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Abstract

This paper demonstrates that random sampling error in CPI price and expenditure
data at the item-area level can have a distorting effect on empirical cost-of-living indexes
computed using those data. In particular, the expected values of the Fisher Ideal and
Tornqvist indexes can be distorted downward by random error in basic index relatives.
This, in turn, can cause the estimated Laspeyres substitution bias in the CPI to be
overestimated.  The issue is illustrated empirically using CPI data for the period 1987
through 1995.  Estimated substitution bias is sharply higher in each year when smaller CPI
“replicate” samples are used to compute indexes than when the full samples—which are
subject to less sampling error—are employed. To address this problem, the paper derives
and applies a composite-estimation approach, in which CPI item-area indexes are replaced
by a weighted average of those indexes and the U.S.-level item indexes.  This approach
causes the estimated superlative index values to be higher, and the estimated substitution
bias consequently lower.  For example, in a comparison of annual chain Laspeyres indexes
to chain Tornqvist indexes the adjusted estimate of substitution bias is about 0.08
percentage point rather than the roughly 0.12 percentage point previously estimated.
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I.  Introduction

In recent years, considerable attention has focused on the question of whether, or to
what extent, the U.S. Consumer Price Index (CPI) may overstate movements in the cost
of living.  Researchers have put forward several reasons for such potential overstatement,
including inadequate recognition of quality change, failure to incorporate the gains to
consumers from new products or merchandising techniques, and possible flaws in the
formulas used to combine individual prices in producing the CPI.1  Unfortunately, most of
these problems are difficult to measure, and the size, direction, and even existence of the
associated “biases” are a matter of some dispute.

There is more widespread agreement, however, on one CPI measurement issue, that
of “substitution bias.”  This is the bias that arises because of the fixed-weight nature of the
index.  To construct the CPI, the Bureau of Labor Statistics (BLS) first computes indexes
for approximately 8,000 “strata,” defined by the combination of about 200 categories of
items and about 40 geographic areas.  These basic indexes are then aggregated using the
fixed-weight Laspeyres formula and expenditure weights drawn from the Consumer
Expenditure (CEX) Survey, conducted for the BLS by the Bureau of the Census.2  Well-
known economic theorems demonstrate that the use of fixed base-period weights should
cause an overstatement of cost-of-living changes, because the ability of consumers to
substitute in response to relative price changes is ignored.3

Substitution bias should exist also at the “lower level,” if the basic indexes
themselves are constructed as fixed-weight arithmetic averages.4  At the “upper level”
stage of combining the indexes, however, the availability of annual CEX data makes it
possible to measure substitution bias much more rigorously.  For this purpose, the
“superlative index” results derived by Diewert (1976, 1992) have been crucial.

Aizcorbe and Jackman (1993), Aizcorbe, Cage, and Jackman (1996), and Shapiro
and Wilcox (1997) have used CPI elementary indexes to construct Laspeyres indexes with
varying base periods, as well as the superlative Fisher Ideal and Tornqvist counterparts.
Based on this research, a rough consensus has emerged that the upper level substitution
bias in the CPI is on the order of 0.15 percentage point per year.5

The purpose of this paper is to reconsider the above consensus.  Although the
existence of upper-level substitution bias is not in serious dispute among economists, the
size of this bias is an empirical question.  A well-known fact, but one little-examined in
this context, is that the CPI basic indexes and associated expenditure weights used in the

                                               
1 For the most recent summaries of these issues, see Shapiro and Wilcox (1996), Moulton (1996),

U.S. Senate (1996), Bureau of Labor Statistics (1997), Boskin et al. (1998), and Abraham et al. (1998).
2 The Laspeyres formula is used in the CPI in modified form, since the expenditure weights are

linked into the index with a lag.  See BLS (1997).
3 See, for example, Pollak (1989).
4 In January 1999, the BLS will begin to employ geometric means in the construction of CPI basic

indexes, as a means of dealing with consumer substitution.
5 See U.S. Senate (1996).
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above-referenced studies are subject to sampling error.  It will be demonstrated below that
this error can have a considerable impact on the expected values of the index formulas
being compared.  It turns out that previous estimates of upper-level substitution bias are
themselves “biased” in an upward direction.

Section II below presents several well-known formulas for price indexes and
demonstrates how the expected values of those indexes can be affected by random error in
the prices and expenditure weights.  In particular, the expected values of the Fisher Ideal
and Tornqvist indexes can be distorted downward by random error in basic index relatives.
This, in turn, can cause the estimated Laspeyres substitution bias to be overestimated.
The next three sections examine this issue empirically using CPI data for the period 1987
through 1995.  Section III demonstrates that estimated substitution bias is sharply higher
in each year when smaller “replicate” samples are used to compute indexes than when the
full samples—which are subject to less sampling error—are employed.  Section IV briefly
notes that the problem of random error in price relatives cannot be solved simply by using
U.S.-level CPI item indexes, rather than the basic item-area indexes to compute the
aggregate superlative indexes.  In Section V, I suggest instead a composite-estimation
approach, in which CPI item-area indexes are replaced by a weighted average of those
indexes and the U.S.-level item indexes.  This should mitigate the problem of random
sampling error and reduce or eliminate the downward bias in the estimated superlative
indexes.  Section VI addresses the question of “small sample bias” in CPI item-area
indexes and how that possible problem relates to the issue addressed in this paper.
Section VII concludes with a brief discussion of the implications of this research.

II.  Random-Error Bias

Five of the standard index formulas used in empirical studies of substitution bias are
shown below, where the individual price relatives Rij and expenditure shares wijt refer to a
basic stratum in the CPI corresponding to item i and area j.6
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6 Throughout this paper, aggregate index formulas will be written as functions of basic index

relatives rather than reference- and comparison-period basic index levels.  This is done for convenience
and to avoid confusion of the issue of interest here with that of small-sample bias in basic index relatives,
as discussed by McClelland and Reinsdorf (1997).  All analyses in this paper proceed from the assumption
that the basic CPI index relatives are unbiased sample estimates of population relatives.
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The Laspeyres and geometric mean formulas IL and IG use only expenditure data
from the reference period 0.  These indexes will equal the cost-of-living index under the
contrasting Leontief and Cobb-Douglas models of consumer behavior, respectively.  That
is, the Laspeyres index will be “correct” under the limiting assumption that, holding utility
constant, relative prices do not affect quantities purchased. The geometric mean index will
be “correct” if consumers respond to compensated relative price changes by maintaining
constant expenditure shares w, unchanged from period 0 to the comparison period 1.

The superlative Fisher Ideal and Tornqvist formulas IF and IT employ expenditure
data from both the reference and comparison periods.  As a result, they have the potential
to reflect the extent to which consumers actually respond to relative price change.  Under
the assumption of consumer optimizing behavior, Diewert has shown that the superlative
indexes will yield results close to the true cost-of-living index.7  For example, if quantities
remain constant, as under the Leontief behavioral model, the Laspeyres index and the
Paasche index IP will both equal the superlative Fisher Ideal index.  By contrast, if
expenditure shares are constant, as in the Cobb-Douglas model, the geometric mean and
Tornqvist indexes will be equal.

In practice, the two superlative indexes, the Fisher Ideal and Tornqvist, yield
extremely similar results.  The extent to which they are below the Laspeyres results is the
standard measure of upper-level substitution bias.  For example, the Aizcorbe-Cage-
Jackman results presented in Moulton and Stewart (1998) show that the annual increase in
both chain Fisher and chain Tornqvist indexes each averaged 0.12 percentage points less
than the average increase in a chain Laspeyres index over the 1987-95 period.8

The CPI’s elementary indexes are computed from samples of individual priced items
designed to be representative of the goods and services sold within the corresponding
strata.  In some cases, such as apples or motor fuel, the strata are relatively homogeneous,
and price variation within the strata arises primarily from differences among stores,
locations, and times of collection (CPI price data are collected throughout most of each
month).  Other strata, such as prescription drugs or women’s dresses, are more broadly
defined, and variance in observed price movements can be due to market conditions for
particular products.

                                               
7 The most familiar form of the result requires the assumptions of homotheticity and of a

representative consumer.
8 The average bias was 0.18 percentage point when fixed-base versions of Laspeyres and Tornqvist

indexes were compared, and 0.13 percentage point when a fixed-base Laspeyres index was compared to a
chain Tornqvist.
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In the same way, the expenditure weights used in the CPI are designed as estimates
of the aggregate spending distribution of urban U.S. consumers.  Because of the finite
sample sizes in the CEX, the expenditure shares wijt are subject to some sampling variance
as well.

Each year, the BLS publishes estimates of sampling error for the CPI, broken down
by region and major group.  These estimates employ replicate data from both the CEX and
CPI pricing samples, and thus reflect the variance in both expenditures and prices.
According to the most recent published estimate, the standard error of 12-month price
change for the all-items CPI is roughly 0.12 percentage point.9  At lower levels, where
sample sizes are smaller, and especially for the more volatile index components, the
standard error is higher.  As an extreme example, for apparel in the Northeast region the
standard error is approximately 2.33 percentage points.  Standard errors are not published
for individual item-area strata, but would be higher still.

The intuition underlying this paper is that such sampling variation could distort
empirical estimates of upper-level substitution bias. The theory underlying superlative
indexes treats the expenditure weights and prices used in the formulas as known values
corresponding to a specified population or a “representative household,” and assumes that
the response of expenditures to prices provides information on consumer preferences. By
contrast, the observed data for item-area CPI components are sample estimates of
population means, drawn from separate surveys of expenditures and prices.  As a
consequence, some of the observed variation in relative price is random sampling
variation, which will be uncorrelated with the measured expenditure shares.  As noted
above, however, invariance of expenditure shares to relative price change is consistent
with Cobb-Douglas consumer behavior, indicated by the closeness of a superlative
aggregate index to its geometric mean counterpart.  It is reasonable to hypothesize, then,
that sampling variance in the basic CPI price indexes will cause the observed superlative
indexes to diverge from the Laspeyres in the direction of the geometric mean, even if
consumer behavior follows the Leontief model.

Of course, the fact that the basic indexes are stochastic raises questions about the
“representative household” model, and about whether the expected values of the basic
indexes are necessarily the most appropriate values to use in constructing aggregate
indexes.  The major point of this paper, however, is merely that prior estimates of
superlative indexes and of substitution bias are systematically different from those that
would be obtained if larger samples of prices were collected.

How this effect could work in practice can be seen in the context of the Tornqvist
index formula shown above. If we assume that the measured relatives Rij equal the
product of true relatives Ρij and independent random errors θij with mean one, then the

                                               
9 See Swanson (1998).
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expectation of the measured index 
∧
TI will be lower than the true IT, a result that follows

from Jensen’s inequality and the concavity of the Tornqvist formula in price relatives. 10

Relatively straightforward algebra can be used to show the approximate size of this
bias. First, apply a second-order Taylor series expansion of the Tornqvist formula around
the mean θij of one:

( ) ( )[ ]∏∏

∏∏

∏∏∏∏

−−+−+≅

=

==
∧

i j

w
ijijij

w
ijij

T

i j

w
ij

T

i j

w
ij

w
ij

i j

w
ij

T

ijij

ij

ijijij

wwwI

I

PRI

2
1)1(5.11

 

..

.

...

θθ

θ

θ

and

(1) [ ]∏∏ −+≅






 ∧

i j
ijijij

TT wwIIE 2)1(5.1 δ

where

( )ijij θδ var2 =

We can rewrite the bracketed term in (1) by employing the approximation to the
exponential function.  We then have:
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It is easy to see that the bias is potentially large.  For example, consider the unrealistic but
illustrative case in which all index strata have equal share weights w and equal variances
δ2.  Then, if the number of strata is large, the above expectation is approximately equal to
ITexp(-.5δ2).  Finally, to provide a crude but suggestive numerical result, assume that there
are 8,000 item-area cells and that the standard error of annual-average price change is on
the order of 0.1 percentage point.11  This aggregate standard error would be consistent
with a value of δ2=.008  for an individual stratum index relative, since the Laspeyres is an
arithmetic mean of the stratum relatives (i.e., .008/8000=.0012).  Under these assumptions,
then, the downward random-error bias in an annual-average Tornqvist index change
would be approximately -0.4 percentage point. This certainly would constitute a large
potential distortion—in particular, it is much greater than previous estimates of annual
substitution bias in the CPI.  Moreover, following this simple series of calculations, the
                                               

10 This is demonstrated by Erickson (1998) under the assumption that expenditure shares are not
subject to error. Below I will argue that the sampling error in expenditure shares is in fact much less
serious than that of the price relatives.

11 This is an estimate derived from computations underlying the analysis reported in Leaver and
Cage (1997).
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same distortion would apply to the observed geometric mean index, which has the same
form as the Tornqvist (and the same expenditure weights if these are all assumed equal in
both periods).

As would be expected given the similarity of estimated Tornqvist and Fisher Ideal
indexes, one can demonstrate that the Fisher Ideal is subject to an equivalent distortion.
Consider the Paasche component of the Fisher Ideal, the second bracketed factor of IF

above.  Again using a second-order Taylor-series expansion for the θij and again assuming
that all stratum relatives have equal variances, the expectation of 1/θij is approximately
exp(δ2).  Consequently, it can be shown that each term in the summation is biased upward
by the ratio exp(δ2). With this factor raised to a power of -.5 in the calculation of IF, one
can see that the distortion in the Fisher Ideal index is comparable to that of the Tornqvist
in the presence of random error in price measurement.

Mean-one multiplicative errors of this sort will not affect the expectation of a
Laspeyres index like the CPI, because of its linear form.  Under normal conditions, the
Laspeyres should also be expected to lie above the geometric mean and superlative
indexes.  Therefore, one can see that the hypothesized random error in observed price
relatives would move both the superlative and the geometric mean indexes downward,
away from the Laspeyres index.  This, in turn, would lead to an overestimate of upper-
level substitution bias and, potentially, an inappropriately favorable view of the
performance of the geometric mean formula relative to the Laspeyres.

Although the emphasis here is on sampling error arising from the well-recognized
sampling variance of elementary CPI indexes, it should be noted that similar problems
could arise from non-sampling error.  Random, uncorrelated errors in quality adjustment
procedures, for example, could also lead to downward bias in superlative index estimates.

Random error applies also to the share weights, of course, which are derived from
finite CEX survey samples.  The BLS employs a three-year average of CEX data to
construct the CPI expenditure weights, along with a composite-estimation technique to
reduce variance in local area weights.  The expenditure shares used in most superlative
index research, however, apply to single years and are not composite-estimated.  It was
noted above that the Tornqvist formula is concave in price relatives.  The same formula is
convex in expenditure shares, so random error in expenditure measurement should likely
lead to a bias in the opposite direction from error in the price relatives.  In the likely
presence of uncorrelated errors in both shares and relatives, the net effect is indeterminate
in sign.12

III.  Analysis using Replicate Samples

We shall use the term “random-error bias” to designate the situation caused by
random sampling error in price relatives or expenditure weights, in which the expected
value of estimated aggregate indexes differs from the values that would be obtained using
actual price and expenditure totals.  In this section, we present simulations of annual
indexes to demonstrate whether random-error bias is significant enough to have qualitative

                                               
12 See Erickson (1998).
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implications.  For this purpose, the period of study will cover the years 1987 through
1995, as in the previous results reported in Moulton and Stewart (1998), Shapiro and
Wilcox (1997), and Greenlees (1998), and the underlying CPI data are the same as used in
those studies.13  Both the Laspeyres and superlative series can also be constructed on
either a fixed or chain basis.  In the latter approach, which is used here, the estimates of
price change between, for example, 1989 and 1990 employ expenditure data from those
two years (1989 only in the case of the Laspeyres).14  The stratum-level price data used
are annual-average CPI price indexes.

Chain index series for this period are presented in Table 1.  Over the entire period,
the chain Laspeyres index overstates annual changes in the cost of living, as represented
by the chain Tornqvist index, by an average of 0.118 percentage point.  The geometric
mean index averages 0.030 percentage point below the Tornqvist.  (As noted above, the
Fisher Ideal and Tornqvist indexes yield extremely similar results.  For convenience of
exposition we focus on the Laspeyres, the Tornqvist, and the geometric mean in the
remaining analysis.)  Thus, the average geometric mean substitution bias is in the opposite
direction from, and less than one-quarter as large as, the estimated Laspeyres substitution
bias.

The question at issue is whether random error in the annual-average prices and
annual expenditure weights creates a serious distortion in the construction of these
superlative indexes.  Examination of this question is made possible by the existence of
replicate values of both expenditures and prices at the CPI stratum level.  Both the CEX
and the CPI pricing samples are divided into subsamples, called replicates, for purposes of
variance estimation. For the purposes of this paper, the replicate identifiers can be used to
define data sets for index estimation that are subject to greater sampling error than the full
sample, and thus also subject to greater “random error bias.”  If the superlative indexes
constructed at the replicate level are markedly lower, and the divergence between
estimated Laspeyres and superlative indexes is markedly wider, than at the full-sample
level, this would indicate that sample-size limitations could be distorting the superlative
indexes.

The results of such an analysis are displayed in Figures 1 and 2.  Figure 1 displays
the substitution bias in chain Laspeyres indexes, computed using the full sample and using
replicate samples 1 and 2.15  The results are strongly consistent with the above

                                               
13 This period is chosen for reasons of item category consistency.  Prior to 1987, the CPI employed

a different item structure.  Updates in the item structure take place approximately every decade; in January
1998, CPI strata were again recategorized.

14 Aizcorbe, Cage, and Jackman present both fixed and chained estimates, whereas Shapiro and
Wilcox compare fixed (1986) base Laspeyres indexes to chained superlative indexes.  The advantages and
disadvantages of chained indexes, and the specific question of whether those indexes are subject to upward
“chain drift” are beyond the scope of this paper.

15 The CEX has two expenditure replicates for each CPI item-area stratum.  Pricing samples,
however, are divided into four or even six replicates in a few CPI areas.  The replicate estimates in this
paper use only pricing replicates 1 and 2, and so effectively lower the pricing sample size by more than 50
percent on average.
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speculation.  The average substitution bias, which was approximately 0.12 percentage
point for the full-sample estimates, is 0.23 percentage point using Replicate 1 and 0.26
using Replicate 2.  (It should be noted that the latter average is strongly affected by the
0.73 percentage point bias in 1990, which is too large to be shown in the figure.)
Surprisingly, this occurs as much because the Laspeyres indexes are higher in the
replicates as because the Tornqvist indexes are lower.  On average, across the eight years
and the two replicates, the Laspeyres estimates are approximately 0.076 percentage point
higher than obtained using the full sample, and the Tornqvist indexes 0.056 percentage
point lower.16

Figure 2 shows the corresponding substitution bias estimates for the geometric mean
index relative to the Tornqvist. In contrast to the results in Figure 1, the full-sample bias
estimates tend to be intermediate between the replicate estimates.  On average, the use of
smaller sample sizes appears to reduce the geometric mean index levels by approximately
the same amount as it reduced the Tornqvist indexes.  The estimated downward
substitution bias in the geometric mean index (i.e., bias relative to the Tornqvist )
increases only slightly in the replicate results, by approximately 0.003 percentage point on
average.  This contrasts with the approximate 0.13 percentage point increase in the
estimated upward Laspeyres bias in the replicates as compared to the full sample.  In
several cases, the replicates yield geometric mean indexes higher than the corresponding
Tornqvist indexes.

These results are generally consistent with the predicted effect of random variation
in the basic CPI price indexes:  using the smaller replicate samples, both the Tornqvist and
geometric indexes are lower, and the estimate of Laspeyres substitution bias is greater.
Unfortunately, there is no apparent way to use the replicate index results to determine the
remaining random-error bias in the full-sample indexes.  Increasing the sample size by a
factor of two (from the replicates to the full sample) appears to reduce the estimated
Laspeyres bias by about half.  The biases involved are highly nonlinear, however, and the
extent to which further sample size increases would change the bias estimate cannot be
determined using the replicate results.

IV.  Indexes Constructed Using U.S.-Level CPI Series

One natural way to approach the problem of random-error bias is by computing the
superlative indexes not from the item-area indexes, but from the U.S.-level CPI item
indexes, which are constructed as Laspeyres aggregates. Averaging the 44 area indexes
for each item (weighted by expenditures) should drastically reduce the variance.  Similarly,
the U.S.-level expenditure shares are based on much larger CEX samples than the shares
for individual areas.  Comparing Laspeyres and superlative indexes constructed from U.S.-
level subindexes should, therefore, provide some information about the extent of the
random-error problem.  It readily can be demonstrated, unfortunately, that this approach is

                                               
16 It is unclear why the Laspeyres estimates should be so affected, although small-sample bias (see

fn. 6 and Section VI) may be accentuated in the replicate indexes. Note also that Replicate 1 in 1990 is an
outlier result in which the Laspeyres index is much higher than in either Replicate 2 or the full sample.
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not a solution to that problem; superlative indexes constructed from Laspeyres U.S.-level
subindexes likely lead to an understatement of the amount of substitution bias.

First, define the U.S.-level Laspeyres subindex for each item, constructed as a
period-0 weighted average of the item-area index values:
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of those U.S.-level indexes does, however, affect the expectation of the other index
formulas. Note that the geometric mean index using Laspeyres U.S.-level indexes can be
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A similar decomposition can be performed for the Tornqvist index:
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In each of these two equations, the first parenthesized factor is the aggregate index,
constructed from the U.S.-level Laspeyres item subindexes.  The second factor is a
geometric average across items of a ratio of two item subindexes: the geometric-mean or
Tornqvist item subindex, respectively, in the numerator and the Laspeyres subindex in the
denominator.  Since the arithmetic means must be higher than their geometric mean
counterparts, the second factor in each case must be less than one.  Thus, the geometric
mean (Tornqvist) index computed from U.S.-level subindexes is larger than the index IG

(IT).

Computed using the U.S.-level data, both the Tornqvist and geometric mean indexes
average about a tenth of a percentage point higher than when basic item-area indexes were
used.  Because the Laspeyres index is unaffected, the Laspeyres substitution bias
computed using U.S.-level data averages only about 0.03 percentage point over eight
years and the downward bias in the geometric mean index relative to the Tornqvist is
about 0.02 percentage point.  It is seen from the above decompositions, however, that
these estimates understate the total upper-level substitution bias, by ignoring variations in
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relative prices across areas.   It is reasonable to consider them a lower bound on the size
of that substitution bias.

V.  A Correction Using Composite Estimation

The previous section argued that the use of U.S.-level indexes mitigated the problem
of “random-error bias,” but at a cost: namely, the loss of true (as opposed to sampled)
inter-area relative price variation.  Thus, although sampling error in the detailed item-area
price indexes makes the Tornqvist indexes “too low,” those indexes are “too high” when
computed with U.S.-level indexes.  In this section I propose a composite-estimation
approach designed to mitigate or eliminate random-error bias, by combining local price
variation information with the national-level information on mean prices. Specifically, the
local index values are replaced by values whose variance around the random-error-purged
national mean reflects “true” geographic price variation.

This approach is somewhat similar to the composite estimation of local area
expenditure weights in the published CPI.17  The focus here, however, is on composite
estimation of local price indexes.  The replicate-level results in Section III above were
more consistent with distortion resulting from sampling error in elementary price indexes
(which should bias the superlative indexes down) than from sampling error in expenditure
shares (which should bias the superlative indexes up).  Moreover, examination of the
Fisher Ideal formula in Section II above also suggests that the impact of sampling error in
expenditure shares is likely to be less severe than error in price relatives.  The expenditure
shares enter linearly in the summations of both the Laspeyres and Paasche components of
the Fisher.  Those components are combined in a nonlinear formula, but random share
variation, unlike random variation in price indexes, does not affect the expectation of
either component.  Thus, the random variation in observed expenditure shares affects the
expectation of the Fisher formula only to the extent of the sampling error in the
component summations—that is, in the estimates of mean price change across all strata.
The impact on the expectation of the Tornqvist index must be similar.  The analysis of this
section, therefore, is confined to the distribution of individual index relatives, not
expenditure shares.

I begin by assuming, as in the heuristic example in Section II, that the index relatives
Rij are the product of “true” population relatives Pij and random sampling errors θij.
Under the further assumption that the θij have mean one and variance 2

iδ , we found that18
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17 It should be noted that the composite estimation of expenditure weights is applied to a Laspeyres

index and does not affect the aggregate CPI’s expected value.
18 It would be more general to subscript δ by both i and j, that is, allowing for the variance to differ

by area as well as item.  The constraint of a single δ for each item stratum was made for convenience of
empirical analysis, given the need to estimate these variances.
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The goal is to identify a formula for the Tornqvist, based on observed data rather
than the unobserved Pij, that has an expectation equal to that of the first parenthesized
term of the above expression.  To accomplish this, assume that the true area relatives Pij

are distributed around a mean item relative iP with variance 2
iσ .  That is, we assume

ijiij PP η=

where ijη  has mean 1 and variance 2
iσ .  Then, following the same algebra used

previously, one obtains
















=















=








∏∏∏∏∏∏∏∏∏ −−

i j

ww

i

w
i

i j

ww

i j

w
i

i j

w
ij

iijijiiijijijij ePePPE
2

.
2

.. )1(5.)1(5. σσ

where, as earlier,

∑=
j

ijtit ww

Under the assumptions above, and combining this result with equation (3) above we
have
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Next, we form a replacement for Rij such that the indexes of interest have the same
expectations as they would have if we were able to employ the unobservable Pij’s. For this

purpose, define the relative Qij as a geometric average of the (unobserved) U.S. mean iP

and the local area index Rij, with weights depending on the variances of the ijη and θij:

))(1(5.

22

2
2

1

22
iiii

i
i

e

RPQ

i

ii

i
i

ijiiij

δσαα

αα

β

δσ
σ

α

β

+−−

−

=

+
=

=

One can show that the expectation of Qij approximately equals iP :
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This guarantees that, under our assumptions, the Laspeyres index will not be biased by the
substitution of Qij for Rij.
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 It can be further demonstrated that with Qij inserted for Rij, the Tornqvist index has the
desired expectation.
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The values iP , 2
iσ , and 2

iδ are, of course, unobserved.  Fortunately, the existence of

replicate indexes enables us to form estimates of these parameters.  We form an estimator

id  of iδ  by computing the average of the area standard errors:
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where n indexes an area replicate and .
ijR indicates the mean of the replicate relatives (not

the full-sample relative) for the stratum.  Then we use the across-area variation in Rij to
estimate the variance in Pij:
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Finally, using the U.S.-mean index relative iR  to estimate iP , we compute the composite

estimate of the local index relative as
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The composite approach should mitigate the impact of random error bias and
thereby yield improved Tornqvist and geometric mean estimates, as well as improved
estimates of the substitution bias in the Laspeyres index. (As demonstrated above, the
Laspeyres indexes themselves will not be affected systematically by the composite
estimation approach.)  Table 2 and Figure 3 compare annual estimates of substitution bias

based on indexes constructed using the ijQ
∧

 instead of the Rij.

Table 2 and Figure 3 both show that, as expected, the Tornqvist indexes are higher
relative to the Laspeyres than the previous, unadjusted estimates.  The estimated
Laspeyres substitution bias is thus reduced in each year.  Over the eight years, the average
substitution bias estimate is 0.080 percentage point, compared to the 0.118 percentage
point average obtained previously.  Whereas using the unadjusted item-area indexes
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yielded annual substitution bias estimates of at least one tenth of a percentage point in
every year except 1993, the adjusted bias estimates fall below that level except for the
0.107 value in 1990.

Table 2 also shows the estimated downward biases in the geometric mean indexes
relative to the Tornqvist.  Note that correcting the random error bias raises both the
Tornqvist and the geometric mean, so that it will not necessarily widen the gap between
them.  The eight-year average bias is about 0.03 percentage point whether or not the
composite estimation approach is used.  Thus, the adjusted geometric mean bias is still
smaller than the Laspeyres substitution bias estimate, but the ratio of the two biases is
smaller, about 2.7 using the adjusted estimates as opposed to about 3.9 using the
unadjusted estimates.

Because the composite-estimation approach leads to a marked reduction in the
estimated substitution bias in chain Laspeyres indexes, it is useful to apply the same
procedure to fixed-base indexes as well.  Aggregate Laspeyres, Tornqvist, and geometric
mean indexes were estimated for each of the years 1988 through 1995 using composite
estimates of basic index changes relative to the fixed base year of 1987.  Unadjusted, the
average Laspeyres substitution bias estimate is 0.174 percentage point per year; adjusted,
the average is 0.130 percentage point per year.  (The fixed-base geometric mean index
averages 0.067 and 0.063 percentage point below the corresponding Tornqvist in the
unadjusted and adjusted estimates, respectively.)19

VI.  Geometric Mean Basic Indexes and Small Sample Bias

A fundamental assumption in the preceding analysis is that the basic item-area
indexes in the CPI are unbiased estimates of their population counterparts—that is, that
the multiplicative sampling errors θij have mean one.  Under this assumption, the
aggregate Laspeyres indexes are unbiased, because they are linear functions of the basic
indexes, but the aggregate superlative indexes are not.  If it were instead assumed that the
basic indexes were themselves biased estimates, the analysis of this paper would still hold,
in the sense that the differences between Laspeyres and superlative indexes would still be
exaggerated by the random variation in the basic indexes.  The interpretation of this
distortion, however, might be different.

During the 1987-1995 period studied here, the CPI basic indexes were computed
using a modified Laspeyres or arithmetic mean formula.  Research by the BLS in the early
1990’s identified an upward bias that arose from the way in which the formula was applied
when item samples were replaced, or rotated. This problem, known as “formula bias” or
“functional form bias,” was often cited as one of the biases in the CPI along with “upper-
level substitution bias,” until it was eliminated in a series of steps during 1995 and 1996.20

                                               
19 Unfortunately, the data set used here does not permit the analysis of indexes using a 1982-84

base period for expenditures, the period used in the CPI during the 1987-1995 period of study.
20 For a description of this problem and its solution see, for example, Moulton (1996), pp. 165-168.
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In January 1999, the BLS began using a geometric mean formula to compute most
of the basic item-area indexes in the CPI.21  The geometric mean indexes are not subject to
formula bias, but, as shown by McClelland and Reinsdorf (1997), they suffer from a
potential small-sample bias.  A geometric mean basic index relative is computed as the
antilog of the weighted mean of the logarithms of individual item price relatives.  Under
reasonable assumptions, then, the logarithm of the sample index relative will be an
unbiased estimate of the logarithm of the population geometric mean index relative.  The
index relative itself, however, will be upwardly biased in finite samples.

The small-sample bias in geometric mean indexes is, in fact, the reverse of the
problem discussed in this paper.  It can be shown that the proportional upward small-
sample bias in a geometric mean basic index relative is approximately half the variance of
the relative.  Thus, this upward bias is of the same order of magnitude as the downward
“random-error bias” in the Tornqvist caused by basic index variance. (As noted in Section
II above, if all index strata have equal share weights and equal variances δ2,  the
expectation of the sample Tornqvist was ITexp(-.5δ2)).  Another way of saying this is that
if, instead of assuming unbiased basic indexes, we assume that the logarithms of basic
indexes are unbiased, there would be no random-error bias in the Tornqvist index.

Having said this, it is important to emphasize that the basic indexes analyzed in this
paper were not computed using the geometric mean formula and therefore were not
subject to this small-sample bias.  Moreover, and equally important, the issue of small-
sample bias does not invalidate the conclusion that upper-level substitution bias has been
overestimated.  Whether or not one believes that basic CPI indexes are biased upward, the
difference between Laspeyres and superlative aggregate indexes overstates the difference
that would be observed if the underlying price samples were larger.

VII.  Implications

The central result of this paper is that random error in CPI item-area price indexes
causes estimated superlative indexes to be biased downward and Laspeyres substitution
bias to be exaggerated.  In particular, the composite-estimation analysis of Section V
suggests that for chain Laspeyres indexes compared to chain Tornqvist indexes the
estimated bias may be only about 0.08 percentage point rather than the roughly 0.12
percentage point previously estimated.  Moreover, a similar comment applies to previous
comparisons of fixed-base Laspeyres indexes to chain or fixed-base superlative indexes.

These are significant findings both qualitatively and quantitatively.  Not only can
random-error bias be illustrated in conceptual terms, it has been shown here to distort
calculations using actual CPI data.  To be sure, the analysis also shows that, even using
the composite-estimation correction for random-error bias, estimated aggregate
superlative indexes are closer to geometric mean indexes than to Laspeyres indexes.  That
is, Laspeyres substitution bias—or, equivalently, consumer substitution among CPI strata
in response to relative price change—does not appear to be an illusion created by random
variation in sample prices.   This paper does, however, call into question much of the

                                               
21 See Dalton et al (1998) for details on the introduction of the geometric mean formula.
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conventional wisdom about superlative index calculation and previous empirical results.
This, in turn, has several implications.

First, the historical performance of the Laspeyres formula for use in aggregation of
stratum indexes is not as unsatisfactory as previously may have been thought, relative to a
cost-of-living index objective.  The “correct” Tornqvist aggregate indexes are probably
closer to the Laspeyres CPI than indicated by earlier studies.

By the same token, the results here cast doubt on the tentative estimate by Shapiro
and Wilcox (1997) that a constant-elasticity of substitution (CES) index with a
substitution parameter of 0.7 would closely track a superlative index.  The “best” CES
index likely has a lower substitution parameter, reflecting a smaller Laspeyres substitution
bias.22

Finally, these results may provide lessons for the BLS superlative index planned for
publication beginning in 2002.  Numerous decisions must be made in preparation for that
index, including:  the role of composite estimation of local-area expenditures; the
frequency of publication; the length of the expenditure base period; the advisability of
chaining; and the possible use of a Laspeyres or CES “tail” for publication of preliminary
index values.  Among all those decisions, the impact of random error on superlative
indexes should also be taken into consideration.23

                                               
22 This analysis may also have implications for the particular price index relatives used in previous

superlative index studies. The elementary price relatives used in this paper are computed from CPI annual
averages of the basic monthly price data.  Thus, they correspond to the annual expenditure data used to
construct expenditure shares for aggregation in the indexes.  This has not always been the practice in prior
studies.  Shapiro and Wilcox (1997), for example, use December-to-December price relatives, following
the practice in Aizcorbe and Jackman (1993).

Following the logic of this paper, the December-to-December price relatives can be viewed as
imperfect measures of the “correct” underlying price relatives.  It is reasonable to suppose that consumers
choose the annual expenditure shares of each item based on prices in effect throughout the year, not just in
December.  The December-to-December relatives should be correlated with the annual-average relatives,
but with an even larger random “error” attached.  It can be hypothesized, therefore, that substitution bias
estimates will be larger when estimated using the December-to-December relatives.  Partial confirmation
of this hypothesis is provided by the fact that the average December-to-December bias estimates by
Shapiro and Wilcox are somewhat higher (0.16 percentage point versus 0.14 percentage point, in
comparisons of 1987-weighted Laspeyres to chain Fisher indexes) than corresponding annual-average
estimates.

23 It should be noted that the Fisher Ideal indexes produced for the National Income and Product
Accounts should be relatively unaffected by this problem, since they employ U.S.-level CPI indexes rather
than the item-area stratum indexes.
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Year Laspeyres Tornqvist Geometric Laspeyres Geometric

1988 3.97% 3.84% 3.81% 0.131% -0.031%
1989 4.56% 4.45% 4.39% 0.100% -0.055%
1990 5.12% 4.96% 4.94% 0.149% -0.019%
1991 3.92% 3.79% 3.76% 0.128% -0.026%
1992 2.88% 2.74% 2.73% 0.132% -0.018%
1993 2.76% 2.67% 2.62% 0.087% -0.049%
1994 2.59% 2.49% 2.46% 0.103% -0.024%
1995 2.74% 2.62% 2.60% 0.115% -0.019%

Average 3.56% 3.44% 3.41% 0.118% -0.030%

Index Percent Change Substitution Bias

Table 1
Full Sample Index Results, in Percent
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Year Unadjusted Adjusted Unadjusted Adjusted

1988 0.131% 0.094% -0.031% -0.028%
1989 0.100% 0.066% -0.055% -0.051%
1990 0.149% 0.107% -0.019% -0.023%
1991 0.128% 0.090% -0.026% -0.026%
1992 0.132% 0.090% -0.018% -0.021%
1993 0.087% 0.052% -0.049% -0.041%
1994 0.103% 0.058% -0.024% -0.025%
1995 0.115% 0.080% -0.019% -0.019%

Average 0.118% 0.080% -0.030% -0.029%

Laspeyres Index Geometric Mean Index

Table 2
Unadjusted and Adjusted Substitution Bias Estimates
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Figure 1.  Annual Laspeyres Substitution Bias Estimates
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Figure 2.  Annual Geometric Mean Substitution Bias Estimates
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Figure 3.  Unadjusted and Adjusted Laspeyres Substitution Bias Estimates
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