
artificial MSA was created, we did not have enough
data for some MOGLs.  Consequently, workers were
“borrowed” from MOGLs where there was an over
abundance of workers, and the wages were
transformed so that a worker’s wage was typical of
the MOGL to which the worker was moved.  For
more information regarding the creation of the
artificial MSA, see Springer, Walker, Paben, and
Dorfman (SWPD, 1999).

After the creation  of the artificial MSA, 100
samples were drawn using the same sampling
methodology as a typical NCS survey of “medium”
size with the exception that there were no non-
respondents.  We determined that it was too time
consuming to duplicate the NCS non-response
adjustment procedures for each of the 100 samples
for the believed small impact it would have on the
results.  Next, the variance for each of the domains;
including all workers, MOGs, job levels, and
MOGLs, were calculated using a linearized Taylor
series method and using three different methods of
replication.  The variance results of each method
were then compared to the true variance for the 100
simulated samples.

Taylor Series
The hourly mean wage for a particular domain of
interest (i.e., MOG x level, occupation x level, etc.)
is calculated as the ratio of the weighted total annual
wages paid to the weighted total annual hours
worked.
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where iDŶ  is the total annual wages and iDX̂

denotes the total number of annual hours worked in
domain D in industry stratum i.  In order to calculate
the weekly and annual mean wage, the denominator
of (1) would simply have to be changed to the total

number of annual weeks worked and the total
number of employees, respectively.

One method of estimating the variance of a
nonlinear estimator, such as the ratio in (1), is to
approximate the estimator by a linear function of the
observations using a first-order Taylor series
expansion.  Higher-order approximations are
possible by extending and retaining the additional
terms of the Taylor Series expansion.  However, it
has been shown for large, complex surveys that the
first-order approximation usually yields satisfactory
results.  Then, variance formulae appropriate to the
sampling design are applied to the linear
approximation.  This produces a biased, but typically
consistent, estimator of the variance (Wolter, 1985).

The linearized variance formulae for NCS have two
components, a non-certainty establishment
component and a certainty establishment component.
The component of variance for the noncertainty
establishments is estimated by a pps with
replacement formula reflecting the fact that the first
stage of sampling in a PSU is a pps sample of
establishments.  The component of variance for the
certainty establishments is estimated by a simple
random sample with replacement formula, since the
sample of occupations within an establishment is
typically obtained through a systematic sample of
employees and for certainty establishments the first
stage of sampling in a PSU is the sample of
occupations (Tehonica, Ernst, and Ponikowski,
1997).  Since the subsampling is actually without
replacement,  both the non-certainty and certainty
variance components of the linearized form
generally should be overestimated.

The first-order Taylor series approximation for (1)
within a constant is
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where DX̂  denotes the total number of annual hours

worked in domain D, DD YYE
ˆ)( = , and the subscripts

S and C respectively indicate the noncertainty and
certainty portions of the variance.

From the above Taylor series approximation, it
follows that the estimated total variance for
noncertainty establishments is



          ( )


























−

−
= ∑ ∑∑

j j
ijD

i
ijD

i i

i
D Z

n
Z

n

n
YV

2
2 ˆ1ˆ

1
)ˆ(ˆ ,

(3)

where the summation of ijDẐ  is over all non-

certainty establishments j, and where

                  











 −










= ijDDijDij

D
ijD XYYW

X
Z ˆˆˆ

ˆ
1ˆ .

(4)
In equations (3) and (4), ni is the number of non-
certainty establishments in stratum i, ijDŶ  is an

estimate of total annual wages in domain D for the
jth establishment in the ith stratum, ijDX̂  is an

estimate of the total annual hours worked (for hourly
mean wage estimates) in domain D for establishment
ij, and Wij is the sampling weight for establishment
ij.

From (2), it also follows that the variance of the
certainty establishments is equation (5)
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where the summation of ZijqD is over all certainty
establishments j, and where
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In equations (5) and (6), mij is the number of quotes
for the jth certainty establishment in the ith stratum,

ijqW is the product of the sampling weight for

establishment ij and the sampling weight for quote
ijq, ijqDY  is the total annual wages for all employees

in domain D for the qth quote in certainty
establishment ij, ijqDX  is the total annual hours

worked for all employees (for hourly mean wage
estimates) in domain D for the qth quote in certainty
establishment ij.

Replication
Another method for estimating the variance of a
nonlinear estimator, such as the ratio in (1), is
replication.  Like the Taylor linearization method,
replication methods generally produce a biased, but
consistent estimator of the variance for nonlinear
estimators (Wolter, 1985). The basic theory behind
replication is to calculate the estimate of interest
from the full sample as well as a number of
subsamples.  The variation among the subsample
estimates is used to estimate the variance for the full
sample.  One advantage replication has over the

variance approach in the previous section is that
there is usually no need to linearize a nonlinear
estimator before calculating its variance.   This has
been demonstrated many times empirically over the
years, and was first shown to hold asymptotically as
the number of strata increases by Krewski and Rao
(1981).

There are many different ways of creating the
subsamples in replication.  One approach is balanced
repeated replication (BRR).  The standard BRR
design assumes that a population of PSUs are able to
be grouped into G strata with two PSUs selected
from each stratum using with replacement sampling.
Then, h replicate half-sample estimates are formed
by selecting one of the two PSUs from each stratum
based on a Hadamard matrix and then using only the
selected PSU to estimate the parameter of interest.
The weights for the selected units are doubled to
form the weights for the replicate estimate.  In order
to obtain a balanced set of replicates the number of
replicates used needs to be a multiple of four greater
than or equal to the number of strata.

Since BRR requires two PSUs per stratum and the
NCS design has more than two PSUs, the two PSUs
were artifically created by assigning the design-based
PSUs to one of two variance PSUs.  For the non-
certainty establishments, the first stage of selection is
a pps sample of establishments within industry strata
with employment as the measure of size.  For the
certainty establishments, the first stage of selection is
equivalent to a pps sample of detailed jobs or quotes.
Therefore, the variance PSUs for the noncertainty
establishments are created at the establishment level,
while the variance PSUs for the certainty
establishments are formed at the quote level.

The variance estimator for DŶ using BRR is then
2
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where DŶ  is the estimate of hourly mean wage for

domain D based on the full sample, )(
ˆ

hDY is the

estimate of hourly mean wage for domain D based
on the h-th replicate half-sample, G is the number of
replicates and Gc /1= .

Another method of replication investigated in this
study was  Fay’s method.  Fay’s method was
motivated by the observation that the standard half-
sample variance estimator runs into difficulty when
the denominators are zero for some replicates



(Judkins, 1990).  This method is a variant of BRR,
where the basic idea is to modify the sample weights
less than in BRR by using both half-samples in each
replicate.   In each replicate, one half of the sample
is weighted down by a factor K and the remaining
half is weighted up by a compensating of factor of 2 -
K.  For example, if K = .70, then the weights
decrease by 30 percent in one half-sample and
increase in the other half-sample by 30 percent.
When using Fay’s method, the variance of the
replicates from the full sample estimate becomes too
small by a factor of (1 - K)2  (Judkins, 1990).
Therefore, the constant c in (8) becomes 1/G(1- K)2.
In this study, Fay’s method was used with K = 0.5.

The final method of replication investigated in this
study is a sample jackknife method.  In general, the
jackknife method consists of splitting the total
sample into G disjoint and exhaustive PSUs, then
dropping out a specified number of PSUs in turn,
and estimating the parameter of interest from the
remaining units each time. The variability among
these estimates is then used to estimate the variance
of the full-sample estimator. A sample jackknife
method consists of dropping out only a sample of the
PSUs from each replicate.

A “general” sample jackknife variance estimator for
an estimator, µ̂ , is
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where )(ˆ ihµ  is the estimate of µ̂  with the ith

subsample dropped out in stratum h, H is the number
of strata, hl  is the number of subsamples in stratum

h, and hg is the number of subsamples dropped out

in stratum h, giving ∑
=
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replicates.

The particular sample jackknife approach used in
this study is the second method given in
WesVarPC.   This method uses the same sampling
design as BRR, that is, two variance PSUs per
stratum made with replacement.  Next, the weights
for one variance PSU in a stratum are doubled, while
the other variance PSU in that stratum drops out.
The other weights for the remaining strata remain
unchanged.  This process is done separately for each
stratum, and the number of replicates in this method
equals the number of strata.  Therefore, the variance

of DŶ for this method of the jackknife with hl  =

2, hg  = 1, and H = G  in (9) is equivalent to (8) with

c = 1.

ANALYSIS
Evaluative statistics were calculated to compare the
different variance estimation methods for the
variance of average hourly wage in each domain D,
that is each MOG, level, and MOGL.  In order to
simplify the explanation of the evaluative statistics,
the following definitions are given:

(A)  The mean square error, the estimated variance
plus the square of the bias, for Y in domain D is
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R = 100 simulated samples, rDŶ is the average hourly

wage for the r-th simulated sample, DY
ˆ  is the

average hourly wage for all 100 samples, and pDY is

the average hourly wage of the population.

 (B)  The average standard error for DŶ  is
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using one of the four different variance estimation
methods.

(C) The mean square error of the estimated variances
from )( DYM is
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The two evaluative statistics calculated were the
“bias” and “stability”.  The bias, in this case, was a
relative measure.  It was defined to be the average
standard error defined in (B) minus the square root
of the MSE defined in (A) relative to the square root
of the MSE.  The stability was defined to be the ratio
of the square root of (C) to (A).  This ratio was
calculated relative to (A) as a means of
standardization.  For stability, a smaller ratio implies
a more stable variance estimate.

The bias of each variance estimation method by
MOG (Table 1A) shows no dramatic differences
between the variance methods. These estimates vary
more across MOGs than they do across methods
except for machine operators, which is
underestimated more in the replication methods than
in the Taylor linearization method.  The bias of each



variance estimation method by job level (Table 1B)
shows the lower levels (1-6) which have lower SEs
tend to overestimate the root MSE, while the higher
levels (13-15) with greater root MSEs tend to be
underestimated by the Taylor linearization method
and Fay’s method, overestimated by BRR, while the
Jackknife is fairly close to one.

One possible explanation for the Taylor linearization
method tending to underestimate the variance for the
higher levels is that there are a smaller number of
observations generating the estimate (as can be seen
by the average number of occupational selections for
the 100 samples, mean occs in Table 1B).  When the
sample size is a large, a first-order Taylor series
approximation yields satisfactory results.  However,
for small sample sizes or for less prevalent domain

estimates, omitting the higher-order terms could
cause the variance to be underestimated.  BRR may
tend to overestimate the variance for domain
estimates with a small number of observations,
because of large weight differences between
replicates or because some replicates may possibly be
zero.  However, Fay’s method and the jackknife
should not be as greatly affected by a small number
of observations, because the perturbation of the
weights is much less in those methods than in BRR.
Although, for levels 13 and 15, Fay’s method
underestimated the root MSE almost as much as
BRR overestimated the root MSE.  In general, it can
be shown analytically that variance estimates for
ratio estimators calculated using Fay’s method are a
decreasing function of K, and hence maximize when
K=0, which is BRR.

Table 1A.  Bias and Stability of Variance Estimation Methods by Major Occupational Group
Root    Taylor Series        BRR   Fay's Method      Jackknife

MOG MSE bias stability bias stability bias stability bias stability

Professional 0.809 -0.04 0.43 -0.07 0.71 -0.07 0.71 -0.07 0.72
Technical 1.067 -0.18 1.00 -0.13 1.14 -0.16 1.07 -0.16 1.05
Exec., Admin., Mgr. 1.246 0.06 0.72 0.10 0.82 0.07 0.77 0.08 0.78
Sales 2.014 0.00 2.17 0.02 2.33 0.00 2.24 0.01 2.38
Admin. Support 0.330 -0.10 0.29 -0.06 0.41 -0.07 0.40 -0.07 0.40
Precision, Production 0.758 0.00 0.54 0.04 0.68 0.02 0.65 0.02 0.66
Machine Operators 0.613 -0.11 0.34 -0.24 0.61 -0.25 0.61 -0.24 0.63
Transportation 0.877 -0.01 0.61 0.01 0.82 -0.03 0.76 -0.02 0.81
Handlers, Laborers 0.527 0.07 0.47 0.08 0.75 0.06 0.71 0.06 0.74
Service 0.630 -0.01 0.28 -0.01 1.05 -0.01 1.04 -0.02 1.00

All Workers 0.340 -0.03 0.26 -0.03 0.57 -0.03 0.57 -0.03 0.57

Table 1B.  Bias and Stability of Variance Estimation Methods by Job Level
Mean Root    Taylor Series          BRR   Fay's Method      Jackknife

Level Occs MSE bias stability bias stability bias stability bias stability
1 207.0 0.184 0.16 0.63 0.20 0.99 0.18 0.93 0.18 0.93
2 212.2 0.301 0.03 0.57 0.06 0.74 0.04 0.71 0.04 0.69
3 327.0 0.278 0.05 0.29 0.01 0.53 0.00 0.51 0.00 0.52
4 290.8 0.283 0.31 0.83 0.29 1.07 0.28 1.03 0.27 1.03
5 217.9 0.349 0.11 0.54 0.09 0.60 0.08 0.58 0.07 0.57
6 134.8 0.602 0.02 0.63 0.09 0.92 0.07 0.88 0.07 0.96
7 251.2 0.697 -0.07 1.69 -0.05 1.72 -0.06 1.71 -0.06 1.66
8 214.4 0.923 -0.03 0.32 -0.05 1.19 -0.06 1.18 -0.07 1.14
9 217.6 0.786 0.01 0.76 0.07 1.08 0.04 1.01 0.09 1.24

10 53.9 2.188 -0.17 1.07 -0.06 1.53 -0.13 1.26 -0.07 2.00
11 105.4 1.815 -0.02 1.15 0.02 1.58 -0.01 1.30 0.00 1.53
12 69.7 1.657 -0.12 0.64 -0.10 0.67 -0.13 0.65 -0.11 0.76
13 32.8 1.885 -0.04 0.48 0.04 0.85 -0.04 0.72 -0.02 0.77
14 21.1 2.933 -0.11 0.64 0.13 1.29 -0.01 0.97 0.01 0.99
15 5.1 11.863 -0.21 1.62 0.18 2.67 -0.16 1.77 -0.07 1.71

JNL 48.6 4.159 0.03 0.60 0.07 0.82 0.03 0.75 0.02 0.79



                     *JNL = Job not able to be leveled

Table 2.  Average Bias and Stability of Variance Estimation Methods by Domain
No. of Mean Root    Taylor Series           BRR    Fay's Method       Jackknife

Domain Estimates Occs MSE bias stability bias stability bias stability bias stability

MOGs 10 240.9 0.792 -0.04 0.56 -0.03 0.84 -0.05 0.81 -0.05 0.82
Levels 16 150.6 0.988 -0.01 0.74 0.06 1.10 0.00 0.99 0.02 1.06
MOGLs 76 30.7 1.282 -0.11 0.76 0.07 1.21 -0.09 0.91 -0.01 1.25

The stability of the variance estimation methods by
MOG (Table 1A) and by job level (Table 1B) suggests
that the Taylor linearization method is more stable
than the replication methods.  This is consistent with
the work of Kish and Frankel (1974).  There are no
dramatic differences in relative stability among the
replication methods, although the stability of Fay’s
method was always less than or equal to the stability of
BRR.  It is unclear, however, if this must always be the
case.

The average bias and stability of each variance
estimation method (Table 2) for the 10 MOGs, 16 job
levels, and 76 MOGLs (the MOGLs present in all 100
samples) summarizes the observed trends of Tables 1A
and 1B.  The average of the two ratios for the different
domains was calculated as a geometric mean.  The
Taylor linearization method tends to underestimate the
variance for less populous domains such as the
MOGLs, while BRR tends to overestimate the variance
for the less populous domains.    Fay’s method tended
to underestimate the variance for the MOGLs.  The
jackknife method seemed to be the most consistent in
terms of relative bias.  As for the stability of the
variance estimation methods, the Taylor linearization
method was the most stable for all methods, while
Fay’s method was the most stable of the replication
methods.

CONCLUSION
The estimates of most interest from NCS are locality
estimates of mean wages for all workers, MOGs, job
levels, and MOGLs.  The basic idea of this study was
to compare different variance estimation methods for a
ratio estimator with many domains and sub-domains.
The results showed that for prevalent domains there is
little difference in terms of bias for the Taylor
linearization method, BRR, Fay’s method, and the
jackknife method.  This is reasonable, since all of the
methods are valid asymptotically.  For less prevalent
domains, the jackknife method seemed to be the closest
to the true value of the variance, while the Taylor
linearization method tended to underestimate the

variance and BRR overestimate the variance.  The
Taylor linearization method produced the most stable
estimates, while Fay’s method was the most stable of
the replication methods.

Any opinions expressed in this paper are those of the
author and do not constitute policy of the Bureau of
Labor Statistics.
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