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Incorporating Observed Choice into the Construction of
Welfare Measures from Random Utility Models

ABSTRACT

This paper develops an approach to welfare measurement from random utility models that

incorporates the implications of an individual’s observed choice. The economic and statistical properties

of the proposed approach are discussed, and its empirical implications are illustrated with an application

to outdoor recreation demand. Welfare estimates for two policy scenarios and four alternative repeated

discrete choice specifications – a conditional logit, a quasi-nested logit, a random marginal utility of

income logit, and a full random coefficients logit – are constructed for a subsample of the 1994 National

Survey of Recreation and the Environment.
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1. INTRODUCTION

This paper develops an approach to welfare measurement from random utility models (RUMs)

that conditions on an individual’s observed choice. The economic and statistical properties of the

proposed conditional approach to welfare measurement are compared with the unconditional approaches

developed by Small and Rosen [35] and Hanemann [16], and a subsample of the 1994 National Survey of

Recreation and the Environment (NSRE) is used to illustrate its empirical implications. Conditional and

unconditional welfare estimates for two policy scenarios and four repeated discrete choice specifications

(e.g., Caulkins [10], Morey, Rowe, and Watson [28]) are presented. These estimates suggest that: 1)

sample means of conditional and unconditional welfare estimates are qualitatively similar but often

diverge by more a correctly specified model would predict; 2) the conditional estimates appear to be more

robust across alternative model specifications; and 3) the distribution of benefits implied by the

conditional and unconditional estimates are qualitatively different.

The conditional approach to welfare measurement has some precedence in both the non-market

valuation and marketing literatures. The notion that alternative interpretations of the factors that give rise

to randomness in applied demand analysis imply different welfare estimators was first argued by

Bockstael and Strand [6] in the context of single-equation demand models. Smith [36] later criticized their

work because it failed to account for the fact that every demand model is in some sense misspecified. His

criticism is particularly relevant in the context of RUMs because misspecification can cause sample

means of conditional and unconditional consumer surplus estimates to diverge significantly.  Similarly in

the marketing literature, Allenby and Rossi [2] and Train and Revelt [43] have recently proposed

estimating an individual’s “partworth” (i.e., marginal utility) for a commodity characteristic by

conditioning on her observed choice(s). These authors argue that a comparison of sample means of

individual unconditional and conditional partworths can serve as an informal specification test.  Both of
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these insights have close parallels with the conditional approach to welfare measurement developed in

this paper.

The paper is organized as follows. Section 2 develops the theory of the conditional approach to

welfare measurement and discusses its economic and statistical properties. Section 3 details the recreation

data set used in the empirical analysis, and Section 4 reports parameter estimates from four repeated

discrete choice specifications – a standard conditional logit, a quasi-nested logit proposed by Train [40]

and Herriges and Phaneuf [18], a random marginal utility of income (RMUI) logit, and a full random

coefficients logit model - used to model consumer choice. Section 5 then describes the two welfare

scenarios considered, and Section 6 discusses the procedures used to construct unconditional and

conditional Hicksian welfare estimates. Section 7 presents and interprets these estimates for the

alternative policy scenarios and model specifications, and Section 8 concludes.

2. THEORY

This section discusses the theoretical foundations of the conditional approach to welfare

measurement and its relationship to the unconditional approach developed by Small and Rosen [35] and

Hanemann [16]. Although both approaches can be applied to all choice models employing the random

utility hypothesis, this section uses the repeated discrete choice model of recreation demand (e.g.,

Caulkins [10], Morey, Rowe, and Watson [28]) to structure the discussion. In addition to simplifying

exposition, focusing on this model is natural given the empirical application that follows.

The repeated discrete choice framework assumes that the individual’s seasonal recreation demand

arises from a series of discrete choices made on T separable choice occasions. On each choice occasion,

the individual decides whether to take a single trip to one of J recreation sites or to stay at home (hereafter

referred to as site 0).1 The central building block for the model is the choice occasion conditional indirect

utility function. Individual preferences on choice occasion t for the jth choice alternative (j∈0,…,J) can be

represented by the following conditional indirect utility function:
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),,/)(( tjjzjt ppyV εq− (1)

where ty  is the amount of seasonal income the individual allocates to choice occasion t, jp  is the

individual’s travel cost or price of visiting site j, zp  is the price index for the Hicksian composite

commodity, and jq  is a vector of site specific characteristics such as environmental quality.2 tjε

summarizes additional factors specific to the individual, site j, and choice occasion t that are known by

the individual but unobserved and random from the researcher’s perspective. On each choice occasion,

the rational individual will choose site k if:

JjppyVppyV tjjzjttkkzkt ,...,0  ),,,/)((),,/)(( =−≥− εε qq . (2)

Researchers are frequently interested in using the repeated discrete choice structure to estimate

the seasonal Hicksian consumer surplus arising from changes in site characteristics such as environmental

quality.3 The conventional approach in the existing literature to constructing seasonal welfare measures

from the repeated discrete choice framework involves two steps (e.g., Morey [27]). The researcher first

constructs Hicksian consumer surplus estimates separately for each choice occasion conditional on the

individual’s fixed income allocation prior to the quality change. 4 Choice occasion welfare estimates are

then summed across the T choice occasions to form an estimate of the individual’s seasonal Hicksian

consumer surplus.

Assuming tt yy = , the Hicksian consumer surplus on choice occasion t, tCS , associated with a

change in q from q′  to q ′′  is implicitly defined as:

)],,/)(([)],,/)(([ ,...,0,...,0 tjjztjtJjtjjzjtJj pCSpyVMaxppyVMax εε qq ′′−−=′− ∈∈ . (3)

Equation (3) suggests that tCS  is in general a function of the elements of the (J+1) × 1 tε  vector which

are known only by the individual. From the researcher’s perspective, tCS  is a random variable that

cannot be determined precisely. In applied welfare analysis, the researcher often assumes a parent

distribution from which each element of tε  is drawn. This assumption, along with the specified structure
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of preferences and the observable site and individual specific characteristics, allows the researcher to

construct a measure of the central tendency of the distribution of tCS  such as its mean.5

The unconditional and conditional approaches to welfare measurement employ alternative

strategies for resolving the researcher’s uncertainty about tCS . Both approaches employ the same

structure of preferences in (1)-(3), but the conditional approach employs additional information about tε

implied by an individual’s observed choice. In microeconomic applications, the researcher often observes

whether and which of the J sites the individual visits on choice occasion t at current conditions. This

observed choice, along with the inequalities in (2), implies restrictions on the support of the distribution

of tε  that can be used in the construction of consumer surplus estimates. The conditional approach to

welfare measurement incorporates these additional restrictions while the unconditional approach does

not.6

The conditional and unconditional approaches to welfare measurement can be rationalized by

alternative interpretations of the factors that give rise to randomness in RUMs. As suggested by Hausman

and Wise [17], one can interpret the elements of tε  as arising from the “random firing of neurons” (p

407) or the individual’s state of mind at a point in time. Under this interpretation, it is doubtful that the

ephemeral factors that give rise to tε  convey meaningful information about the individual’s value for

recreation sites and their characteristics. Therefore, the researcher favoring this view would likely prefer

the traditional unconditional approach to welfare measurement. Alternatively, one can interpret the

elements of tε  as arising from important unobserved individual, commodity, and choice occasion specific

characteristics that are not otherwise captured in the economic model and would likely persist if the

choice occasion were repeated. If the researcher believes this interpretation, the conditional approach to

welfare measurement would likely be preferred.

Although the two approaches are conceptually distinct and may imply substantially different

welfare estimates for a given choice occasion, the law of iterated expectations and the law of large
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numbers imply that these differences diminish as the researcher aggregates across choice occasions and

individuals to construct sample welfare estimates. Specifically, the law of iterated expectations implies

the following relationship between the unconditional and conditional expectations:

)chosen |()( jCSECSE t
j

tjt ∑= π (4)

where tjπ  is the probability that the individual will choose site j on choice occasion t given current

conditions and )chosen |( jCSE t  is the expected Hicksian consumer surplus conditional on site j being

chosen at current conditions. Using (4), the difference between the conditional and unconditional

expected Hicksian consumer surplus can be written:

)chosen |()()()chosen |( jCSECSEkCSE t
j

tjtjtt ∑ −=− π1 (5)

where tj1  is an indicator function equal to 1 if j = k and 0 otherwise.  Because consumer choice is random

from the researcher’s perspective, equation (5) implies that the difference between the unconditional and

conditional estimates can be thought of as a random variable. If the researcher has correctly specified the

data generating process for the observed recreation choices, the expectation of tj1  is tjπ  and, by

implication, the expectation of (5) is zero. Assuming further that (5) has a finite variance, the law of large

numbers implies that differences between sample means of unconditional and conditional welfare

measures should diminish as the sample size grows.

A maintained assumption required for this convergence is that the researcher has correctly

specified the data generating process for the sample’s observed choices. As Smith [36] has noted, this is a

strong if not implausible assumption in many applications.7 Due to data and/or modeling limitations that

are often beyond the researcher’s control, applied recreation demand models may exclude or mismeasure

important individual or site characteristics, misspecify the structure of consumer preferences and/or the

sites that enter each individual’s choice set, or misspecify the parent distribution for the unobserved

determinants of choice. In these cases, differences between unconditional and conditional welfare
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measures may arise.  An important practical question is how much these sources of misspecification

compromise the integrity of the constructed welfare estimates. One approach to answering this question is

to compare unconditional and conditional welfare estimates. If large differences are found, the researcher

has evidence suggesting that significant model misspecification is present.

3. DATA

This section describes the recreation data from the 1994 National Survey of Recreation and the

Environment (NSRE) used to empirically assess the proposed conditional approach to welfare

measurement. A collaborative effort of several federal agencies, the 1994 NSRE consisted of two survey

modules that attempted to determine the impact of the natural environment on current participation in

water-based outdoor recreation. The Economic Research Service (ERS) at the Department of Agriculture

developed a module that collected information on the recreational activities of 378 residents of the lower

Susquehanna River basin.8,9 The analysis reported here focuses on the 157 trip-taking residents of the

region who took a combined 2,471 boating, fishing, swimming, and nature viewing trips to 219 lakes,

rivers, and streams within 100 miles of their homes.10

Complete water quality data for all of these destinations as well as the large number of unvisited

lakes, rivers, and streams that support outdoor recreation in the region were not available, so an

aggregate/zonal approach to site definition was developed. In particular, the 219 destinations visited by

the sample were aggregated separately by lakes and rivers/streams into geographic zones that

corresponded to the Pennsylvania Department of Environmental Protection’s delineation of the region

into “sub-subbasin” watersheds (i.e., hydrological drainage regions) that range in size from roughly 100

to 500 square miles. Because the Susquehanna River serves as a boundary for many of these watersheds

and represents a unique water resource in the region, visited destinations along the river were aggregated

separately into 11 reaches. This site definition protocol implied that up to 89 recreation sites could enter

an individual’s choice set.11,12
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PCMiler [1] was used to estimate round trip travel distances and times for every combination of

the 157 recreators and 219 visited water bodies. Travel costs to each of the 219 visited water bodies were

then estimated for each recreator-visited water body combination as the round trip travel distance valued

at $0.30 per mile plus the round trip travel time valued at one-third the wage rate (Cesario [11],

McConnell and Strand [23]).13 When the individual’s wage rate was not available in the NSRE survey,

predicted wages were imputed using the individual’s reported demographics and parameter estimates

from wage regressions based on the 1994 March Supplement to the Current Population Survey (Smith,

Desvousges, and McGivney [37]). These travel costs were then averaged at the watershed/river reach

level to form estimates of each individual’s travel costs to each of the 89 defined recreation sites that were

not visited. For water bodies the individual visited, however, her estimated travel cost to the visited water

body was used instead.

Frey et al. [14] report that a major source of water quality impairment in the lower Susquehanna

River basin is agriculture and silviculture runoff. As a result, many receiving waters in the region are

eutrophic, i.e., suffer from elevated nutrient levels that accelerate the naturally occurring photosynthetic

process beyond a water body’s assimilative capabilities. Algal blooms, ammonia odors, reduced water

clarity, and impairments of flora and fauna life frequently result. All of these impacts would make a site

less attractive to recreators and reduce their likelihood of visiting.

To represent these impacts at the 89 defined recreation sites, this analysis employs water quality

index measures generated from multiple readings of water quality chemistries. Two index variables were

constructed for all 89 sites. The first index variable, TSI, is constructed as a weighted average14 of the

following formulas that standardizes phosphorus and secchi disk readings into Carlson’s [8] Trophic State

Index:

TSI = 10×(6-(48/Phos)/ln(2)

TSI = 10×(6-ln(SD)/ln(2)
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where phosphorus (Phos) is measured in milligrams per liter (mg/l) and secchi disk (SD) is measured in

meters. According to the EPA (Moore and Thornton [26]), TSI measures above 50 suggest that a

receiving water is eutrophic. Given that small to moderate increases in phosphorus and other nutrient

loadings at water bodies with low TSI levels might increase the amount of flora and fauna life to levels

that may be preferable to recreators, all of the empirical specifications assume the TSI variable enters

preferences in a quadratic form. A second water quality index, Lowdo, is a dummy variable that captures

more advanced eutrophic conditions where surface water dissolved oxygen levels have fallen below safe

levels for many fish species. According to the EPA (Novotny and Olem [30]), cold and warm water

fisheries are impaired for fauna life when 30-day dissolved oxygen readings fall below 6.5 and 5.5 mg/l,

respectively.

The raw water quality chemistry data that was used to construct the TSI and Lowdo indexes were

collected from the EPA, the Pennsylvania Fish and Boat Commission, the Susquehanna River Basin

Commission, and the Army Corps of Engineers. These water quality chemistries were first cleaned and

then attached to each of the 219 visited water bodies using an iterative algorithm described in von Haefen

[44].  The TSI and Lowdo indexes were then constructed for each visited water body. Similar to the

construction of travel cost estimates for the 89 defined sites, these indexes were then averaged at the

watershed/river reach level to form site specific indexes for all sites unvisited by each individual. For

visited sites, the water quality indexes specific to the visited water bodies were used instead.

4. MODEL SPECIFICATION AND PARAMETER ESTIMATES

Four parametric specifications of the repeated discrete choice model are employed in the

empirical application. For all four, the recreation season consists of 100 separable choice occasions,15,16

the marginal utility of income is assumed to be constant on each choice occasion,17 and the choice

occasion conditional indirect utility functions are assumed to share a common linear-in-parameters and

additive structure, i.e.:
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JjppyV tjjtzjtttj ,...,0  ,/)( =++−= ελ qβ (6)

where tλ  and tβ  are estimable parameters. Table 1 defines the variables included in all specifications.

The first specification considered is the standard conditional logit model (McFadden [24]). This

specification arises if the researcher assumes that the tε  elements are independent and identically

distributed draws from the Type I Extreme Value distribution and the conditional indirect utility

function’s structural parameters are constant across individuals and choice occasions (i.e., λλ =t ,

ββ =t ). A limitation with the conditional logit specification is that the ratios of the implied choice

probabilities are independent of the composition of the choice set. This is the well-known independence

of irrelevant alternatives restriction. The second specification generalizes the conditional logit

specification by allowing the no trip dummy variable to vary randomly across individuals and choice

occasions while holding the remaining parameters fixed. As Cardell [7], Train [40], and Herriges and

Phaneuf [18] have argued, this random coefficients logit specification (McFadden and Train [25]) is

conceptually similar to a nested logit model with all recreation sites aggregated into a single nest. In the

remainder of the paper,  the specification is referred to as a quasi-nested logit. It differs from a traditional

nested logit only in the assumed distribution for the no trip dummy variable parameter, which in this

application is normally distributed.18

A second random coefficients logit specification assumes that the marginal utility of income, tλ ,

varies randomly across individuals and choice occasions with the remaining parameters (including the no

trip dummy variable) fixed. For economic consistency, tλ  is assumed to be strictly positive and to follow

a log-normal distribution. An appealing attribute of this random marginal utility of income (RMUI)

specification is that differences in tλ  (and by implication the marginal rates of substitution between the

Hicksian composite good and site quality) as well as tε  across the season help to explain the individual’s

decision of when and where to recreate.  The final specification considered assumes that all structural

parameters vary randomly across individuals and choice occasions. This full random coefficients logit
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specification (Train [39]) assumes that on each choice occasion, each individual’s vector of structural

parameters can be treated as independent and identically distributed draws from a known distribution.

For this application, the distributions employed are the log-normal distribution for tλ  and the normal

distribution for the remaining parameters.

Given the closed form solutions for the choice probabilities, estimation of the conditional logit

model is straightforward and accomplished with standard maximum likelihood techniques. For the quasi-

nested logit, the RMUI, and the random coefficients logit specifications, however, the choice probabilities

do not have closed form solutions. Since there is only one random coefficient in both the quasi-nested

logit and the RMUI specifications, univariate numerical integration (i.e., Simpson’s Rule) can be used to

construct the likelihood function and recover structural parameter estimates within the maximum

likelihood framework. Estimation of the full random coefficients logit specification, however, requires

simulation based techniques (see Stern [38] for an overview). Given the relatively small recreation data

set employed in this application (157 individuals) and the relatively large choice sets (up to 89 sites),

estimating the model’s structural parameters precisely was found to be computationally difficult using

standard frequency simulator techniques as in Train [39]. To ameliorate this difficulty, a quasi-random

simulator was employed. Following Bhat [5] and Train [41], Halton draws were used in place of random

draws.17 Experimentation based on increasing the number of Halton draws in 50 unit increments

suggested that parameter estimates stablized when 500 or more draws were used. Therefore, the

parameter estimates for the full random coefficients logit model reported in this paper were generated

with 500 Halton draws.

Table 2 reports the parameter estimates and their asymptotic t-statistics for the four specifications.

Beginning with the conditional logit specification, the estimates strongly suggest individuals prefer lower

travel costs and sites with better environmental quality as measured by the Lowdo and TSI variables. The

quadratic TSI specification suggests that TSI levels greater than 26 decrease consumer utility at an

increasing rate. Individuals also prefer to visit sites along the Susquehanna River and located within
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federal, state, and county parks. Moreover, males and boaters, fishers, and swimmers are more likely to

recreate. Parameter estimates for the quasi-nested logit specification are qualitatively similar to the

conditional logit estimates, and the standard error parameter for the no trip dummy is highly significant.

Once again, TSI levels greater than 26 decrease consumer utility at an increasing rate, and low dissolved

oxygen levels negatively impact consumer utility.

The likelihood value for the RMUI specification suggests that allowing the travel cost coefficient

to vary randomly across choice occasions and individuals results in a model that fits the data better than

the conditional logit and the quasi-nested logit. The marginal utility of income is found to vary

substantially across choice occasions but on average equals 2.371, and the water quality variables for this

specification are qualitatively similar to the first two models (e.g., TSI levels greater than 27 decrease

utility at an increasing rate). Finally, the parameter estimates for the random coefficients logit

specification suggests that there is considerable heterogeneity across individuals and sites. For this

specification, the expected marginal utility of income is estimated to be 2.959, low dissolved oxygen

levels have significantly different impacts across individuals and choice occasions but in general decrease

utility substantially, and TSI levels greater than 27 on average diminish the attractiveness of a recreation

site at an increasing rate.

5. WELFARE SCENARIOS

In the recreation literature, two generic types of policy scenarios are often considered. One type

evaluates the benefits arising from the improvement of water quality conditions in a watershed, river

basin, or other large geographic region (e.g., Parsons and Kealy [31]), while a second considers the

addition or loss of one or a small set of sites arising from more acute, geographically concentrated

environmental impacts (Parsons, Plantinga, and Boyle [32]). This section uses policy scenarios from each

of these broad categories to demonstrate and evaluate the conditional approach to welfare measurement.
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The first scenario involves the cleanup of sites with low dissolved oxygen and high Trophic State

Index (TSI) levels to safe standards as defined by the EPA. Welfare estimates from this scenario can

inform policy makers of the potential benefits arising from the basin-wide cleanup of eutrophic sites. As

noted earlier, the EPA defines warm and cold water bodies with dissolved oxygen levels greater than 5.5

and 6.5 mg/l, respectively, and TSI levels less than 50 as unimpaired. This policy therefore involves: 1)

raising dissolved oxygen levels at impaired site such that the Lowdo variable equals zero at every site;

and 2) lowering (raising) phosphorus levels (secchi disk readings) such that the TSI variable is less than

50 at every site. 70 of the 157 recreators in the sample took a combined 347 trips to at least one of the 22

eutrophic sites.

The second policy scenario considers the loss of a 40 mile reach of the lower Susquehanna River

from Columbia, PA to Havre de Grace, MD. This reach corresponds to three of the 89 defined recreation

sites and contains three state parks supporting a wide range of recreational opportunities such as boating,

fishing, swimming, nature viewing, and hiking. 25 recreators in the sample took a total of 235 trips to the

three sites that encompass the 40 mile stretch.

6. PROCEDURES FOR CONSTRUCTING HICKSIAN WELFARE MEASURES

This section outlines the procedures used to construct conditional Hicksian welfare measures for

the four repeated discrete choice specifications. As noted in Section 2, the standard procedure for

constructing an individual’s seasonal willingness to pay from the repeated discrete choice framework

involves first constructing Hicksian consumer surplus estimates separately for each choice occasion and

then aggregating these estimates across choice occasions. Both unconditional and conditional welfare

estimates reported in this paper employ this convention. Since constructing seasonal welfare measures is

straightforward once choice occasion welfare measures have been generated, the discussion that follows

focuses on Hicksian welfare estimation at the choice occasion. To highlight the differences between the
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conditional and unconditional approaches, the section begins with a discussion of how unconditional

welfare estimates are constructed.

Given the structure of preferences in (6), the individual’s Hicksian consumer surplus associated

with a change in quality from q′  to q ′′  on choice occasion t is:

[ ] [ ][ ]tjjtzjtjtjjtzjtj
t

z
t ppMaxppMax

p
CS ελελ

λ
+′+−−+′′+−= qq ββ // (7)

The unconditional expectation of (7) is:

tttttttt dddfCSCSE εβεβ λλ∫= ),,()()( (8)

where ),,( tttf εβλ  is the unconditional distribution of the structural parameters and tε . Given the

assumed conditional independence of the structural parameters and tε , (8) can be rewritten as follows:

tttttttt ddfCSECSE βββ λλλ∫= ),(),|()( (9)

The assumption that each element of tε  is an independent and identically distributed draw from the Type

I Extreme Value distribution implies that ),|( tttCSE βλ  has a closed form solution, i.e.:
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where the scale parameter for the Type I Extreme Value distribution has been normalized to one with no

loss in generality. For the case where λλ =t  and ββ =t , (10) is the well-known “log-sum” formula

(Small and Rosen [34], Hanemann [16]) that is used to construct unconditional welfare measures for the

conditional logit specification.

For the more general specifications, (10) can also be used to generate estimates of )( tCSE . Train

[38] has proposed estimating )( tCSE  for random coefficients logit models by using the following three

step procedure: 1) simulate pseudo-random draws from the unconditional distribution of the structural

parameters; 2) construct simulated estimates of (10) for each set of parameter draws; and 3) repeat steps
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1) and 2) R times and average the simulated welfare estimates. For a sufficiently large R, this average will

closely approximate )( tCSE . This simulation algorithm is used for the full random coefficients model,

and 2,500 random draws for each choice occasion were found to generate sample welfare estimates that

changed by less than $0.10 with additional simulations. Similar to estimation, simulation is not required

to construct estimates of )( tCSE  for the quasi-nested logit model and RMUI logit specifications. Instead,

one can use univariate numerical integration which is less computationally intensive.

Similar to equation (8), the conditional expectation of the Hicksian consumer surplus is:

tttittttt dddkfCSkCSE εβεβ λλ∫= )chosen |,,()()chosen |( (11)

where )chosen |,,( kf ttt εβλ  is the conditional distribution of the structural parameters and tε  given

the individual’s observed choice of site k. For all four specifications, no closed form solutions for (11)

exist in general, and simulation techniques are required. The simulation algorithm used here involves

three steps: 1) simulate pseudo-random draws of tλ , tβ , and tε  from )chosen |,,( kf ttt εβλ ; 2) For

each set of simulated draws, use (7) to construct a simulated estimate of tCS ; and 3) repeat steps 1) and

2) R times and average the R simulated welfare estimates.

The practical difficulty with implementing this algorithm is generating simulated pseudo-random

draws of tλ , tβ , and tε  consistent with the individual’s observed choice. For this application, the

strategy for accomplishing this task builds on the following decomposition of the joint distribution of tλ ,

tβ , and tε  conditional on the observed choice:

)chosen ,,,|()chosen ,,|()chosen |,(           

)chosen |,,(
- kfkfkf

kf

tttk
k

ttttktt

ttt

βεββ
εβ

λελελ
λ =

(12)

where k
t
−ε  is the tε  vector without the kth component. (12) suggests that the researcher can simulate

from )chosen |,,( kf ttt εβλ  by simulating first from )chosen |,( kf tt βλ  and then conditionally

from )chosen ,,|( kf tttk βλε  and )chosen ,,,|( - kf tttk
k

t βε λε . Of course, simulating from
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)chosen |,( kf tt βλ  is trivial for the conditional logit specification. However, generating simulated

draws of tλ  and tβ  is computationally difficult for all three random coefficients logit models. The

welfare estimates reported in this paper employ an adaptive Metropolis-Hastings simulator20 described in

Sawtooth Software [33] and recently employed by Arora, Allenby, and Ginter [4]. The simulator falls

under the rubric of Markov Chain Monte Carlo (MCMC) simulators (Gelman et al. [15]) that are

frequently used in the Bayesian statistical literature to simulate from complex posterior distributions.

Appendix A describes the key steps of the simulator.

Conditional on a set of tλ  and tβ  simulated draws, the researcher then simulates sequentially

from )chosen ,,|( kf tttk βλε  and )chosen ,,,|( kf tttk
k

t βε λε− . Given the iid Type I Extreme Value

distribution for each element of tε , the marginal distribution for tkε  and the conditional distribution for

each tjε  (j ≠ k) are:

))exp()/1exp(()exp()chosen ,,|( tktktktttk kf επελε −−−=β (13)

kjkf tktjtktjtjtttktj ≠−+−−−=  )),/)(exp()exp(exp()exp()chosen ,,,|( ππεεελεε β (14)

where tjπ  and tkπ  are the site choice probabilities conditional on the tλ  and tβ  simulated draws.21 The

researcher can simulate an tε  vector consistent with the simulated structural parameters and the observed

choice by applying the probability integral transformation first to (13) and then to (14).

 For the conditional logit specification where ββ == tt  ,λλ , the researcher need only simulate

the tε  vector using (13) and (14). For the policy scenarios considered in this paper, 2500 simulations

were found to generate seasonal welfare estimates that did not change by more than $0.10 with additional

simulations. For the more general random coefficients logit specifications, the number of simulations

required to generate accurate estimates is substantially larger. As a result, 8000 simulations were used for

all three random coefficients logit specifications.22



17

7. WELFARE ESTIMATES

Tables 3 and 4 report sample welfare statistics for both policy scenarios and all four

specifications. Although unconditional and conditional estimates can be compared along several

dimensions, the discussion here focuses on three: 1) a within-specification comparison; 2) an across-

specification comparison; and 3) a comparison of distributional impacts.

Beginning with a pairwise comparison of unconditional and conditional sample mean welfare

estimates for each policy scenario and specification, Table 3 suggests that the estimates are qualitatively

similar and differ in absolute value by less than $5.00. Not surprisingly, these differences are largest for

the conditional logit specification and considerably less for the more general random coefficients logit

model. To help interpret whether the magnitude of these differences suggest that misspecification is

present, a Monte Carlo experiment was developed. The experiment attempts to ascertain the magnitude of

differences between the two estimates that should arise if the researcher has correctly specified the data

generating process. Larger differences than what are predicted by the Monte Carlo experiment would

suggest that misspecification is likely present. The technical details of the experiment are found in

Appendix B, but its central finding is that one can expect differences of less than $1.00 for the cleanup of

eutophic sites scenario and $2.00 for the loss of the lower Susquehanna River reach scenario from a

correctly specified model. These findings suggest that some misspecification is likely present with the

conditional logit, quasi-nested logit, and RMUI specifications, and that the differences arising from the

random coefficients logit specification are consistent with a correctly specified model. An implication of

these results is that the random coefficients logit model, which implies significantly larger welfare

estimates compared to the other specifications in this application, may be the most credible specification

for policy purposes.

Another dimension on which to compare the unconditional and conditional welfare estimates is

their relative robustness across alternative model specifications. This dimension is important from a
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practical perspective because the researcher’s choice of model specification is in some sense arbitrary and

in all likelihood incorrect. For both scenarios, one finds that the conditional welfare estimates have a

smaller range relative to the unconditional estimates ($18.62 versus $23.25 for the cleanup of eutrophic

sites and $4.99 versus $9.63 for the loss of the lower Susquehanna River reach). Although these

differences are small and should be interpreted cautiously, they suggest that conditional welfare measures

may be less sensitive to the researcher’s choice of model specification. Intuitively, this result may arise

from the unconditional estimates’ reliance on the estimated behavioral model for both predicting the

recreator’s trip choices at baseline conditions and structuring substitution among sites arising from the

policy changes. The conditional welfare estimates, because they incorporate the recreator’s observed

choices at baseline conditions, use the behavior model only to structure substitution and thus are less

model dependent. To the degree that baseline predictions are important determinants of Hicksian value,

conditional estimates should be more robust across alternative model specifications. Thus, for example,

one should expect relatively smaller differences in conditional welfare estimates for loss of site scenarios

because the baseline number of trips to the lost site(s) - the critical determinant of Hicksian value with

these scenarios - is held fixed at observed levels across specifications. The empirical results reported here

support this interpretation, but further research is necessary before general conclusions can be drawn.

A third dimension on which to evaluate the conditional and unconditional welfare estimates is the

implied distribution of impacts across the sample. Table 4 contains several sample statistics that help to

elucidate the distributional implications of the unconditional and conditional estimates. For both policy

scenarios and all four specifications, one finds average absolute differences between unconditional and

conditional estimates for a given individual of roughly $20. For the cleanup of eutrophic sites scenario,

the sample median, interquartile range, and minimum values are qualitatively similar between

unconditional and conditional estimates, but the maximum conditional estimates are generally three to

five times larger than the maximum unconditional estimates. This finding suggests that the conditional

estimates imply a distribution of benefits that is more concentrated among a small subset of the sample.

For the loss of the 40 mile reach of the lower Susquehanna River, this finding is more pronounced.
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Although the unconditional estimates imply that roughly three-quarters of the sample suffer economic

losses, the conditional estimates imply that less than one-quarter do. The latter finding is a reflection of

the fact that only 22 of the 157 recreators in the sample (roughly 14 percent) visited one of the three sites

that encompass the 40 mile reach. The conditional estimates imply that only these 22 recreators

experience economic losses, whereas the unconditional estimates imply economic losses for a larger

percentage of the sample.

8. CONCLUSION

This paper has proposed an approach to welfare measurement from random utility models that

incorporates the implications of an individual’s observed choice. The conditional approach to welfare

measurement was motivated in the context of the repeated discrete choice model of recreation demand but

is applicable to any choice model where the unobserved determinants of choice are given a behavioral

interpretation.  If the researcher has correctly specified the data generating process, the theory section

suggested that differences between sample means of conditional and unconditional estimates diminish as

the sample size increases. An empirical analysis based on a subsample of the 1994 NSRE found that

differences between unconditional and conditional sample mean welfare estimates range from $0.93 to

$4.49 in absolute value for two alternative policy scenarios and four model specifications. These

differences were generally larger than what one would expect from a correctly specified model for all

specifications except the full random coefficients logit model. Additionally, the results suggest that

conditional welfare estimates may be more robust to alternative model specifications and imply a

qualitatively different distribution of benefits. Although it is with considerable risk of error that one draws

general implications from a single application, these results strongly suggest that the conditional approach

to measurement has many interesting and desirable properties that warrant further investigation with

alternative data sets and RUM-based structures.
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Appendix A

The Adaptive Metropolis-Hastings Simulation Algorithm

This appendix describes the adaptive Metropolis-Hastings algorithm that is used to simulate from

)chosen |,( kf tt βλ . This algorithm is similar to a set of procedures used by Sawtooth Software [33] to

estimate Heirarchical Bayes discrete choice models. The algorithm involves the following steps:

1) At iteration r (r = 1,…,R), a pseudo-random number generator is used to draw candidate

structural parameters, rtλ~  and r
tβ~ , separately for each individual/choice occasion combination.

For r
tλ~ , this is accomplished by simulating from the log-normal distribution with mean 1~

ln −r
tλ

and standard error λσ lnd r , where rd  is a constant that is fixed across individuals and choice

occasions and λσ ln  is the standard error of tλln . Similarly, r
tβ~  is generated from the normal

distribution with mean vector 1~ −r
tβ  and standard error vector βσrd , where βσ  is the vector of

standard errors of tβ . To initialize the sequence, 0
~

tλ  and 0~
tβ  are set equal to their unconditional

expectations, i.e., )2/exp(
~ 2

lnln
0

λλ σµλ +=t  and βµβ =0~
t  where λµ ln  is the mean of tλln

and βµ  is the mean vector of tβ . The initial specification of rd  as well as its evolution across

simulations is discussed in step 3) below.

2) For simulation r (r = 1,…,R), calculate the following function separately for each choice

occasion:
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where r
tkπ  is the predicted probability for individual i choosing site k (the site she is observed to

choose) on choice occasion t conditional on ( r
tλ~ , r

tβ~ ) and ),,,|
~

,
~

( ββ σµβ λλ σµλ r
t

r
tl  is the

likelihood function for ( r
tλ~ , r

tβ~ ). If 1≥r
tψ , the researcher accepts the candidate structural

parameter draws for the rth choice occasion (i.e., r
t

r
t λλ ~=  and r

t
r
t ββ ~= ). If not, the researcher
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generates a random draw from the uniform distribution, say r
tb , and accepts r

tλ~  and r
tβ~  if

r
t

r
t b≥ψ . If r

t
r
t b<ψ , the reseracher rejects the candidate draws and accepts 1−r

tλ  and 1−r
tβ  (i.e.,

1−= r
t

r
t λλ  and 1−= r

t
r
t ββ ).

3) For the rth simulation (r = 1,…,R), estimate rχ , the percentage of accepted candidate structural

parameters for the sample. Call rχ  the jumping rule. Gelman et al. [15] state that the optimal

jumping rule for the normal distribution is between 0.44 and 0.23 and decreases with the number

of random coefficients. Following Sawtooth Software [33], the algorithm employed here targets

the jumping rule to be around 0.30. To accomplish this, 1d +r  is adjusted upwards (downwards)

by ten percent if rχ  is greater (less) than .3. It is the continuous adjustment of 1d +r  that makes

this Metropolis-Hastings simulator adaptive. For r = 1, rd  is arbitrarily set to 0.1.

This Markov Chain Monte Carlo (MCMC) simulator was used to generate 9000 pseudo random draws of

the structural parameters (i.e., R = 9000). As with any MCMC simulator, the sequence of draws can be

regarded as a sample from the target density (in this case, )chosen |,( kf tt βλ ) only after the chain has

passed an initial stage and the effect of the arbitrarily specified starting values is minimal. Therefore, in

this application, the initial 1000 simulations were dropped, and the remaining 8000 simulations were used

to construct conditional welfare estimates.
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Appendix B

Monte Carlo Experiment

This appendix discusses a Monte Carlo experiment that is used to generate benchmarks for

evaluating whether differences between unconditional and conditional welfare estimates found with the

NSRE data set suggest that model misspecfication is likely present. The experiment determines the

magnitude of differences between the estimators the researcher should expect if she has correctly

specified the data generating process. If the researcher finds differences greater than these benchmark

values, she has evidence suggesting that some misspecification is present.

For computational ease, the Monte Carlo experiment employs the conditional logit specification

and assumes that qualitatively similar results would arise from the more general random coefficients

models. Assuming that the conditional logit specification with the parameter estimates reported in Table 2

is the true data generating process, simulated choices were generated for every individual and choice

occasion in the NSRE recreation data set. This was accomplished by using the logit probabilities of site

selection and a pseudo-random number generator. These simulated choices were used to estimate the

structural parameters with standard maximum likelihood techniques. The structural parameter estimates

and the simulated choices were then used to construct the sample means of unconditional and conditional

welfare measures for the two policy scenarios. The absolute differences between the sample means of the

unconditional and conditional welfare measures were constructed and saved in a separate data file.23 This

procedure was replicated 100 times and a box-and-whisker plot of the results is found in Figure 1.

Figure 1 suggests that the mean differences between the unconditional and conditional welfare

measures are roughly $0.50 for both policies.24 The interquartile ranges fall between $0.25 and $0.90 and

are tighter for the cleanup of eutrophic sites scenario (policy 1). Although there are slightly more outliers

for the loss of the lower Susquehanna River reach scenario (policy 2), the results generally suggest that
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differences between the unconditional and conditional approaches should be less than $1.00 and $2.00 for

policies 1 and 2, respectively, if the researcher has correctly specified the data generating process.
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Table 1
Variable Definitions

Tcost Round trip travel cost estimates for each site entering each individual’s choice
set.  Each travel cost is normalized by a 1994 regional price index generated by
the American Chamber of Commerce [3].

Lowdo Percentage of visited water bodies in the watershed/river reach with dissolved
oxygen levels below 5.5 and 6.5 mg/l for warm and cold water bodies,
respectively.

TSI Average of Trophic State Index levels for visited water resources in the
watershed/river reach.  These indexes were constructed from phosphorus and
secchi disk water quality chemistry data.

No Trip Dummy = 1 for the no trip choice alternative, 0 otherwise.

Water × No Trip
Dummy Interaction

= 1 for the no trip choice alternative if the individual participated in boating,
fishing, or swimming outdoor recreation during the past year, 0 otherwise.

Female × No Trip
Dummy Interaction

= 1 for the no trip choice alternative if the individual is female, 0 otherwise.

Susq = 1 if recreation site is located along the Susquehanna River.

Park Percentage of visited recreation water bodies located within a federal, state, or
county park.
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Table 2
Parameter Estimates for Alternative Repeated Discrete Choice Specifications

Conditional
Logit

Quasi-Nested Logit Random Marginal Utility
of Income (RMUI) Logit

Random Coefficients Logit

Log-Likelihood -11,331.07 -11,295.91 -10,891.51 -10,260.17

Mean Standard
Error

Mean Standard
Error

Mean Standard
Error

Tcost -0.1192

(-60.58)
-0.118

(-58.12)
- 0.044

(0.266)
1.280

(14.36)
-0.049

(-0.749)
1.506

(33.60)
Lowdo -2.108

(-10.94)
-2.117

(-10.82)
- -1.954

(-10.50)
- -19.05

(-7.205)
10.27

(8.316)
TSI/10 0.942

(16.48)
0.952

(15.19)
- 1.056

(16.43)
- 2.295

(24.72)
0.054
(1.65)

TSI2/100 -0.180
(-15.80)

-0.183
(-14.69)

- -0.190
(-15.15)

- -0.411
(-22.98)

0.013
(2.192)

Susq 0.580
(9.770)

0.569
(8.812)

- 0.667
(9.971)

- -34.20
(-10.56)

30.41
(12.35)

Park 0.611
(10.04)

0.694
(10.66)

- 0.892
(12.13)

- 1.051
(11.56)

0.025
(0.108)

No Trip Dummy 2.512
(27.62)

4.027
(12.93)

2.761
(8.082)

-0.044
(0.874)

- -1.813
(-7.140)

0.045
(0.171)

Water × No Trip
Dummy

-0.150
(-1.946)

-0.155
(-1.144)

- -0.007
(0.067)

- 4.080
(8.358)

6.249
(11.63)

Female × No Trip
Dummy

0.640
(12.75)

1.098
(8.823)

- 1.030
(9.515)

3.872
(13.18)

0.398
(1.106)

1 For the RMUI and random coefficients specification, Tcost is assumed to follow a log-normal distribution. The
mean and standard error estimates for Tcost imply that the expected marginal utility of income (i.e., the negative
of the expected marginal disutility of travel cost) is 2.371 and 2.959, respectively.
2 Asymptotic t-statistics are reported in parentheses.
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Table 3
Sample Welfare Estimates (1994 Dollars)1

Conditional
Logit

Quasi-Nested
Logit

RMUI
Logit

Random
Coefficients

Logit

Cleanup of Eutrophic Sites

   Unconditional Sample
      Mean

$23.44
(1.07)2

$23.48
(1.18)

$25.86
(1.53)

$46.69
(2.86)

   Conditional Sample
      Mean

$27.93
(1.81)

$27.14
(1.53)

$28.53
(2.09)

$45.76
(1.85)

   Difference $4.49 $3.66 $2.67 -$0.93
   % Difference 19.2 15.6 10.3 -2.0

Loss of 40 Mile Reach of lower
    Susquehanna River
   Unconditional Sample
      Mean

-$12.37
(0.49)

-$15.80
(0.77)

-$16.03
(0.95)

-$22.00
(0.81)

   Conditional Sample
      Mean

-$15.46
(0.25)

-$16.75
(0.41)

-$18.08
(0.46)

-$20.45
(0.62)

   Difference -$3.09 -$0.95 -$2.05 -$1.55
   % Difference 25.0 6.0 12.8 -7.0

1 All welfare estimates constructed with sampling weights implied by county-stratified sampling design.
2 Krinsky and Robb [20, 21] standard errors in parentheses. All unconditional standard errors were constructed
with 200 simulations, whereas all conditional standard errors were constructed with 50 simulations.
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Table 4
Sample Descriptive Statistics of the Unconditional and Conditional Welfare Estimates1

Conditional
Logit

Quasi-Nested
Logit

RMUI
Logit

Random
Coefficients

Logit

Cleanup of Eutrophic Sites

   Mean Absolute Difference
      Between Uncond./Cond.
      Estimates (per Recreator)2

$17.82 $19.70 $24.99 $23.32

   Unconditional Estimates
      Median $21.80 $21.06 $25.21 $38.16
      Interquartile Range [$9.60, $36.22] [$11.59, $32.71] [$14.72, $33.61] [16.49, $70.53]
      Minimum $0.37 $0.39 $4.00 -$2.49
      Maximum $67.16 $78.67 $68.74 $160.11

   Conditional Estimates
      Median $19.85 $16.53 $12.51 $23.31
      Interquartile Range  [$6.19, $35.87] [$4.95, $30.94] [$4.74, $31.48] [$7.59, $52.14]
      Minimum $0.10 $0.03 $0.18 -$280.48
      Maximum $325.38 $328.85 $270.72 $448.94

Loss of 40 Mile Reach of lower
    Susquehanna River
Mean Absolute Difference
      Between Uncond./Cond.
      Estimates (per Recreator)

$17.38 $19.72 $21.89 $25.49

   Unconditional Estimates
      Median $-2.29 -$2.66 -$6.14 -$5.40
      Interquartile Range [-$17.08, -$0.07] [-$21.68, -$0.11] [-$20.95, -$2.00] [-$22.94, -$1.73]
      Minimum -$101.86 -$139.67 -$126.62 -$146.36
      Maximum $0.00 $0.00 $0.00 $0.00

   Conditional Estimates
      Median $0.00 $0.00 $0.00 $0.00
      Interquartile Range [$0.00, $0.00] [$0.00, $0.00] [$0.00, $0.00] [$0.00, $0.00]
      Minimum -$415.11 -$428.88 -$422.32 -$345.70
      Maximum $0.00 $0.00 $0.00 $0.00

1 All estimates constructed with sampling weights implied by the county-stratified sampling design.
2 This statistic was constructed by first taking the difference between her expected unconditional and conditional
welfare measures for each recreator. The absolute value of this difference was then constructed and averaged
across the sample.
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Figure 1
Box-and-Whisker Plot Graph of Absolute Differences between

Unconditional & Conditional Welfare Measures
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Each box-and-whisker plot was generated with 100 simulations. The line inside each “box” represents the median of
the empirical distribution. The interquartile range is contained inside each “box.” The upper (lower) whisker
represents the largest data points less than (greater than) or equal to the 75th (25th) percentile plus (minus) the
interquartile range multiplied by 1.5. All data points outside this expanded range are plotted individually.
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Footnotes

1 Carson, Wegge, and Hanemann [9] and Desvousges and Waters [13] have proposed repeated discrete
choice models where the choice occasion corresponds to a week and the individual may choose to take
one or more trips to selected sites per week.

2 It is assumed that ijp  and each element of jq  are equal to 0 for j = 0.

3 Although not considered in the theory section, this discussion can be extended to valuing changes in site
access such as the loss of a site.

4 The assumption that the individual’s income allocation is unaltered by the quality change is restrictive.
In general, individuals will want to reallocate their seasonal income across choice occasions to maximize
seasonal utility with a change in site quality.  Restricting them to the income allocation they choose prior
to the quality change implies that they will likely not achieve as high a level of seasonal utility as they
would otherwise.  As a result, seasonal welfare measures constructed using this two step procedure are
biased downward to the degree that individuals want to reallocate their seasonal income.  A special case
where no bias is present arises when the researcher restrictively assumes a constant marginal utility of
income on each choice occasion.  This assumption is frequently used in applications of the repeated
discrete choice model (e.g., Caulkins [10]).

5 Hanemann [16] also considers other summary measures such as the median and mode.  In the discussion
that follows, these alternative summary measures are not considered because of the recreation literature’s
exclusive focus on the mean.  This narrow focus, however, should not be interpreted as implying that the
conditional approach to welfare measurement does not apply if the researcher prefers these alternative
summary measures.

6 It should be emphasized that the conditional approach to welfare measurement incorporates the same
restrictions on tε  that are used to derive the likelihood (i.e., the probability) of observing a given choice

(see, e.g., Morey [27] for a formal derivation of the likelihood function).  Since classical and Bayesian
inference procedures employ the likelihood function, the conditional approach to welfare measurement is
consistent with either approach to statistical inference. See Huber and Train [19] for a discussion of the
similarities and differences of classical and Bayesian approaches to statistical inference with discrete
choice models.

7 Train, McFadden, and Johnson’s [42] recent critique of Morey and Waldman’s [29] proposed approach
to accounting for measurement error in fish catch rates suggests that environmental economists are
becoming increasingly sensitive to the implications of misspecification for welfare measurement.

8 A second module, conducted by the EPA, surveyed residents from all 50 states, but only information on
each individual’s most recent boating, fishing, and swimming trips was collected.

9 The ERS module also collected recreation data from residents of three other river basins – the Mid-
Columbia in Washington state, the Central Nebraska, and the White River basin in Indiana.  Because the
amount of water quality chemistry data in the lower Susquehanna River basin was far more extensive
relative to the other regions, the empirical analysis focuses exclusively on the lower Susquehanna.
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10 The ERS survey did not identify whether these trips were single day or multiple day trips, but because
all trips are to local sites, they are treated as single day trips.

11 To account for the fact that the NSRE survey collected data only on trips to local sites, only those sites
located within 100 miles of each respondent’s home were included in her choice set.

12 von Haefen [44] finds qualitatively similar per trip welfare estimates for water quality improvements
from the watershed-based 89 site model with the disaggregate 219 site model.  Although the relationship
between these two models and the “true” site definition model is unknown, these similar empirical
findings suggest that the watershed-based approach to site definition might be a plausible way to define
zonal sites.

13 Although using one-third the wage rate for the opportunity cost of time is a widely used convention in
empirical practice, its theoretical defensibility has been called into question with increasing regularity.
See Shaw and Feather [34] for a recent discussion of the proper value of the opportunity cost of time in
recreation demand models.

14 The weights used were proportional to the amount of phosphorus and secchi disk data available at each
site.

15 As correctly noted by a referee, specifying the number of choice occasions requires a judgement by the
researcher that is often arbitrary and lacking theoretical or intuitive appeal. Some additional results not
reported in this paper that are based on models assuming 200 and 500 choice occasions, however, suggest
that the specification of the number of choice occasions does not affect welfare estimates qualitatively in
this application.

16 Only three individuals in the sample reported taking more than 100 trips.  The trip demands for these
individuals were reduced proportionately across sites until their adjusted total trips equaled 100.

17 This assumption implies that the individual’s choice occasion income does not influence the recreation
decision.

18 Several additional multi-level quasi-nested logit specifications were also estimated, but the standard
error parameter estimates for these more complicated models were not found to be statistically significant
and are consequently not reported.

19 Both Bhat [5] and Train [41] give intuitive descriptions of Halton draws and their relationship to
random draws.  Chapter 9 in Judd [22] gives a more general discussion of quasi-simulation procedures.

20 See Chib and Greenberg [12] for a general discussion of the Metropolis-Hastings simulation algorithm.

21 Because the scale parameter for the Type I Extreme Value distribution is not identified within the logit
framework, equations (13) and (14) assume that it has been normalized to one.

22 Using GAUSS 3.5 and an 866 Mhz Pentium III processor with 256 Mb RAM, the full simulation
algorithm for each of the random coefficients logit models took about 90 minutes.

23 2500 simulations were used to construct the conditional welfare estimates.
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24 For the 100 simulations, the mean absolute differences between the unconditional and conditional
welfare measures are $0.40 and $0.69 for the cleanup of eutropic sites and the loss of the Susquehanna
River reach, respectively.  The median absolute differences are $0.34 and $0.53, respectively.


